787 research outputs found

    IMPACT ASSESSMENT OF IMAGE FEATURE EXTRACTORS ON THE PERFORMANCE OF SLAM SYSTEMS

    Get PDF
    This work evaluates an impact of image feature extractors on the performance of a visual SLAM method in terms of pose accuracy and computational requirements. In particular, the S-PTAM (Stereo Parallel Tracking and Mapping) method is considered as the visual SLAM framework for which both the feature detector and feature descriptor are parametrized. The evaluation was performed with a standard dataset with ground-truth information and six feature detectors and four descriptors. The presented results indicate that the combination of the GFTT detector and the BRIEF descriptor provides the best trade-off between the localization precision and computational requirements among the evaluated combinations of the detectors and descriptors

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    Learning and Searching Methods for Robust, Real-Time Visual Odometry.

    Full text link
    Accurate position estimation provides a critical foundation for mobile robot perception and control. While well-studied, it remains difficult to provide timely, precise, and robust position estimates for applications that operate in uncontrolled environments, such as robotic exploration and autonomous driving. Continuous, high-rate egomotion estimation is possible using cameras and Visual Odometry (VO), which tracks the movement of sparse scene content known as image keypoints or features. However, high update rates, often 30~Hz or greater, leave little computation time per frame, while variability in scene content stresses robustness. Due to these challenges, implementing an accurate and robust visual odometry system remains difficult. This thesis investigates fundamental improvements throughout all stages of a visual odometry system, and has three primary contributions: The first contribution is a machine learning method for feature detector design. This method considers end-to-end motion estimation accuracy during learning. Consequently, accuracy and robustness are improved across multiple challenging datasets in comparison to state of the art alternatives. The second contribution is a proposed feature descriptor, TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning method that improves feature matching accuracy by efficiently customizing descriptor structures on a per-feature basis. Further, a common asymmetry in vision system design between reference and query images is described and exploited, enabling approaches that would otherwise exceed runtime constraints. The final contribution is a new algorithm for visual motion estimation: Perspective Alignment Search~(PAS). Many vision systems depend on the unique appearance of features during matching, despite a large quantity of non-unique features in otherwise barren environments. A search-based method, PAS, is proposed to employ features that lack unique appearance through descriptorless matching. This method simplifies visual odometry pipelines, defining one method that subsumes feature matching, outlier rejection, and motion estimation. Throughout this work, evaluations of the proposed methods and systems are carried out on ground-truth datasets, often generated with custom experimental platforms in challenging environments. Particular focus is placed on preserving runtimes compatible with real-time operation, as is necessary for deployment in the field.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113365/1/chardson_1.pd

    A collaborative monocular visual simultaneous localization and mapping solution to generate a semi-dense 3D map.

    Get PDF
    The utilization and generation of indoor maps are critical in accurate indoor tracking. Simultaneous Localization and Mapping (SLAM) is one of the main techniques used for such map generation. In SLAM, an agent generates a map of an unknown environment while approximating its own location in it. The prevalence and afford-ability of cameras encourage the use of Monocular Visual SLAM, where a camera is the only sensing device for the SLAM process. In modern applications, multiple mobile agents may be involved in the generation of indoor maps, thus requiring a distributed computational framework. Each agent generates its own local map, which can then be combined with those of other agents into a map covering a larger area. In doing so, they cover a given environment faster than a single agent. Furthermore, they can interact with each other in the same environment, making this framework more practical, especially for collaborative applications such as augmented reality. One of the main challenges of collaborative SLAM is identifying overlapping maps, especially when the relative starting positions of the agents are unknown. We propose a system comprised of multiple monocular agents with unknown relative starting positions to generate a semi-dense global map of the environment

    Feature extraction using MPEG-CDVS and Deep Learning with application to robotic navigation and image classification

