743 research outputs found

    On the existence of complete disjoint NP-pairs

    Get PDF
    Disjoint NP-pairs are an interesting model of computation with important applications in cryptography and proof complexity. The question whether there exists a complete disjoint NP-pair was posed by Razborov in 1994 and is one of the most important problems in the field. In this paper we prove that there exists a many-one hard disjoint NP-pair which is computed with access to a very weak oracle (a tally NP-oracle). In addition, we exhibit candidates for complete NP-pairs and apply our results to a recent line of research on the construction of hard tautologies from pseudorandom generators

    NP-Completeness, Proof Systems, and Disjoint NP-Pairs

    Get PDF

    Nondeterministic functions and the existence of optimal proof systems

    Get PDF
    We provide new characterizations of two previously studied questions on nondeterministic function classes: Q1: Do nondeterministic functions admit efficient deterministic refinements? Q2: Do nondeterministic function classes contain complete functions? We show that Q1 for the class is equivalent to the question whether the standard proof system for SAT is p-optimal, and to the assumption that every optimal proof system is p-optimal. Assuming only the existence of a p-optimal proof system for SAT, we show that every set with an optimal proof system has a p-optimal proof system. Under the latter assumption, we also obtain a positive answer to Q2 for the class . An alternative view on nondeterministic functions is provided by disjoint sets and tuples. We pursue this approach for disjoint -pairs and its generalizations to tuples of sets from and with disjointness conditions of varying strength. In this way, we obtain new characterizations of Q2 for the class . Question Q1 for is equivalent to the question of whether every disjoint -pair is easy to separate. In addition, we characterize this problem by the question of whether every propositional proof system has the effective interpolation property. Again, these interpolation properties are intimately connected to disjoint -pairs, and we show how different interpolation properties can be modeled by -pairs associated with the underlying proof system

    Inseparability and Strong Hypotheses for Disjoint NP Pairs

    Get PDF
    This paper investigates the existence of inseparable disjoint pairs of NP languages and related strong hypotheses in computational complexity. Our main theorem says that, if NP does not have measure 0 in EXP, then there exist disjoint pairs of NP languages that are P-inseparable, in fact TIME(2^(n^k))-inseparable. We also relate these conditions to strong hypotheses concerning randomness and genericity of disjoint pairs

    Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP

    Get PDF

    Canonical Models and the Complexity of Modal Team Logic

    Get PDF
    We study modal team logic MTL, the team-semantical extension of classical modal logic closed under Boolean negation. Its fragments, such as modal dependence, independence, and inclusion logic, are well-understood. However, due to the unrestricted Boolean negation, the satisfiability problem of full MTL has been notoriously resistant to a complexity theoretical classification. In our approach, we adapt the notion of canonical models for team semantics. By construction of such a model, we reduce the satisfiability problem of MTL to simple model checking. Afterwards, we show that this method is optimal in the sense that MTL-formulas can efficiently enforce canonicity. Furthermore, to capture these results in terms of computational complexity, we introduce a non-elementary complexity class, TOWER(poly), and prove that the satisfiability and validity problem of MTL are complete for it. We also show that the fragments of MTL with bounded modal depth are complete for the levels of the elementary hierarchy (with polynomially many alternations)

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Spectral theory of networks : from biomolecular to ecological systems

    Get PDF
    The best way for understanding how things work is by understanding their structures [1]. Complex networks are not an exception [2]. In order to understand why some networks are more robust than others, or why the propagation of a disease in faster in one network than in another is necessary to understand how these networks are organized [3-5]. A complex network is a simplified representation of a complex system in which the entities of the system are represented by the nodes in the network and the interrelations between entities are represented by means of the links joining pairs of nodes [3-5]. In analyzing the architecture of a complex network we are concerned only with the topological organization of these nodes and links. That is to say, we are not taking care of any geometric characteristic of the systems we are representing by these networks but only on how the parts are organized or distributed to form the whole system

    Workshop on Logics of Dependence and Independence (LoDE 2020V)

    Get PDF
    corecore