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ABSTRACT  

Nisrine, Ait Khayi Ph.D. The University of Memphis. December 2021. Toward Assessing Students 

‘Knowledge from Natural Language Interactions. Major Professor: Vasile Rus, Ph.D. 

 

Knowledge Assessment is a key element in adaptive instructional systems and in particular in 

Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. 

However, this is a challenging research problem as numerous factors affect students’ knowledge 

state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. 

In this research work, we tackle this research problem from three perspectives: assessing the prior 

knowledge of students, assessing the natural language short and long students’ responses, and 

knowledge tracing. 

Prior knowledge assessment is an important component of knowledge assessment as it facilitates 

the adaptation of the instruction from the very beginning, i.e., when the student starts interacting 

with the (computer) tutor. Grouping students into groups with similar mental models and patterns 

of prior level of knowledge allows the system to select the right level of scaffolding for each group 

of students. While not adapting instruction to each individual learner, the advantage of adapting to 

groups of students based on a limited number of prior knowledge levels has the advantage of 

decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or 

clustering students based on their prior knowledge, we have employed effective clustering 

algorithms. 

Automatically assessing open-ended student responses is another challenging aspect of knowledge 

assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the 

system is natural language dialogue in which students freely respond to various system prompts 

or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student 
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responses in such contexts is challenging as students can express the same idea in different ways 

owing to different individual style preferences and varied individual cognitive abilities. To address 

this challenging task, we have proposed several novel deep learning models as they are capable to 

capture rich high-level semantic features of text.  

Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking 

students’ mastery of knowledge over time and predicting their future performances. Despite the 

state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of 

the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the 

knowledge tracing capability and performance. Working toward this objective, we have proposed 

a generic deep learning framework that accounts for the engagement level of students, the 

difficulty of questions and the semantics of the questions and uses a novel times series model 

called Temporal Convolutional Network for future performance prediction. 

The advanced auto-assessment methods presented in this dissertation should enable better ways to 

estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide 

which in turn should lead to more effective tutoring and better learning gains for students. 

Furthermore, the proposed method should enable more scalable development and deployment of 

ITSs across topics and domains for the benefit of all learners of all ages and backgrounds. 
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Chapter 1 

                                                             Introduction 

Intelligent Tutoring Systems 

In 1984, Bloom (1984) has conducted a study demonstrated that students that studied under 

the guidance of a human tutor combined with traditional instructions have performed two 

standard deviations (sigma) better than those who received traditional group teaching. 

Motivated by this result, the intelligent tutoring systems (ITS) have emerged (Nkambou, 

Bourdeau, & Mizoguchi, 2010) as computer-based systems that promote more adaptive and 

individualized approach for instruction (Martin, 1999; Ahuja, & Sille, 2013). Over several 

years of research, the ITSs have been deployed successfully to optimize the learning gains and 

enhance learning in numerous domains such as Science, Technology, Engineering and Maths 

(STEM) in a personalized and adaptive environment (AbuEl-Reesh,2018; Agha et al.,2018; 

Al-Nakhal et al., 2017; Al Rekhawi et al., 2018; Leelawong et al., 2008; Qwaider et al.,2018). 

Based on the literature, the architecture of an ITS is based on the following key components: 

(i) – a domain model that represents all the knowledge that the designer intended to be learned 

by students, (ii)- a student model that reflects the most current state of knowledge, (iii)- a tutor 

model that prepares the suitable content for each student. In each instructional moment, it 

addresses the specific “changing cognitive needs of the individual learner” and intervenes in 

students’ activities, when necessary (Ohlsson, 1986, p. 293), and (iv)- a user interface that 

serves as a communication interface between the system and the student.  Several research 

studies showed that the most effective tools for learning within dialog-based systems is 

providing a personalized curriculum and personalized feedback as they simulate a familiar 

learning environment of student–tutor interaction, thus helping to improve student motivation 



 
 

2 
 

(Al-Dahdooh et al.,2017; Al-Nakhal et al.,2017; Albacete et al.,2019; Chi et al.,2011; Munshi 

e al.,2019; Rus el al.,2014a; Rus el al.,2014b).     

In this work, our focus is the state of art of intelligent tutoring systems DeepTutor (Rus 

et al.,2013, Rus et al., 2015) which is a dialog-based system that promotes deep learning of 

complex science topics through a combination of advanced domain modeling methods, deep 

language and discourse processing algorithms, and advanced tutorial strategies. DeepTutor is 

based on constructivist theories of learning and Socratic principles of instruction. That is giving 

students the opportunity to self-explain the solutions and giving the system the opportunity to 

correct misconceptions through hints and appropriate feedback (positive feedback – “Great 

job.”; negative feedback – “This is incorrect.”; neutral feedback - “Ok.” etc.). DeepTutor is 

full adaptive dialog system (Rus et al.,2014c). It offers micro-adaptivity that refers to a 

system’s capability to adapt its scaffolding while the learner is working on a particular task. It 

also offers macro-adaptivity that refers to a system’s capability to select appropriate 

instructional tasks for the learner to work on based on his mastery level. The development of 

the full adaptability of DeepTutor is guided and explained by its instructional framework as 

described in Figure 1.  Following the ITS architecture proposed by Vanlehn (2006), Deep Tutor 

behavior can be described by the following three loops: 

 Task loop: selects the next task to work on. 

 Solution-step loop: manages the student-system interaction while the 

student works on a particular task. It loops through the steps in a solution 

and initiates a hint loop for each missing step in a student solution. 
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 Hint loop: enacts strategies that help students construct missing steps 

in the solution by themselves with minimal help from the system based 

on constructivist theories of learning. 

 

 

 Figure 1. DeepTutor Framework is based on the following loops: i)- Outer Loop corresponds to 

task loop, ii)- Inner Loop refers to step solution loop and iii)- Hint Loop 

DeepTutor relies on several important components such as: i)- a dialogue-based task script, ii)- 

learner models, iii) - models for handling dialogue acts and dialogue modes, iv) assessment 

models for assessing the student answer, and v) a diagnostic feedback model.  In this work, we 

focus on the knowledge assessment module. 
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Deep Learning 

Machine learning methods have drawn a lot of attention in recent years. Most of these classical 

based methods rely heavily on the process of features engineering, that is extracting the most 

representative features for the algorithms to work, discarding noninformative attributes. Some 

of the popular hand-crafted features include bag of words (BoW) model that represents text as 

a bag of its words, discarding grammar and word order and keeping word frequencies. These 

classical machines learning based methods suffer from several limitations. For instance, 

depending on the hand-crafted features requires a tedious and time-consuming feature 

engineering process to obtain a good performance (Minaee et al.,2020). In addition, designing 

the features depends on the knowledge domain that makes these methods difficult to easily 

generalize to new tasks. Finally, these models can’t take full advantage of the large training 

datasets because the features are pre-defined.  

Deep learning breaks away all the above difficulties using deep and layered model 

structure, often in the form of neural networks and the associated end-to-end learning 

algorithms.  Deep learning  enables the model to learn from patterns and examples (Nawaz et 

al., 2012, Wang et al., 2011) and  offers feature learning to automatically discover the 

representations needed for the task at hand (Zhong et al.,2016).  

Deep learning has made impressive advances in various fields such as computer vision. 

Following this trend, several NLP researchers applied extensively deep learning to obtain the 

state-of-the-art results in various tasks such as text classification, questions answering etc. 

(Clark et al.,2020; Raffel et al.,2019; Lan et al.,2019; Sanh et al.,2019, Liu et al.,2019). As deep 

learning networks can’t process text, these models consist of an embedding layer. For instance, 

word embeddings are set of language modeling and feature learning techniques in NLP where 

https://www.sciencedirect.com/science/article/pii/S0747563219304017?casa_token=Ppi4ElwvkcMAAAAA:xglALZlo2vyeZXcqeAN5cyYVbfrfi3ZXVJXxunlkwhSwBJeNFkDoyYaYuSpwxFwL1DgR1EbEgpo5#bib52
https://www.sciencedirect.com/science/article/pii/S0747563219304017?casa_token=Ppi4ElwvkcMAAAAA:xglALZlo2vyeZXcqeAN5cyYVbfrfi3ZXVJXxunlkwhSwBJeNFkDoyYaYuSpwxFwL1DgR1EbEgpo5#bib52
https://www.sciencedirect.com/science/article/pii/S0747563219304017?casa_token=Ppi4ElwvkcMAAAAA:xglALZlo2vyeZXcqeAN5cyYVbfrfi3ZXVJXxunlkwhSwBJeNFkDoyYaYuSpwxFwL1DgR1EbEgpo5#bib77
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words or phrases from the vocabulary are mapped to vectors of real numbers. Typically, words 

with similar meaning will have close vector representation in the embedding space.  More 

importantly, word embedding’s goal is capturing a sort of relationship such as meaning, context 

and morphology.  

