886 research outputs found

    A metacognitive feedback scaffolding system for pedagogical apprenticeship

    Get PDF
    This thesis addresses the issue of how to help staff in Universities learn to give feedback with the main focus on helping teaching assistants (TAs) learn to give feedback while marking programming assignments. The result is an innovative approach which has been implemented in a novel computer support system called McFeSPA. The design of McFeSPA is based on an extensive review of the research literature on feedback. McFeSPA has been developed based on relevant work in educational psychology and Artificial Intelligence in EDucation (AIED) e.g. scaffolding the learner, ideas about andragogy, feedback patterns, research into the nature and quality of feedback and cognitive apprenticeship. McFeSPA draws on work on feedback patterns that have been proposed within the Pedagogical Patterns Project (PPP) to provide guidance on structuring the feedback report given to the student by the TA. The design also draws on the notion of andragogy to support the TA. McFeSPA is the first Intelligent Tutoring System (ITS) that supports adults learning to help students by giving quality feedback. The approach taken is more than a synthesis of these key ideas: the scaffolding framework has been implemented both for the domain of programming and the feedback domain itself; the programming domain has been structured for training TAs to give better feedback and as a framework for the analysis of students’ performance. The construction of feedback was validated by a small group of TAs. The TAs employed McFeSPA in a realistic situation that was supported by McFeSPA which uses scaffolding to support the TA and then fade. The approach to helping TAs become better feedback givers, which is instantiated in McFeSPA, has been validated through an experimental study with a small group of TAs using a triangulation approach. We found that our participants learned differently by using McFeSPA. The evaluation indicates that 1) providing content scaffolding (i.e. detailed feedback about the content using contingent hints) in McFeSPA can help almost all TAs increase their knowledge/understanding of the issues of learning to give feedback; 2) providing metacognitive scaffolding (i.e. each level of detailed feedback in contingent hint, this can also be general pop-up messages in using the system apart from feedback that encourage the participants to give good feedback) in McFeSPA helped all TAs reflect on/rethink their skills in giving feedback; and 3) when the TAs obtained knowledge about giving quality feedback, providing adaptable fading of TAs using McFeSPA allowed the TAs to learn alone without any support

    Artificial Intelligence Technology on Teaching-Learning: Exploring Bangladeshi Teachers’ Perceptions

    Get PDF
    The increasing attention to artificial intelligence technologies in daily life and the need to consider it as a priority topic for students in the twenty-first century clearly leads to artificial intelligence (AI) integration in higher education. Therefore, university teachers must be properly prepared to use AI in their teaching for successful integration. In this study, the researcher aimed to survey to investigate Bangladeshi university teachers' attitudes toward AI as a teaching tool. The survey results showed that teachers have minimal understanding of Artificial Intelligence and its assistance in the classroom. However, they considered it as an educational possibility. The findings indicated that teachers require assistance to be effective and competent in their teaching practices; the findings suggested that AI has the potential to contribute as an assistant

    Multimodal Dialogue Management for Multiparty Interaction with Infants

    Full text link
    We present dialogue management routines for a system to engage in multiparty agent-infant interaction. The ultimate purpose of this research is to help infants learn a visual sign language by engaging them in naturalistic and socially contingent conversations during an early-life critical period for language development (ages 6 to 12 months) as initiated by an artificial agent. As a first step, we focus on creating and maintaining agent-infant engagement that elicits appropriate and socially contingent responses from the baby. Our system includes two agents, a physical robot and an animated virtual human. The system's multimodal perception includes an eye-tracker (measures attention) and a thermal infrared imaging camera (measures patterns of emotional arousal). A dialogue policy is presented that selects individual actions and planned multiparty sequences based on perceptual inputs about the baby's internal changing states of emotional engagement. The present version of the system was evaluated in interaction with 8 babies. All babies demonstrated spontaneous and sustained engagement with the agents for several minutes, with patterns of conversationally relevant and socially contingent behaviors. We further performed a detailed case-study analysis with annotation of all agent and baby behaviors. Results show that the baby's behaviors were generally relevant to agent conversations and contained direct evidence for socially contingent responses by the baby to specific linguistic samples produced by the avatar. This work demonstrates the potential for language learning from agents in very young babies and has especially broad implications regarding the use of artificial agents with babies who have minimal language exposure in early life

