26,491 research outputs found

    Monte Carlo simulations of 4d simplicial quantum gravity

    Get PDF
    Dynamical triangulations of four-dimensional Euclidean quantum gravity give rise to an interesting, numerically accessible model of quantum gravity. We give a simple introduction to the model and discuss two particularly important issues. One is that contrary to recent claims there is strong analytical and numerical evidence for the existence of an exponential bound that makes the partition function well-defined. The other is that there may be an ambiguity in the choice of the measure of the discrete model which could even lead to the existence of different universality classes.Comment: 16 pages, LaTeX, epsf, 4 uuencoded figures; contribution to the JMP special issue on "Quantum Geometry and Diffeomorphism-Invariant Quantum Field Theory

    Entropy of random coverings and 4D quantum gravity

    Full text link
    We discuss the counting of minimal geodesic ball coverings of nn-dimensional riemannian manifolds of bounded geometry, fixed Euler characteristic and Reidemeister torsion in a given representation of the fundamental group. This counting bears relevance to the analysis of the continuum limit of discrete models of quantum gravity. We establish the conditions under which the number of coverings grows exponentially with the volume, thus allowing for the search of a continuum limit of the corresponding discretized models. The resulting entropy estimates depend on representations of the fundamental group of the manifold through the corresponding Reidemeister torsion. We discuss the sum over inequivalent representations both in the two-dimensional and in the four-dimensional case. Explicit entropy functions as well as significant bounds on the associated critical exponents are obtained in both cases.Comment: 54 pages, latex, no figure

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299

    Stanley's Major Contributions to Ehrhart Theory

    Full text link
    This expository paper features a few highlights of Richard Stanley's extensive work in Ehrhart theory, the study of integer-point enumeration in rational polyhedra. We include results from the recent literature building on Stanley's work, as well as several open problems.Comment: 9 pages; to appear in the 70th-birthday volume honoring Richard Stanle
    corecore