Based on their diverse architectures, deep learning models can be classified into several 

categories such as:  

 Recurrent Neural Networks (RNN): consider text as sequence of words. It is 

effective in capturing text dependencies and structures. 

 Convolutional Neural Networks (CNN): use convolutions and pooling 

operations to capture patterns in text.   

 Capsule Networks: overcome the pooling problem of CNN networks in losing 

information about the local order of words. 

 Attention Networks: The attention mechanism has been effective in capturing 

correlated words in a text. 

 Graph Neural Networks: have been effective in capturing the internal graph 

structures of natural language, such as syntactic and semantic parse trees. 

 Transformers based models:  boosted the performance of many NLP tasks via 

the paradigm of pretraining-fine tuning. 

 Hybrid based models: combine attention and other approaches (e.g., CNN, 

RNN) and have been utilized to capture effectively local and global semantic 

features of text (e.g. order of words). 

Despite the criticism of the deep learning approach of being a black box that lacks 

interpretability, and its requirement of large computational resources, we explore its potential for 



 
 

6 
 

the students answers assessment and knowledge tracing tasks as it has demonstrated a superior 

performance over traditional machine learning methods. 

Research Challenges 

Assessment is a key element in education in general and in Intelligent Tutoring Systems (ITSs; 

(Rus et al. 2013) because fully adaptive tutoring presupposes accurate assessment (Chi et al. 2001; 

Woolf 2008). The quality of information about the student’s knowledge toward a target topic 

facilities the personalization of learning in an ITS (Brusilovsky, 1996). This information is 

acquired through the assessment process that consists of measuring what the student knows about 

the taught subject. However, this is a challenging research problem as numerous factors affects 

this knowledge estimation such as the difficulty level of the problem, time spent in solving the 

problem, the motivation of the student etc. In this research work, we tackle this problem from three 

perspectives: assessing the prior knowledge of students, assessing the natural language short and 

long students’ responses and knowledge tracing. 

DeepTutor offers a prior knowledge assessment by the means of the pretest in form of 

multiple-choice questions (Rus et al.,2016). Implementing a pretest in an ITS serves two primary 

objectives: computing the learning gains when combined with the posttest and facilitates the 

macro-adaptation in the ITS through selecting the appropriate task for the learner based on his/her 

current knowledge state. Macro-adaptation can be expensive if the number of unique student 

knowledge states is very large as it requires selecting a unique set of tasks for each such unique 

knowledge state. Considering each of these potential knowledge states and selecting for each 

corresponding learner a unique set of tasks becomes a computationally and authoring challenge. 

An alleviation option would be to group students into clusters of similar mental models and prior 

https://www.sciencedirect.com/science/article/pii/S0957417411009729?casa_token=YfNPlk9ZOA8AAAAA:yTteshB0hXvCA24lu8nDRAt0T__VxJkVyZxfiJJMqZMROf_yyujS7XVqjFXb6zvYHUAnAFXLeRnR#bb0030
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knowledge then select and author tasks for each such clusters. That is, grouping students into 

similar mental model groups can offer a good trade-off between adaptivity and authoring costs.  

Automatically assessing open-ended short student responses is another challenging aspect 

of knowledge assessment in ITS.  In dialogue-based systems, the main interaction between the 

learner and the system is natural language dialogue in which students freely responses to various 

system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely 

generated student’ responses in such contexts is challenging as students can express the same idea 

in different ways owing to different individual style preferences and varied individual 

characteristics such as cognitive abilities and knowledge. Table 1 shows four answers, articulated 

by four different college students, to a question asked by a state-of-the-art conversational ITS 

DeepTutor. It should be noted that all four student answers in Table 1 are correct answers to the 

tutor question. As can be seen from the table, some students write full sentences (student answer 

A4), some others write very short answers (A3), and yet other students write elaborate answers 

that include additional concepts relative to the reference answer (A1). 

Table 1. Examples of student generated short answers during tutorial dialogues 

 

          

         

 

Description 

Problem description: While speeding up, a large truck pushes a small compact car.  

Tutor question: How do the magnitudes of forces they exert on each other compare?  

Reference answer: The forces from the truck and car are equal and opposite.  

Student answers:  
A1. The magnitudes of the forces are equal and opposite to each other due to 

Newton’s third law of motion.  

A2. they are equal and opposite in direction. 

A3. equal and opposite  

A4. the truck applies an equal and opposite force to the car. 
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Assessing the freely generated student answers in conversational tutoring can be achieved 

using various approaches. Semantic similarity is a widely adopted and scalable approach in which 

the student answer is compared to a reference answer produced by an expert. Typically, a 

normalized semantic similarity score, between 1 and 5 is computed. A high score implies the 

correctness of the student answer. Despite the high effectiveness of semantic similarity in several 

NLP tasks such as text summarization (Wang et al., 2008; Nenkova et al.,2011), question 

answering (Vo et al., 2015) and machine translation (Corley and Mihalcea, 2005), this approach 

suffers from several challenges such as the variability of natural language as mentioned previously 

(Banjade et al., 2016; Maharjan et al., 2018; Ait Khayi et al.,2019). In addition, it has been found 

that students use frequently pronouns (e.g., it, his, her etc.) in their answers to refer to concepts 

mentioned in the tutor question or problem description. Therefore, using a contextual information 

is vital to solve this reference matching problem. 

Automated Essays Scoring (AES) task can be viewed as an extension of short student 

answers assessment to long essays assessment. Most of the research work done in this area is based 

on a holistic approach which summarizes the quality of an essay with a single score. A major 

limitation of this approach is its inability to identify what aspect of the essay needs improvement. 

To alleviate this limitation and provide constructive feedback to students, researchers started to 

assess specific traits of the quality of an essay such as organization (Persing et al., 2010; 

Taghipouret al., 2017; Mathias et al. 2018; Song et al. 2020), sentence clarity (Persing et al., 2013; 

Ke et al. 2019), prompt adherence (Persing et al., 2014), argument strength (Persing et al., 2015; 

Taghipour et al., 2017) etc. Although, discourse is one of the most important aspects of written 

essays, less attention has been paid to incorporate the discourse structure into the distributed 

representation of essays. The traditional methods used to capture the discourse structure of the 
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essay, are based on annotations, and parsing which are very time consuming. Thus, using a 

pretrained transformer that processes long sequences efficiently can reduce the cost. In addition, 

parsing texts is challenging when the texts are poorly written which is the case of the Automated 

Student Assessment Prize (ASAP) dataset that we are using in this work. 

In general, the AES models can be divided to two main streams. The first stream are the 

feature engineering-based models, which are driven by handcrafted features such as the 

grammatical errors. The second stream are deep learning-based models that are effective in 

extracting deep semantic features. In this work, we argue that these two streams should be 

considered complementary since the neural approach cannot encode some features that are 

handcrafted and vice-versa. Therefore, proceeding with a hybrid approach that integrates both 

models can be promising in terms of performance and capturing richer discourse structure of 

essays. 

Another challenging aspect of knowledge assessment is knowledge tracing (KT) which 

consists of tracking the students’ mastery of knowledge over time and predicting their future 

performances. This task is usually leveraged to optimize students’ learning trajectories, 

experiences, and outcomes. It is a challenging task due to the complexity of the human learning 

processes (e.g., guessing, forgetting etc.) and the inherent difficulties of modeling knowledge 

(e.g., prior background; (Piech et al.,2015)). Further improvements in KT, which is the focus of 

our work, will have a wide range of benefits including better adaptation to individual learner’s 

needs and, consequently, improved effectiveness at inducing learning gains and better learning 

experiences. Despite the state-of-the-art results obtained by various deep learning models applied in 

this task, they suffer from major limitations. For instance, many of the existing deep KT models 

do not account for other relevant information such as the number of the correct attempts to solve 
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a task and the duration of each step, which can be viewed as indicators of        levels of engagement. 