    Get PDF
    The main contributions of this thesis are the evaluation of MPEG Compact Descriptor for Visual Search in the context of indoor robotic navigation and the introduction of a new method for training Convolutional Neural Networks with applications to object classification. The choice for image descriptor in a visual navigation system is not straightforward. Visual descriptors must be distinctive enough to allow for correct localisation while still offering low matching complexity and short descriptor size for real-time applications. MPEG Compact Descriptor for Visual Search is a low complexity image descriptor that offers several levels of compromises between descriptor distinctiveness and size. In this work, we describe how these trade-offs can be used for efficient loop-detection in a typical indoor environment. We first describe a probabilistic approach to loop detection based on the standard’s suggested similarity metric. We then evaluate the performance of CDVS compression modes in terms of matching speed, feature extraction, and storage requirements and compare them with the state of the art SIFT descriptor for five different types of indoor floors. During the second part of this thesis we focus on the new paradigm to machine learning and computer vision called Deep Learning. Under this paradigm visual features are no longer extracted using fine-grained, highly engineered feature extractor, but rather using a Convolutional Neural Networks (CNN) that extracts hierarchical features learned directly from data at the cost of long training periods. In this context, we propose a method for speeding up the training of Convolutional Neural Networks (CNN) by exploiting the spatial scaling property of convolutions. This is done by first training a pre-train CNN of smaller kernel resolutions for a few epochs, followed by properly rescaling its kernels to the target’s original dimensions and continuing training at full resolution. We show that the overall training time of a target CNN architecture can be reduced by exploiting the spatial scaling property of convolutions during early stages of learning. Moreover, by rescaling the kernels at different epochs, we identify a trade-off between total training time and maximum obtainable accuracy. Finally, we propose a method for choosing when to rescale kernels and evaluate our approach on recent architectures showing savings in training times of nearly 20% while test set accuracy is preserved

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    Stereo visual simultaneous localisation and mapping for an outdoor wheeled robot: a front-end study

    Get PDF
    For many mobile robotic systems, navigating an environment is a crucial step in autonomy and Visual Simultaneous Localisation and Mapping (vSLAM) has seen increased effective usage in this capacity. However, vSLAM is strongly dependent on the context in which it is applied, often using heuristic and special cases to provide efficiency and robustness. It is thus crucial to identify the important parameters and factors regarding a particular context as this heavily influences the necessary algorithms, processes, and hardware required for the best results. In this body of work, a generic front-end stereo vSLAM pipeline is tested in the context of a small-scale outdoor wheeled robot that occupies less than 1m3 of volume. The scale of the vehicle constrained the available processing power, Field Of View (FOV), actuation systems, and image distortions present. A dataset was collected with a custom platform that consisted of a Point Grey Bumblebee (Discontinued) stereo camera and Nvidia Jetson TK1 processor. A stereo front-end feature tracking framework was described and evaluated both in simulation and experimentally where appropriate. It was found that scale adversely affected lighting conditions, FOV, baseline, and processing power available, all crucial factors to improve upon. The stereo constraint was effective for robustness criteria, but ineffective in terms of processing power and metric reconstruction. An overall absolute odometer error of 0.25-3m was produced on the dataset but was unable to run in real-time

    Visual SLAM using straight lines

    Get PDF
    The present thesis is focuses on the problem of Simultaneous Localisation and Mapping (SLAM) using only visual data (VSLAM). This means to concurrently estimate the position of a moving camera and to create a consistent map of the environment. Since implementing a whole VSLAM system is out of the scope of a degree thesis, the main aim is to improve an existing visual SLAM system by complementing the commonly used point features with straight line primitives. This enables more accurate localization in environments with few feature points, like corridors. As a foundation for the project, ScaViSLAM by Strasdat et al. is used, which is a state-of-the-art real-time visual SLAM framework. Since it currently only supports Stereo and RGB-D systems, implementing a Monocular approach will be researched as well as an integration of it as a ROS package in order to deploy it on a mobile robot. For the experimental results, the Care-O-bot service robot developed by Fraunhofer IPA will be used
    • …
    corecore