47,505 research outputs found

    A sensor-less NBTI mitigation methodology for NoC architectures

    Get PDF
    CMOS technology improvement allows to increase the number of cores integrated on a single chip and makes Network-on-Chips (NoCs) a key component from the performance and reliability standpoints. Unfortunately, continuous scaling of CMOS technology poses severe concerns regarding failure mechanisms such as NBTI and stressmigration, that are crucial in achieving acceptable component lifetime. Process variation complicates the scenario, decreasing device lifetime and performance predictability during chip fabrication. This paper presents a novel sensor-less methodology to reduce the NBTI degradation in the on-chip network virtual channel buffers, considering process variation effects as well. Experimental validation is obtained using a cycle accurate simulator considering both real and synthetic traffic patterns. We compare our methodology to the best sensor-wise approach used as reference golden model. The proposed sensor-less strategy achieves results within 25% to the optimal sensor-wise methodology while this gap is reduced around 10% decreasing the number of virtual channels per input port. Moreover, our proposal can mitigate NBTI impact both in short and long run, since we recover both the most degraded VC (short run) as well as all the other VCs (long term)

    BTI aware thermal management for reliable DVFS designs

    No full text
    In this paper, we show that dynamic voltage and frequency scaling (DVFS) designs, together with stress-induced BTI variability, exhibit high temperature-induced BTI variability, depending on their workload and operating modes. We show that the impact of temperature-induced variability on circuit lifetime can be higher than that due to stress and exceed 50% over the value estimated considering the circuit average temperature. In order to account for these variabilities in lifetime estimation at design time, we propose a simulation framework for the BTI degradation analysis of DVFS designs accounting for workload and actual temperature profiles. A profile is generated considering statistically probable workload and thermal management constraints by means of the HotSpot tool. Using the proposed framework we explore the expected lifetime of the ethernet circuit from the IWLS05 benchmark suite, synthesized with a 32nm CMOS technology library, for various thermal management constraints. We show that margin-based design can underestimate or overestimate lifetime of DVFS designs by up to 67.8% and 61.9%, respectively. Therefore, the proposed framework allows designers to select appropriately the dynamic thermal management constraints in order to tradeoff long-term reliability (lifetime) and performance with upto 35.8% and 26.3% higher accuracy, respectively, against a temperature-variability unaware BTI analysis

    Refueling: Preventing wire degradation due to electromigration

    Get PDF
    Electromigration is a major source of wire and via failure. Refueling undoes EM for bidirectional wires and power/ground grids-some of a chip's most vulnerable wires. Refueling exploits EM's self-healing effect by balancing the amount of current flowing in both directions of a wire. It can significantly extend a wire's lifetime while reducing the chip area devoted to wires.Peer ReviewedPostprint (published version

    Self-adaptivity of applications on network on chip multiprocessors: the case of fault-tolerant Kahn process networks

    Get PDF
    Technology scaling accompanied with higher operating frequencies and the ability to integrate more functionality in the same chip has been the driving force behind delivering higher performance computing systems at lower costs. Embedded computing systems, which have been riding the same wave of success, have evolved into complex architectures encompassing a high number of cores interconnected by an on-chip network (usually identified as Multiprocessor System-on-Chip). However these trends are hindered by issues that arise as technology scaling continues towards deep submicron scales. Firstly, growing complexity of these systems and the variability introduced by process technologies make it ever harder to perform a thorough optimization of the system at design time. Secondly, designers are faced with a reliability wall that emerges as age-related degradation reduces the lifetime of transistors, and as the probability of defects escaping post-manufacturing testing is increased. In this thesis, we take on these challenges within the context of streaming applications running in network-on-chip based parallel (not necessarily homogeneous) systems-on-chip that adopt the no-remote memory access model. In particular, this thesis tackles two main problems: (1) fault-aware online task remapping, (2) application-level self-adaptation for quality management. For the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a cross-layer approach that aims at graceful performance degradation by addressing permanent faults in processing elements mostly at system-level, in particular by exploiting redundancy available in multi-core platforms. We propose an optimal solution based on an integer linear programming formulation (suitable for design time adoption) as well as heuristic-based solutions to be used at run-time. We assess the impact of our approach on the lifetime reliability. We propose two recovery schemes based on a checkpoint-and-rollback and a rollforward technique. For the latter, we propose two variants of a monitor-controller- adapter loop that adapts application-level parameters to meet performance goals. We demonstrate not only that fault tolerance and self-adaptivity can be achieved in embedded platforms, but also that it can be done without incurring large overheads. In addressing these problems, we present techniques which have been realized (depending on their characteristics) in the form of a design tool, a run-time library or a hardware core to be added to the basic architecture
    • 

    corecore