Therefore, incorporating pertinent information (e.g., engagement level) into deep learning models 

would be beneficial in enhancing the KT capability and performance. 

Our current research work consists of solving these major research challenges to facilitate 

the adaptation of the instruction for each individual learner and improve his overall tutoring 

experience within intelligent tutoring systems. 

Research Questions and Scope 

This dissertation work was driven by finding the most effective ways of assessing the student 

knowledge to enable the adaptivity of the instruction, improve the effectiveness of the tutoring 

experience within dialog-based systems and optimize the learning gains of students. Therefore, the 

current research work is guided by answering the following research questions. 

Research Question 1: What are the most effective ways of assessing the knowledge of students 

within dialog-based systems?  

Answering this research question presents our main research contribution of this dissertation work. 

We address this problem from three perspectives: (i)- assessing the prior knowledge of students 

using effective clustering algorithms, (ii)- assessing the open-ended students answers using novel 

deep learning-based models, and (iii)- knowledge tracing.  

Research Question 2: How can we achieve a tradeoff between the adaptivity and authoring costs 

within intelligent tutoring systems? 

We introduce effective clustering algorithms in chapter 2 and in Ait Khayi et al. (2019). We 

propose to group students with similar prior knowledge patterns using several effective clustering 

algorithms such as DP-means and K-modes. This grouping allows the system to assign the same 
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task with a specific level of knowledge to the same group lowering the authoring costs of the ITS. 

In addition, understanding the gaps in specific cluster can inform the macro-adaptivity of the 

system. 

Research Question 3: Can a Capsule Network based model achieve an accurate assessment of 

open-ended natural language answers within DeepTutor? 

Capsule Networks have been introduced to address the problem of Convolutional Neural Networks 

of losing relevant information such as local order of words via the pooling operations. Its 

application in the NLP field, especially in text classification, has resulted in a significant 

performance gain. Motivated by this success, we introduce a Bi-GRU-Capsule Neural Network 

based model for student answer assessment task in chapter 3 and in Ait khayi et al. (2019).  

Research Question 4: Can an Attention-based Transformer model improve the performance 

results of assessing the short students answers within DeepTutor? 

The major limitation of the previous Capsule Network based model is its incapability in assessing 

the very short answers and the answers with pronouns referring to previous concepts. To mitigate 

the shortness problem, we propose in chapter 4 and in Ait Khayi et al. (2020), to use an Attention 

based Transformer proposed by Vaswani et al. (2017) that utilizes a multi-head attention. This 

mechanism enables the overall assessment based on the most relevant words of the student answer 

and reference answer. To alleviate the reference matching problem, we proposed injecting a 

context, as the concatenation of the problem description and the question, into the student answer. 

Research Question 5: Can a Graph Convolutional Network be utilized to achieve an accurate 

assessment of short students’ answers? 
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Graph Neural Networks have been effective at tasks that have rich relational structure and can 

preserve global structure information of a graph in graph embeddings. As this can be beneficial 

for the student answers assessment task, we propose in chapter 5 and in (Ait Khayi et al.,2020), a 

Graph Convolutional Network (GCN) to assess open-ended students answers within the state of 

art of intelligent tutoring systems DeepTutor.  In this work, we proceed as a node classification 

task. Following the citation approach, we constructed a knowledge graph where nodes represent 

physics questions, whereas the edges represent the similarities between these questions.  Then, we 

imported this graph to two layers of GCN to generate nodes embeddings.  Finally, these nodes 

embeddings are fed to a classification layer. 

Research Question 6: Can Finetuning the pretrained transformers improve the current 

performance results of the short students answers assessment downstream task? 

The pretraining-finetuning paradigm has revolutionized the natural language processing field 

yielding state-of the art results in several subfields such as text classification, question answering 

and semantic similarity. Motivated by these successes, we propose in chapter 6 and in (Ait khayi 

et al.,2021) to fine tune several pretrained transformers on the student answers assessment 

downstream task. 

Research Question 7:  How to effectively assess the discourse aspect of long essays? 

Applying a hybrid approach that integrates the features engineering approach and the neural 

approach has advanced the performance results in the Automated Essay Scoring (AES) research 

area. Added to this, assessing the traits of the quality essay allows to provide constructive feedback 

to learners on what aspect of the essay needs improvements. Since, a little attention has paid to the 

discourse trait of the essays, we propose in chapter 7 a hybrid approach to assess the discourse 

aspect of essays. First, we extract the essay representation using the pretrained XLNET model. 
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Then, we concatenate it with selected discourse handcrafted features (e.g., Lexical chains). Finally, 

we feed the merged vector to a linear layer to predict the final score. 

Research Question 8:  How to enhance the performance and the capability of the knowledge 

tracing task? 

Incorporating relevant information such as prior knowledge into deep learning models has 

advanced the performance results of the knowledge tracing task. Motivated by these successes, we 

propose in chapter 8 a generic framework that accounts for the engagement level (for the first time) 

of students, the difficulty of questions, and the questions semantics in learning the knowledge 

embeddings.  These embeddings sequences are then passed to an LSTM based model to learn the 

hidden states of the knowledge of students, which are passed to a Temporal Convolutional 

Network to predict the future performances.  
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                                                                   Chapter 2 

Clustering Students based on their Prior Knowledge 

Introduction 

Capturing students’ knowledge state, our focus, and other learner characteristics that are important 

for learning such as their emotional state is critical to facilitate learning through adaptivity, i.e., 

tailoring instruction to each individual learner (Shute et al.,2012). It should be noted that adaptivity 

can be thought of at two levels: macro-adaptivity which means selecting appropriate instructional 

tasks and what are the predominant misconceptions they hold? and are these misconceptions 

evenly distributed across topics and level of course taught? (Also called within-task adaptivity). 

Our work presented here could inform both micro- and macro-adaptivity. For instance, 

understanding the knowledge gaps of students in a particular cluster could inform what 

instructional tasks to choose for these students, i.e., it informs macro-adaptivity.  

Indeed, an important preliminary step in creating an ITS that is sensitive to student 

misconceptions and individual learning trajectories is to first understand the various levels of 

mastery with respect to a target domain, for instance, physics. For example, important questions 

that need to be answers are: What are the predominant misconceptions they hold? and are these 

misconceptions evenly distributed across topics and level of course taught? Using the clustering 

method proposed here will help answer such important questions. To this end, we document for 

each group of students identified by our clustering algorithm, the major misconceptions exhibited 

by that group.  

In this study, we applied clustering on a pretest data collected at the beginning of an 

experiment in which high-school students interacted with a dialogue-based ITS. Our goal was to 

identify student groups and analyze them as a group in terms of misconceptions and mastered 
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concepts. The identified groups could then be used to inform the authoring of instructional tasks 

and within-task instructional strategies and feedback for each group as opposed to each learner, 

which would be a much more expensive process. Learning such individualized strategies for each 

learner would be possible using automated methods, such as reinforcement learning, but they 

require substantially more experimental data which it is not have available.  

The main clustering algorithm used in this study is the DP-means algorithm (Kulis et 

al.,2012). Its main advantage is identifying the number of clusters using a Dirichlet Process 

Mixture Model. After briefly presented related work and the context of our own work, what 

follows is a description of the DP-means and k-modes algorithms. We then present details of the 

experiments and results. We conducted experiments using two types of data: binary and categorical 

responses. In addition, other clustering algorithms were employed to compare the results with 

those obtained with DP-means. We evaluated the performance of the resulted clusters using 

intrinsic, e.g., based on the silhouette index which measures the compactness of each cluster, and 

extrinsic methods, e.g., based on students’ post-test scores derived from post-test responses which 

were not used to generate the clusters. 

