56,476 research outputs found

    Disaster Risks Research and Assessment to Promote Risk Reduction and Management

    Get PDF
    Natural hazard events lead to disasters when the events interact with exposed and vulnerable physical and social systems. Despite significant progress in scientific understanding of physical phenomena leading to natural hazards as well as of vulnerability and exposure, disaster losses due to natural events do not show a tendency to decrease. This tendency is associated with many factors including increase in populations and assets at risk as well as in frequency and/or magnitude of natural events, especially those related to hydro-meteorological and climatic hazards. But essentially disaster losses increase because some of the elements of the multidimensional dynamic disaster risk system are not accounted for risk assessments. A comprehensive integrated system analysis and periodic assessment of disaster risks at any scale, from local to global, based on knowledge and data/information accumulated so far, are essential scientific tools that can assist in recognition and reduction of disaster risks. This paper reviews and synthesizes the knowledge of natural hazards, vulnerabilities, and disaster risks and aims to highlight potential contributions of science to disaster risk reduction (DRR) in order to provide policy-makers with the knowledge necessary to assist disaster risk mitigation and disaster risk management (DRM)

    Comparative analysis of spring flood risk reduction measures in Alaska, United States and the Sakha Republic, Russia

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017River ice thaw and breakup are an annual springtime phenomena in the North. Depending on regional weather patterns and river morphology, breakups can result in catastrophic floods in exposed and vulnerable communities. Breakup flood risk is especially high in rural and remote northern communities, where flood relief and recovery are complicated by unique geographical and climatological features, and limited physical and communication infrastructure. Proactive spring flood management would significantly minimize the adverse impacts of spring floods. Proactive flood management entails flood risk reduction through advances in ice jam and flood prevention, forecasting and mitigation, and community preparedness. With the goal to identify best practices in spring flood risk reduction, I conducted a comparative case study between two flood-prone communities, Galena in Alaska, United States and Edeytsy in the Sakha Republic, Russia. Within a week from each other, Galena and Edeytsy sustained major floods in May 2013. Methods included focus groups with the representatives from flood managing agencies, surveys of families impacted by the 2013 floods, observations on site, and archival review. Comparative parameters of the study included natural and human causes of spring floods, effectiveness of spring flood mitigation and preparedness strategies, and the role of interagency communication and cooperation in flood risk reduction. The analysis revealed that spring flood risk in Galena and Edeytsy results from complex interactions among a series of natural processes and human actions that generate conditions of hazard, exposure, and vulnerability. Therefore, flood risk in Galena and Edeytsy can be reduced by managing conditions of ice-jam floods, and decreasing exposure and vulnerability of the at-risk populations. Implementing the Pressure and Release model to analyze the vulnerability progression of Edeytsy and Galena points to common root causes at the two research sites, including colonial heritage, unequal distribution of resources and power, top-down governance, and limited inclusion of local communities in the decision-making process. To construct an appropriate flood risk reduction framework it is important to establish a dialogue among the diverse stakeholders on potential solutions, arriving at a range of top-down and bottom-up initiatives and in conjunction selecting the appropriate strategies. Both communities have progressed in terms of greater awareness of the hazard, reduction in vulnerabilities, and a shift to more reliance on shelter-in-place. However, in neither community have needed improvements in levee protection been completed. Dialogue between outside authorities and the community begins earlier and is more intensive for Edeytsy, perhaps accounting for Edeytsy's more favorable rating of risk management and response than Galena's

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page

    Vulnerability reduction of infrastructure reconstruction projects

    Get PDF
    Various infrastructure segments of numerous countries have been repeatedly subjected to natural and man-made disasters. The potential reason of damaging infrastructure facilities and their services is resultant disaster risks due to natural or man-made hazards connect with vulnerable infrastructure facilities and vulnerable communities. The simplest way to prevent or mitigate disaster losses is addressing vulnerabilities. The main study based on which this paper was compiled aimed at exploring and investigating the vulnerabilities of infrastructures and communities benefited from infrastructures and possible solutions to overcome them. This paper presents the literature review conducted on vulnerabilities of infrastructures and empirical evidence collated on best possible DRR strategies to overcome such vulnerabilities of infrastructures. The main study was conducted using case study strategy and the expert interviews. This paper is entirely based on the data collated from the expert interviews conducted in Sri Lanka and United Kingdom. The expert interviews discovered various DRR strategies to overcome the vulnerabilities of the infrastructure project

    Support for Drought Response and Community Preparedness: Filling the Gaps between Plans and Action

    Get PDF
    This chapter examines which levels of government handle various aspects of drought, as well as interactions between levels of government, providing examples from states across the western United States. It also takes a look at aspects of drought that fall outside traditional lines of authority and disciplinary boundaries. As part of a discussion on how states support local drought response, the chapter details and contrasts how California and Colorado track public water supply restrictions, and describes Colorado’s process for incorporating input from river basins across the state into its water plan. Case studies focus on drought planning in the Klamath River and Upper Colorado River basins through the lens of collaborative environmental planning. The chapter concludes that drought planning will be more effective as more states coordinate and align goals and policies at multiple levels of government

    The surveyor’s role in monitoring, mitigating, and adapting to climate change

    Get PDF
    • …
    corecore