12,778 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Qualitative mechanism models and the rationalization of procedures

    Get PDF
    A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center

    Monotone Pieces Analysis for Qualitative Modeling

    Get PDF
    It is a crucial task to build qualitative models of industrial applications for model-based diagnosis. A Model Abstraction procedure is designed to automatically transform a quantitative model into qualitative model. If the data is monotone, the behavior can be easily abstracted using the corners of the bounding rectangle. Hence, many existing model abstraction approaches rely on monotonicity. But it is not a trivial problem to robustly detect monotone pieces from scattered data obtained by numerical simulation or experiments. This paper introduces an approach based on scale-dependent monotonicity: the notion that monotonicity can be defined relative to a scale. Real-valued functions defined on a finite set of reals e.g. simulation results, can be partitioned into quasi-monotone segments. The end points for the monotone segments are used as the initial set of landmarks for qualitative model abstraction. The qualitative model abstraction works as an iteratively refining process starting from the initial landmarks. The monotonicity analysis presented here can be used in constructing many other kinds of qualitative models; it is robust and computationally efficient

    Machine learning techniques for fault isolation and sensor placement

    Get PDF
    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance

    Applying knowledge compilation techniques to model-based reasoning

    Get PDF
    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    • …
    corecore