Related Work 

Clustering has been used in the past for analyzing education data as indicated by the research 

studies presented next. Bouchet and colleagues (2013) have applied the Expectation-Maximization 

clustering algorithm on data collected from the MetaTutor ITS. MetaTutor scaffolds student’s 

metacognitive skills while learning about the human circulatory system. The main objective of 

their clustering was reinforcing self-regulated learning via student profiling. The results consisted 

of three distinct clusters of students in terms of performance. The results have been analyzed using 

a MANOVA approach. Rodrigo and colleagues (2008) have applied k-means clustering on data 
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collected from students interacting with Aplusix, an ITS for Algebra. The main research goal of 

their work was identifying students’ behaviors through an analysis of interaction logs. The results 

have demonstrated the existence of two clusters of students associated with differing behavior and 

affective states. The first cluster reflected more collaborative work whereas the second cluster 

reflected more solitary work. Reyes-Gonzalez and colleagues (2018) have used the LC-Conceptual 

clustering algorithm from logical combinatorial pattern recognition for student modeling in an ITS. 

This algorithm is based on two phases: the first phase consists of building groups of objects based 

on their similarity and a grouping criterion. The second phase is called the intentional structure 

phase where the distinctive features of each resulted cluster are determined. Fang and colleagues 

(2018) have used k-means clustering to capture learning patterns in over 250 students who used 

AutoTutor to gain reading comprehension skills. The average response times per question and 

performance across lessons have been used to cluster the students’ learning behavior. The results 

showed the convergence of four types of learners: proficient readers, struggling readers, 

conscientious readers and disengaged readers. Classifying readers can improve the adaptivity of 

AutoTutor ITS by providing a proactive feedback and intervention based on the learning 

behaviors.  

Similar to those other approaches, our intention was to discover groups of students with 

similar knowledge states as characterized by their responses to the multiple-choice pre-test. Each 

incorrect choice in the pre-test is associated with a major misconception and therefore students 

that pick similar choices should be assigned to the same cluster. The centroid of the cluster could 

then be used to interpret the strengths and weaknesses of students in that cluster and appropriate 

interventions designed for that group. 
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Background 

Our work was conducted in the context of an experiment in which high-school students interacted 

with a dialogue-based intelligent tutoring system that tutors students on science topics through 

problem-solving. The system encourages students to self-explain solutions to complex science 

problems and only offers help, in the form of hints, when needed, e.g., when the student is 

floundering. That is, during a typical tutorial session, the system challenges students to solve a 

number of problems that are carefully selected by the system in order to optimize student learning 

(macro-adaptivity). When working on a particular problem, students are first asked to provide a 

solution that must include a justification based on concepts and principles of the target domain, 

which was Newtonian Physics in the case of our study presented here. All other things equal, low 

knowledge students will most likely struggle to provide solid self-explanations and most likely to 

articulate misconceptions which would lead to more scaffolding dialogue moves in terms of hints 

and correcting misconceptions on the part of the computer tutor (micro-adaptation). High 

knowledge students would need less scaffolding and therefore the corresponding dialogues should 

be shorter.  

Before students start interacting with the system, they took a pre-test to assess their initial 

knowledge state. The tool elected to assess students’ initial knowledge state was an enhanced 

version of the Force Concept Inventory (FCI). The Force Concept Inventory (FCI) is a 30-item 

multiple-choice "test" designed to assess student understanding of the most basic concepts in 

Newtonian mechanics (Halloun, Hake, and Mosca, 1995). The FCI presents students with various 

situations and ask them to choose between Newtonian explanations for the phenomena, versus 

common-sense alternatives (Hestenes, Wells, & Swackhamer, 1992). The FCI has been widely 

used to measure learning in introductory physics courses. For example, Hake (1998) reported FCI 
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data from 6,000 high school and university students. Coletta and Phillips (2005) combined their 

data with data collected by Hake (1998) and in combination used the FCI to measure learning in 

73 university and college introductory physics classes. The data we have is based on an augmented 

version of the FCI consisting of 35 multiple-choice questions. The augmented FCI adds a number 

of questions for certain Newtonian topics which were not covered enough in the original FCI test.  

We administered the augmented Force Concept Inventory (aFCI) to students at three public 

and two private high schools in the mid-south region, including six teachers and 26 classrooms. 

The pretest was administered in classroom. Students completed the aFCI via provided scantron 

sheets, which were then collated and processed. The results of the scantron sheets were then 

compared to direct markings on the actual aFCI test in the case of blank or unidentifiable scantron 

responses. The data collection process was quite successful, resulting in 444 students with 

complete pretest data. We only used a subset of 265 students in our experiments because post-test 

data, used for extrinsic evaluation of our clustering, was available only for those 265 (the rest of 

the students either missed a tutoring session, or the post-test, or both).  

It should be noted that the data is very diverse in terms of student prior knowledge of 

physics because students were recruited from a large variety of physics-related courses including 

introduction to physics, honors physics, and AP physics. This should allow us to draw general 

conclusions. 

Clustering Methods 

                                                   DP-means algorithm 

The DP-means algorithm, as described by Kullis & Jordan (2012), is a hard-clustering 

approximation of nonparametric Bayesian models. Under the assumption that the DP-means is 

derived from a Dirichlet Process Mixture Model, there exists a lambda value 𝛼 such that when 
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used by the algorithm, the number of clusters 𝑘 is identified. The DP-means algorithm is similar 

to the k-means clustering algorithm except that a new cluster is generated when the distance from 

a data point to the nearest cluster is larger than the threshold 𝛼. 

More specifically, the DP-means algorithm is derived from a Dirichlet Process Mixture Model 

(DPMM) as illustrated below:  

  𝜇1, … , 𝜇𝑘   ~  𝐺0 

 𝜋  ~ 𝐷𝑖𝑟 (𝑘, 𝜋0) 

 𝑧1, … , 𝑧𝑛  ~ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝜋) 

 𝑥1, … , 𝑥𝑛 ~  𝑁(𝜇𝑧𝑖
 , 𝜎 𝐼 ) 

 The Dirichlet prior of dim 𝑘 is placed using some 𝜋0 

where: 

- 𝜇  is the mean of each of the clusters, drawn from some base distribution 𝐺0, 

which is the prior distribution over the means. 

- 𝜋 = (𝜋1 , 𝜋2 … )  corresponds to the vector of probabilities of being in a cluster. 

- 𝑧𝑖  is an indicator of cluster assignment. 

- 𝑥𝑖  is a data point. 

The corresponding clustering algorithm is described in Figure 2. The input consists of data 

instances 𝑥1, … , 𝑥𝑛 ,  where 𝑥𝑖  represents the vector of pre-test answer choices of the  𝑖𝑡ℎ student. 

Since the pre-test contains 35 questions, each such response vector 𝑥𝑖  contains 35 entries 

corresponding to each answer choice picked by student i. The clustering algorithm begins by 

initializing a single cluster whose mean is the global centroid. Then, it initializes a set of cluster 
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indicators: 𝑧𝑖 = 1 for all 𝑖 = 1, … , 𝑛 where  𝑧𝑖 = 𝑘 means that the student 𝑥𝑖 belongs to the 𝑘𝑡ℎ 

cluster as denoted by 𝑙𝑘. 

In step 3, the algorithm computes the distances between each data point and the existing centroids. 

It then compares the minimum of these distances with 𝛼. If the minimum is larger than the 

threshold 𝛼, a new cluster is generated, and its centroid is assigned the current data point 𝑥𝑖. 

Otherwise, the cluster indicator of the current data point is set to the 𝑎𝑟𝑔𝑚𝑖𝑛 of the distances. 

After looping over all data points, the number of clusters 𝑘 and the clusters indicators are 

computed. Finally, the DP-means algorithm generates the clusters 𝑙𝑗  and their centroids 𝜇𝑗 for 𝑗 =

1, … , 𝑘.  Step 3 is repeated until the algorithm converges.                                             

Algorithm:  DP-means 

Input: 𝑥1, … , 𝑥𝑛 : input data, 𝛼 ∶ cluster penalty parameter 

Output:  Clustering 𝑙1, … , 𝑙𝑘  and number of clusters 𝑘 

1. Init.  𝑘 = 1, 𝑙1 = {𝑥1, … , 𝑥𝑛} and 𝜇1 the global mean. 

2. Init. Cluster indicators 𝑧𝑖 = 1 for all 𝑖 = 1, … , 𝑛 

3. Repeat until convergence  

 For each point 𝑥𝑖 

- Compute 𝑑𝑖𝑐 =  ‖𝑥𝑖 −  𝜇𝑐‖2 for 

          𝑐 = 1, … , 𝑘 

- If 𝑑𝑖𝑐 >  𝛼 , set 𝑘 = 𝑘 + 1, 𝑧𝑖 = 𝑘, 𝑎𝑛𝑑  𝜇𝑘 =  𝑥𝑖 

- Otherwise, set   𝑧𝑖 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑐  𝑑𝑖𝑐 

 Generate clusters 𝑙1, … , 𝑙𝑘  based on  𝑧1, … , 𝑧𝑘 ∶  𝑙𝑗 =

{𝑥𝑖 | 𝑧𝑖 = 𝑗 } 

 For each cluster 𝑙𝑗 , compute 𝜇
𝑗 = 

1

|𝑙𝑗|

 ∑ 𝑥𝑥 ∈𝑙𝑗
 . 