    Adaptive robotic tutors for scaffolding self-regulated learning

    Get PDF
    This thesis explores how to utilise social robotic tutors to tackle the problem of providing children with enough personalised scaffolding to develop Self-Regulated Learning (SRL) skills. SRL is an important 21st century skill and correlates with measures of academic performance. The dynamics of social interactions when human tutors are scaffolding SRL are modelled, a computational model for how these strategies can be personalised to the learner is developed, and a framework for long-term SRL guidance from an autonomous social robotic tutor is created. To support the scaffolding of SRL skills the robot uses an Open Learner Model (OLM) visualisation to highlight the developing skills or gaps in learners' knowledge. An OLM shows the learner's competency or skill level on a screen to help the learner reflect on their performance. The robot also supports the development of meta-cognitive planning or forethought by summarising the OLM content and giving feedback on learners' SRL skills. Both short and longer-term studies are presented, which show the benefits of fully autonomous adaptive robotic tutors for scaffolding SRL skills. These benefits include the learners reflecting more on their developing competencies and skills, greater adoption SRL processes, and increased learning gain

    The Theoretical and Methodological Opportunities Afforded by Guided Play With Young Children

    Get PDF
    For infants and young children, learning takes place all the time and everywhere. How children learn best both in and out of school has been a long-standing topic of debate in education, cognitive development, and cognitive science. Recently, guided play has been proposed as an integrative approach for thinking about learning as a child-led, adult-assisted playful activity. The interactive and dynamic nature of guided play presents theoretical and methodological challenges and opportunities. Drawing upon research from multiple disciplines, we discuss the integration of cutting-edge computational modeling and data science tools to address some of these challenges, and highlight avenues toward an empirically grounded, computationally precise and ecologically valid framework of guided play in early education

    Advancement Auto-Assessment of Students Knowledge States from Natural Language Input

    Get PDF
    Knowledge Assessment is a key element in adaptive instructional systems and in particular in Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. However, this is a challenging research problem as numerous factors affect students’ knowledge state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. In this research work, we tackle this research problem from three perspectives: assessing the prior knowledge of students, assessing the natural language short and long students’ responses, and knowledge tracing.Prior knowledge assessment is an important component of knowledge assessment as it facilitates the adaptation of the instruction from the very beginning, i.e., when the student starts interacting with the (computer) tutor. Grouping students into groups with similar mental models and patterns of prior level of knowledge allows the system to select the right level of scaffolding for each group of students. While not adapting instruction to each individual learner, the advantage of adapting to groups of students based on a limited number of prior knowledge levels has the advantage of decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or clustering students based on their prior knowledge, we have employed effective clustering algorithms. Automatically assessing open-ended student responses is another challenging aspect of knowledge assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the system is natural language dialogue in which students freely respond to various system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student responses in such contexts is challenging as students can express the same idea in different ways owing to different individual style preferences and varied individual cognitive abilities. To address this challenging task, we have proposed several novel deep learning models as they are capable to capture rich high-level semantic features of text. Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking students’ mastery of knowledge over time and predicting their future performances. Despite the state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the knowledge tracing capability and performance. Working toward this objective, we have proposed a generic deep learning framework that accounts for the engagement level of students, the difficulty of questions and the semantics of the questions and uses a novel times series model called Temporal Convolutional Network for future performance prediction. The advanced auto-assessment methods presented in this dissertation should enable better ways to estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide which in turn should lead to more effective tutoring and better learning gains for students. Furthermore, the proposed method should enable more scalable development and deployment of ITSs across topics and domains for the benefit of all learners of all ages and backgrounds
    • …
    corecore