                                                                                                                 

                                                                     Figure 2. DP-means algorithm                                                                

K-modes Clustering 

K-modes clustering algorithm (Huang et al., 1998) is an extension of the k-means for the 

categorical data by using: (i) - a matching dissimilarity measures for categorical data 

points,(ii)- modes instead of means for clusters, and (iii)-a frequency based method to update 
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modes. The mean features of the k-modes clustering are its simplicity and easy implementation 

and efficiency in handling large of data objects. Its main issues are: (i) the need to define the 

number of clusters in advance, (ii) it is handling the categorical data only and (iii) producing 

the local optimum solutions.  

Let X and Y be two categorical data objects with m attributes. The dissimilarity measure 

between X and Y is defined as following: 

 

                                                              𝑑(𝑋, 𝑌) = ∑ 𝜕(𝑥𝑗, 𝑦𝑗)𝑚
𝑗=1          

                                                               

             Where:                                      𝜕(𝑥𝑗, 𝑦𝑗) = {
0 (𝑥𝑗 = 𝑦𝑗) 

1(𝑥𝑗 ≠ 𝑦𝑗)
                                        

             

 Let S be a set of categorical objects described by m categorical attributes 𝐴1, … , 𝐴𝑚. A mode 

of 𝑆 = {𝑋1, 𝑋2, … , 𝑋𝑛} is a vector  𝑄 = [𝑞1, . . , 𝑞𝑚  ] that minimizes: 

 

                                                                 𝐷(𝑆, 𝑄) =  ∑ 𝑑(𝑋𝑖, 𝑄)𝑛
𝑖=1         

                               

                             Where Q is not necessarily an object of S. 

  The optimization problem for partitioning a set of n objects by m categorical attributes into k 

clusters  𝑆1, … , 𝑆𝑘   becomes: 

 

Minimize ∑ ∑ 𝑑(𝑋, 𝑄𝑖)𝑋∈𝑆𝑖

𝑘
𝑖=1  
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                              Where  𝑄𝑖 is the mode of the cluster 𝑆𝑖. 

The k-modes clustering algorithm is described in Figure 3. 

 

                                      

 

 

 

 

Figure 3. K-modes Clustering Algorithm 

Experiments 

 Several experiments have been conducted to evaluate the performance of the proposed clustering 

algorithms in grouping students based on their prior knowledge.  The dataset, the experimental 

setup and the obtained results are described next. 

Dataset 

The data used in our experiments consists of pre-test answers collected from 264 high-school 

students who took the aFCI pre-test, went through a 5-week training period, and then took a post-

test. Furthermore, after each training sessions students took a short post-test (6 questions). In all 

our experiments, we will use this post-test after the very first training session as the extrinsic 

evaluation criterion as it is closest in time (among all post-tests) to the pre-test and therefore is a 

good estimate of students’ early knowledge states as best captured by the pre-test. The pretest 

includes 35 multiple choice questions that have the same weight. Two types of data have been 

used in our experiments: 5-way response data and binary response data. The categorical data 

K-modes Clustering Algorithm 

1. Data objects X, Number of clusters K. 
2. Randomly select the K initial modes from the data objects such that Cj, j = 1, 2,.., K 

3. Find the matching dissimilarity between each K initial cluster modes and each data 

objects using the Eq. (2.1) 
4. Evaluate the fitness using the Eq. (2.4) 

5. Find the minimum mode values in each data object i.e. finding the objects nearest 

to the initial cluster modes. 
6. Assign the data objects to the nearest cluster centroid modes.  

7. Update the modes by applying the frequency-based method on newly formed 

clusters. 

8. Recalculate the similarity between the data objects and the updated modes.  

9. Repeat the step 4 and step 5 until no changes in the cluster ship of data object 



 
 

23 
 

consists of the actual answer choices students picked for the 35 multiple choice questions coded 

as A, B, C, D and E. For each question, one those choices is the correct answer. The binary data 

represents the same data coded as binary correctness values: 0 – incorrect, i.e.., the student picked 

any of the incorrect answer choices, and 1 – correct, i.e., the student picked the correct answer 

choice. 

Tables 2 and Table 3 illustrate the data representation for the two tables. As described 

below, the columns represent the 35 questions, and the rows represent individual students’ 

responses. 

                                              Table 2. Categorial Data                                                   

 

  

 

                                                                Table 3. Binary Data 

 

 

 

 

                                                    

                                                            

   Q1 Q2  … Q35 

Dh001    A B  … C 

Dh002    C D  … C 

    …    … …  … … 

DH356    C D  ... B 

   Q1 Q2  … Q35 

Dh001    0 0  … 0 

Dh002    1 0  … 1 

   …    … …  … … 

DH356    1 0  ... 0 
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Experiments: Binary Data 

 A first set of experiments have been conducted using the binary data as input for the DP-means 

algorithm. Since we have binary data and DP-mean is based on the Euclidean distance, we have 

applied Principal Component Analysis (PCA) to convert the binary values to continuous ones. For 

this purpose, numerous values of n (number of components) have been tested. The value 35 led to 

a convergence state of 10 clusters in which several clusters are redundant, i.e., using the extrinsic 

criterion based on the overall post-test score. For example, the average of the post test score for 

clusters 6, 7 and 9 is 3.0.  Thus, we have tested randomly several values. The value 24 led to better 

clustering results in terms of splitting well the clusters based on the extrinsic criterion. Thus, we 

used those components to represent our data points for the rest of the experiments. On the binary 

data, a Manhattan distance could be used which we tried and didn’t lead to better results than the 

above method of using PCA. 

The 𝛼 distance parameter has not been defined a priori. To select a suitable value of this 

parameter, we followed first the procedure described by Kulis and colleagues (2012) as in the 

following: given k=3 as the desired number of clusters, we first initialize a set A with the global 

mean of the data. Then iteratively we calculate the maximum distance to A (the distance to A is 

the smallest distance among points in A). We repeat this k (=3) times and assign to 𝛼  the value of 

the maximum distance to A. In our work, we got the value of 3.26. Testing the DP-means with this 

value led to the convergence of two clusters of students. To reach the desired number of clusters 

which is 3, we have tried other values in a close interval of [2.9,3.1] as described in Table 5. 

Thus, various values have been tested and compared.  The evaluation of the resulted clusters has 

been done using the following measures: 
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- Silhouette index: Its value measures how similar a student response vector (her set of 

responses to the pre-test questions) is to its own cluster (cohesion) relative to the other 

clusters (separation). The silhouette index is a value within the [-1, +1] interval. A high 

value of the silhouette index indicates that the student is well matched with the other 

students in the same cluster. The following metric distances have been tested:  

Euclidean distance, Manhattan distance and Cosine similarity. The obtained results 

have shown that the Euclidean distance led to better results as demonstrated in Table 

4. 

- Mean of post test score: The data collected from the interaction of the students with the 

ITS includes post test scores for the 264 students. Since the post test is taken at the end 

of the experiment, weeks after the students took the pre-test, and since it has not been 

used in the cluster, it can be used as an extrinsic measure of cluster validity and 

interpretation of the resulting clusters. Indeed, this measure is used by us to assess the 

mastery level of each resulted cluster of students. In addition, it has been used as a way 

to check the separation of the clusters. The maximum and minimum values of the post 

test score in this collected data are 6.0 and 0.0 respectively. 

- Mean of pretest score: The data collected includes the pretest performance of each 

student based on of the correct answers. 

The highest value is 35 and the lowest value is 0. 
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              Table 4. clustering results of DP-means with different types of distances 

 

Distance  𝜶 Number of clusters 

Manhattan        2.9 
       3.0 

       3.1 

          255 
          255 

          255 

 Euclidian        2.9 

       3.0 
       3.1 

              5 

              3 
              2 

  Cosine        2.9 

       3.0 
       3.1 

               1 

               1 
               1 

      

                       Table 5. DP-means clustering results with different values of α 

 

                           

 

 

 

                         Figure 4. Quality of the DP-means algorithm using different values of 𝛼 
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The results in Figure 4 show that the value 3.0 of parameter  𝛼 led to the highest value of 

the Silhouette index (0.27). In addition, this 𝛼 value resulted in three distinct clusters, well 

separated (Figure 4), in terms of students’ performance in the post test and pretest (as described in 

Table 5). The first cluster contains 195 students.  The mean post test score is 3.44 and the mean 

pretest score is 17.68 which are average scores. Students who belong to this cluster can be 

described as average performers or learners. The second cluster contains 37 students. The mean 

post test score is 5.66 and the mean pretest score is 31.11 which are high scores. The students in 

this cluster can be described as high performers or learners of Physics. The third cluster contains 

32 students.  The mean post test score is 1.625 and the mean pretest score is 8.83 which are very 

low scores. The students of this cluster can be describing as struggling ones.  

 

                                           Figure 5.  DP-means visualization with  𝛼 = 3 

   

                                         Figure 6.  DP-means visualization with  𝛼 = 3.1 
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                                       Figure 7. DP-means visualization with  𝛼 = 3.2 

To compare the results of the DP-means algorithm with other clustering algorithms, we 

have also applied the k-means and agglomerative clustering algorithms on the same binary data.  

Since the best result of the DP-means was for an 𝛼 value 3.0, we ran the k-means algorithm using 

k =3 and the agglomerative clustering using the same number of clusters (=3). Table 6 and Table 

7 present the results for k-means and agglomerative clustering, respectively.  

                                                      Table 6. k-means results 
 

  

 

                                                                                             

                                                 Table 7. Agglomerative clustering results 

 

 

 

 

Clusters  Mean Post-Test 

Score 

Mean Pretest 

Score 

Number of 

students 

 C1          2.28         9.44             97 

 C2          5.21        28.84             52 

 C3          3.83        17.22           115 

Clusters  Mean Post-

Test Score 

Mean Pretest 

Score 

Number of 

students 

 C1          3.55        16.46             165 

 C2          5.45        30.0               42 

 C3          2.07          8.28               57 
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                 Figure 8. Quality of DP-means algorithm using different values of 𝛼.                                          

The results depicted in Table 5 show that the DP-means algorithm with 𝛼=3.0 outperforms 

the k-means and the agglomerative algorithms as described in tables 6 and 7 respectively. The 

difference, in the mean post test score and the mean of pretest score, between the clusters of DP-

means is larger than the difference using the other clustering algorithms. This indicates the 

convergence of well separated groups of students, in terms of learning level and prior knowledge, 

when applying the DP-means. 

A detailed analysis of the top 10 students closest to the centroids of each of the three 

clusters found by DP-means, revealed that students in cluster 1 struggled mostly with questions 

related to Newton’s third and first laws, whereas students in cluster two struggled with questions 

related to Newton’s third law. Students in cluster 3 struggled the most and they showed weaknesses 

across all major topics in Newtonian Physics. Since in this experiment we used just correctness 

values for each pre-test question it is not possible to provide a more detailed analysis in terms of 

specific misconceptions, e.g., assuming faster velocity implies a larger force in an action-reaction 

pair, students in each clusters exhibit. 
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Experiments: Clustering Categorical Data 

A second set of experiments have been conducted using categorical data, DP-means and   

k-modes clustering algorithms. That is, in this case, we used the actual answer choices picked by 

students for the pre-test questions to find the clusters. 

To this end, first, we have converted the categorical responses to numerical ones using one-

hot encoding. Basically, each answer choice becomes a dimension in a vector space representation. 

A value of 1 is assigned to that dimension for a given question in the pre-test if a student picked 

the choice corresponding to the dimension as their answer choice. This, results in an encoding of 

categorical integer features as a one-hot numeric array. The encoder derives the categories based 

on the unique values in each feature. The output of the one-hot-encoding is fed into the clustering 

algorithms.  

The results presented in Table 8 reflect a decrease in quality of the DP-means clustering 

using categorical data. The silhouette index, as described in Figure 8, has decreased in comparison 

with the DP-means based on binary data. The highest value was 0.06 when using the value 4.4 of 

𝛼.  

The different values of 𝛼 didn’t lead to a good split of students in terms of the performance. 

For example, in the case of 𝛼 = 4.4, cluster C2 and C3 can be merged in one cluster since their 

mean post-test and pretest scores are very close. For 𝛼 = 4.3, there is redundancy in the resulted 

clusters. For example, C3 and C6 can be merged in one cluster. 
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Table 8. DP-means clustering results (categorical data) with different values of 𝛼 

 

To overcome this drawback of DP-means when applied to categorial data, we have applied 

the k-modes clustering algorithm (Huang et al.,1997; Huang et al.,1998). The k-modes algorithm 

is based on defining the dissimilarity measure between objects. This dissimilarity between two 

objects A and B can be defined by the total mismatches of the corresponding attribute categories 

of the two objects. The smaller the number of mismatches is, the more similar the two objects. 

  The following are the results with k-modes when using k = 3.  

                                               Table 9.  K-modes results with k = 3 

Clusters Mean Post Test Score Number of students 

C1               3.72             120 

C2               5.03               59 

C3               2.23                                                          85 

                                           

The results listed in Table 9 demonstrate that the k-modes outperforms the DP-means when 

using categorical data. The resulted clusters reflect a good split between clusters in terms of 

𝜶 Clusters Mean Post Test Score Mean Pretest Score NB of students 

4.3 C1 

C2 

C3 

C4 

C5 

C6 

C7 

4.17 

1.5 

1.0 

2.0 

2.0 

1.66 

2.16 

20.39 

5.5 

10.0 

4.5 

6.0 

6.0 

  9.35 

68 

67 

1 

54 

40 

22 

12 

4.4 C1 

C2 

C3 

C4 

4.12 

1.0 

1.66 

2.15 

 20.14 

10.0 

6.0 

9.0 

           187 

1 

3 

             73 

4.5 C1 

C2 

3.55 

1.0 

16.87 

            10.0 

           263 

1 
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performance in the post test. The C1 cluster reflects an average knowledge level of students. C2 

reflects a high level of knowledge of students. And C3 reflects a low level of learning. A more 

detailed analysis indicates the same overall conclusions reached using the correctness data, e.g., 

students in cluster one struggle mostly with Newton’s second and third laws. However, when using 

the categorical data, we can further pinpoint which aspects of Newton’s third law for instance, 

students struggle with. For instance, many students in cluster C1 seem to struggle with the 

misconception that in an interaction between two objects the more massive one will act with a 

bigger force on the smaller one which is not true. According to Newton’s third law, to each action 

there is an equal and opposite reaction. Therefore, this analysis suggests that when a new student 

uses a Physics ITS, after they take the pre-test and their answer patterns place him closer to the 

centroid of cluster C1, i.e., in cluster C1, then appropriate instructional tasks that have been 

designed for students in that cluster should be activated in order to overcome major gaps students 

in that cluster exhibit. 

Conclusions 

In this work, DP-means clustering algorithm has been applied on the pretest data of 264 students 

collected from their interaction with DeepTutor ITS. Various values of 𝛼 have been tested. The 

results demonstrated that 3.0 is the best value and three distinct clusters of students have been 

converged. These clusters reflect three distinct levels of learning which has been assessed using 

post test scores. The first cluster of students correspond to an average level of learning, the second 

cluster represents students with a high level of learning and the third cluster of students those with 

a low level of learning. Results have demonstrated also that DP-means outperforms k-means and 

Agglomerative clustering in terms of splitting well students based on their performance in the post 

test. Another finding is that the quality of DP-means algorithm, measured by the silhouette index, 
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decreases when we use the categorical data in comparison with the binary data. To overcome this 

drawback, we have used the k-modes clustering. 

Furthermore, such clustering could offer a good trade-off between adaptivity and authoring 

costs. For instance, macro-adaptation can be expensive if the number of unique student knowledge 

states is very large as it requires selecting a unique set of tasks for each such unique knowledge 

state. Concretely, if using a 5-way/choice 35 multiple-choice question pre-test, the number of 

possible combinations of 35 answers is 535, an extremely large space. That is, if each student’s 

knowledge state is described by the 35 responses, we end up with 535 student knowledge states or 

student models which, by comparison, is much larger than the world’s population which is a bit 

over 514.  Considering each of these potential knowledge states and selecting for each 

corresponding learner a unique set of tasks becomes a computationally and authoring challenge. 

An alternative, for instance, would be to group students into clusters of similar mental models and 

then select and author tasks for each such clusters. That is, grouping students into similar mental 

model groups can offer a good trade-off between adaptivity and authoring costs. 

We plan to further investigate the resulting clusters for a better understanding of the 

characteristics of the students in each cluster. For instance, we do have information about the 

Physics class (intro, honors, AP) each student took and therefore a detailed analysis for students 

in each cluster based on their class type can be performed to understand what the major 

misconceptions students in each class struggle are with. Not only this could inform an ITS for 

Physics, but this information can be shared with teachers to help them better plan their lessons 

plans to address major misconceptions their students may have. 
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Chapter 3 

Assessment of Open-Ended Student Answers Using Bi-GRU Capsule Networks 

Introduction 

Automatically assessing open-ended short student responses is an extremely challenging task due 

to the variability of the natural language, the reference matching problem. For instance, students 

can express their responses in numerous ways owing to different individual styles and varied 

cognitive abilities and knowledge levels. This assessment plays a vital role in improving the 

learning process as the system provides hints and feedbacks for the struggling students with 

incorrect answers.  

The widely adopted and scalable approach to assessing such open-ended student responses is 

semantic similarity which is a complex NLP task as the meaning of words changes significantly 

when the context is changed. As Jiang (1997) quotes, “In many cases, humans have little difficulty 

in determining the intended meaning of an ambiguous word, while it is extremely difficult to 

replicate this process computationally”. According to the semantic similarity approach, a score, 

usually normalized, is computed between a target student answer and an expert-provided reference 

answer (Banjade et al., 2016). If the student answer has a high semantic similarity score to the 

reference answer, we infer that the student answer has the same correctness value as the reference 

answer. A low semantic similarity score implies the student response is incorrect. It should be 

noted that sometimes the reference answer may denote a common misconception in which case a 

high-similarity score to such misconception means the student answer also indicates a 

misconception, i.e., it is incorrect. 
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More broadly, the task of computing the semantic similarity of two texts consists of 

determining, both quantitatively (e.g., normalized score between 0 and 1) or qualitatively (are the 

two texts in a paraphrase, elaboration, or entailment relation) the degree of similarity between the 

two texts. It is a widely used step in many natural language processing (NLP) applications such as 

text summarization (Wong et al., 2008; Nenkova et al., 2011), question answering (Vo et al., 2015) 

and machine translation (Corley and Mihalcea, 2005). It should be noted that we can distinguish 

among semantic similarity tasks and methods at various granularity levels: word-to-word 

similarity (w2w), phrase-to-phrase(ph2ph), sentence-to-sentence (s2s), paragraph-to-paragraph 

(p2p), and document-to-document (d2d) similarities. 

Several approaches have been proposed to automatically assess the semantic similarity of 

short sentence-level texts, which are our focus.  Deep learning has recently attracted a wide 

attention in NLP field. This approach has the advantage of not needing hand-crafted features and 

other external resources, that is, just the raw sentences and the corresponding pre-trained word 

embeddings are needed as input.  To this end, numerous deep learning methods have reached the 

state-of-the-art results. For example, Pontes and colleagues (2018) proposed a deep learning model 

that combines convolution and recurrent neural networks to measure the semantic similarity of 

sentences. This combination of networks has been helpful in capturing the most relevant 

information of sentences. Thus, improving the computation of semantic similarity scores relative 

to state-of-the-art systems. Other approaches worth-mentioning are: (1) the nonlinear similarity 

approach (Tsubaki et al., 2016), where word representations are inferred through the similarity 

learning of sentences in high-dimensional space with kernel functions, (2)constituency tree LSTM 

(Tai et al., 2015) which is a generalization to LSTMs to tree-structured network topologies, and 

(3) skip-thought (Kiros et al. 2015), where an encoder-decoder model is used to reconstruct the 
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surrounded sentences. Then, sentences with common semantic and syntactic properties are mapped 

to similar vector representations. Furthermore, Bao et al. (2018) proposed an Attention Siamese 

Long Short-Term Memory (LSTM) model to measure the semantic textual similarity. An attention 

mechanism has been used to capture the high-level semantic information. The empirical 

experiments have demonstrated the effectiveness of the model with an impressive performance. 

Wang and colleagues (2018) presented an approach that combines a Bidirectional Long Short-

Term Memory Networks (BLSTM) and Convolutional Neural Networks (CNN) to extract the 

semantic features of a sentence. Then sentence representations are learned with word-level 

attention. Finally, an output layer that calculates the similarity score was used. This proposed 

model was evaluated using the Quora Duplicate Questions Public dataset. The obtained results 

showed that this model has outperformed many existing approaches, such as Support Vector 

Machine (SVM), CNN, BLSTM and Attention based BLSTM, with a highest accuracy of 0.89. 

Our approach is very different from these reviewed approaches except the fact that uses 

the deep learning approach. 

Our task of automatically assessing freely generated student answers within a dialog 

system context is a special case of the more general semantic similarity task. As shown in Figure 

9, given two inputs, the student answer and the reference answer, the assessment model computes 

the correctness of the student answer. Typically, the reference and student answer are domain 

specific as tutoring targets specific science topics, e.g., Physics. Furthermore, the answers are 

generated in the context of problem-solving instructional activities in which students are asked to 

provide solutions to various problems in the form of short essays, the essays are evaluated and if 

incorrect and/or incomplete a tutorial dialogue follows in which students provide short answers to 
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tutoring systems’ hints. In this work, we don’t capture domain specific information. This can be 

addressed in a future work.  

 

Figure 9.  Students’ answers assessment problem statement 

Motivated by the good results of deep learning models in similar semantic similarity task, 

we present in this dissertation a Bi-GRU Capsule Neural Networks model to assess the students’ 

answers generated during student-system dialogue-based interactions. Capsules have the 

capability to encode the semantic meanings in a wider space using a vector. Thus, these capsules 

are suitable to express a sentence as a vector (Kim. J et al.,2018). This generated vector captures 

the instantiation parameters of the input such as the order of the words and their semantic 

representation. On the other hand, word embeddings also transform words into lower dimensional 

vectors that preserve the contextual similarity of words. In general, the embedding vectors are fed 

into various deep learning models. Our model consists of several important components. First, an 

embedding layer that transforms each word of the input to a distributed vector representation. 

Second, the resulted embedding matrix is imported into a Bidirectional Gated Recurrent Units 

layer (Bi-GRUs) (Cho et al., 2014) to encode the input text into a fixed length representation.  The 

fixed length representation is then fed into a capsule layer . Finally, the capsule layer’s outputs are 

fed to a fully connected dense layer with SoftMax activation for classification. We evaluated the 

performance of our model using the DT-Grade corpus (Banjade et al., 2016). 
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Related Prior Work 

Capsule networks have been introduced by Geoffrey Hinton for image classification to overcome 

the limitations of the Convolution Neural Networks particularly in the pooling layer that causes 

the loss of important information regarding the spatial relationships. These networks are based on 

so called capsules and are trained using a dynamic routing algorithm (Sabour et al., 2017). Each 

capsule encodes a particular feature (e.g. local order of words, semantic representations of words) 

that the network is looking for. The magnitude of a capsule vector defines the probability of the 

existence of that feature. The layers of capsule networks are connected via computing a learned 

vector between each pair of capsules. Then, the routing algorithm is used to ensure that the output 

of the capsule, which is a vector, gets sent to an appropriate parent in the layer above. The capsule 

computes a “prediction vector” for each possible parent. This prediction vector is calculated by 

multiplying the capsule ‘s own output by a weight matrix. A top-down feedback is applied, in case 

the prediction vector has a large scalar product with the output of a possible parent. This is done 

to increase the coupling coefficient for that parent and decrease it for other parents. In sum, this 

iterative routing process decides the credit attribution between the nodes in lower and higher levels. 

Recently, several NLP researchers have applied Capsule Networks for various tasks such as text 

classification and sentiment analysis. The obtained results were very impressive and encouraging 

to further investigate these networks in related tasks.  

Capsule Networks showed a competitive performance in the text classification task. For 

example, Zhao and colleagues (2018) used Capsule Networks with dynamic routing algorithm for 

text classification. To boost performance, they have applied three different strategies to stabilize 

the dynamic routing process by decreasing some noise capsules. First, an Orphan category has 

been added to the network to capture the background information such as stop words and the words 
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that are unrelated to specific categories. Second, a Leaky-SoftMax approach has been used to 

update the connection strength between the parent capsules and their children. Third, the 

connection strength has been amended using the probability of the existence of the child capsules. 

To evaluate the performance of the proposed approach, they have conducted several experiments 

using six different datasets. The obtained results demonstrated the superior performance of 

Capsule Networks over many baseline methods. Our approach is similar in the sense that we model 

the student answer assessment task as a text classification task. However, the architecture of our 

proposed model is different. In fact, Zhao and colleagues’ model consists of a convolutional layer 

after the embedding layer and our proposed model consists of a Bi-GRU layer instead. In 

continuous research efforts, Kim and colleagues (2018) have applied Capsule Networks for text 

classification as well. They have used a simple dynamic routing algorithm to boost the efficiency 

of the model. Their proposed model consists of the following components: (1) an embedding layer, 

(2) a feature map that use convolutions, (3) a convolutional capsule layer, and (4) a text capsule 

layer. The authors have conducted several experiments using different datasets. The experimental 

results demonstrated the potential of the Capsule Networks in the text classification task. This 

approach is similar to our work in the sense of considering the student answer assessment task as 

a text classification task. The main difference is using a Bi-GRU layer instead of convolutions 

after the embedding layer. 

Capsule Networks have been applied successfully in other NLP tasks.  For example, Zhang 

and colleagues (2018) proposed a relation extraction approach based on Capsule Networks with 

attention mechanism. Wang and colleagues (2018) presented an Attention-based Bi-GRU-Capsnet 

model to detect hypernymy relationship between compound entities. Xia and colleagues (2018) 

proposed two capsule-based architectures to solve the zero-shot intent detection problem: the 
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INTENT-Capsnet that extracts semantic features from utterances and aggregate them to 

discriminate existing intents, and INTENT-Capsnet to discriminate emerging intents via 

knowledge transfer from existing intents.  

Based on these successes of Capsule Networks on related tasks, we have explored their 

potential for assessing student answers task. To the best of our knowledge, this is the first attempt 

at using Capsule Networks (at the time the publication) for assessing student generated answers in 

conversational intelligent tutoring systems. 

Model Architecture 

Our proposed model (Figure 10) consists of four major components: (1) an embedding layer that 

transforms each word to a distributed vector with a dimension d, (2) a bidirectional- GRU encoder, 

(3) a Capsule Network that generates  high level semantic representations of the student and 

reference answers using a dynamic routing algorithm, (4) a SoftMax layer that computes the 

probabilities of the correctness classes. 

Embedding Layer 

Given a student answer 𝑋 and a reference answer 𝑋′, we tokenize them into a sequence of words: 

𝑋 = [𝑤1, . . . , 𝑤𝑛] and 𝑋′ = [𝑤′
1, … , 𝑤′

𝑚] . Afterwards, each token is converted into a                         

d-dimensional vector through the embedding layer.  In this work, we consider the following word 

embeddings approaches: GloVe, Word2vec and ELMo. 

 GloVe embedding has been proposed by Pennington et al. (2014).  It is a “count               

b-based” model where the word co-occurrence count matrix is pre-processed by 

normalizing the counts and log-smoothing operation.  This matrix is then factorized to 

get lower dimensional representations. GloVe model was trained using five different 
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corpora mostly Wikipedia. The GloVe loss function minimizes the least-square 

distance between the context window co-occurrence values and the global                          

co-occurrence values (Juan et al.,2019). 

 Word2vec embedding has been proposed by Mikolov and colleagues (2013). 

Developed from Google News dataset containing approximately 3 million vector 

representations of words and phrases, word2vec is a neural network model used to 

produce distributed vector representation of words based on an underlying corpus. Two 

models have been proposed: CBOW and skip-gram. CBOW computes the probability 

of a target word given the context surrounding words within a window. Skip-gram is 

the opposite of CBOW model where the probability of the surrounding words is 

computed given the target word. 

 ELMo (Peters et al. ,2018) method produces word embeddings for each context where 

the word is used, thus allowing different representations for the same word. The 

mechanism of ELMo is based on the representation obtained from a bidirectional 

LSTM model (BiLSTM). It consists of two language models: forward LSTM and 

backward LSTM. When training a deep BiLSTM, the higher-level LSTM states capture 

context-dependent aspects of the word meaning, while lower-level LSTM states 

capture the aspects of syntax. ELMo encodes all this information in a single word 

vector. It should be noted that the use of ELMo embedding has boosted significantly 

the performance of several deep learning models.  
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Figure 10. Bi-GRU-CapsNET model architecture: it consists of the following layers :(i) 

embedding layer, (ii)- Bi-GRU layer, (iii)- Capsule Layer and (iv) SoftMax Layer 

                                                                 Bi-GRU Layer 

 A Gated Recurrent Unit (GRU) model is a variant of the recurrent neural network (RNN). GRU 

has two gates: un update gate z and a reset gate r. The update gate determines how much memory 

of previous cell to keep alive, and the rest gate determines how to combine the input of new cell 

with the previous memory. For each position 𝑡, GRU computes ℎ𝑡 with input 𝑥𝑡 and previous state 

ℎ𝑡−1, as: 

 

              𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)                                                                        
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              𝑢𝑡 =  𝜎(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1)        

                                                     

              ℎ�̃� =  tanh(𝑊𝑐𝑥𝑡 + 𝑈(𝑟𝑡 ∙ ℎ𝑡 − 1))      

                                    

              ℎ𝑡 = (1 − 𝑢𝑡) ∙ ℎ𝑡−1 + 𝑢𝑡 ∙ ℎ�̃�        

                                           

Where ℎ𝑡 , 𝑟𝑡  and 𝑢𝑡 are d-dimensional hidden state, reset gate, and update 

gate. 𝑊𝑟 , 𝑊𝑢 , 𝑊𝑐  and  𝑈𝑟 , 𝑈𝑢 and  𝑈  are the parameters of the GRU model. 𝜎 is 

the sigmoid function, and . is the element-wise production. 

The outputs vectors  ℎ𝑡 and ℎ𝑡
′
 are fed into the capsule layer.  

Capsule Layer 

The assumption behind Capsule Networks is that there are capsules (group of neurons) that tell 

whether certain entities are present in an image (text in our task). A capsule as shown in             

Figure 11 has an activation vector that represents the instantiation parameters of an entity and 

whose length represents the probability of the existence of that entity.       

 

Figure 11.  Capsule structure 
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Given the input vectors 𝑢1, 𝑢2 and 𝑢3 from the previous layers, a learned transformation matrix 𝑊𝑖𝑗  

is applied to generate the predictors vectors 𝑢�̂� as following: 

 

�̂�𝑗|𝑖 =  𝑊𝑖𝑗𝑢𝑖 

                                             

Then, in the higher layer, a capsule 𝑠𝑗  is computed by the linear combination of all the prediction 

vectors with weights 𝑐𝑖𝑗 as following: 

 

𝑠𝑗 =  ∑ 𝑐𝑖𝑗𝑢𝑗|𝑖

𝑖

 

                                     

where 𝑐𝑖𝑗 are coupling coefficients computed by the dynamic routing algorithm described in        

Figure 12. 

Routing Algorithm 

1: procedure ROUTING (�̂�𝑗|𝑖 , 𝑟, 𝑙 ) 

2: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer 𝑙 + 1: 

                𝑏𝑖𝑗 ← 0 

3: for 𝑟 iterations do  

4: for all capsule 𝑖 in layer 𝑙 : 
         𝑐𝑖 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖)                        SoftMax computes Eq.3 

5: for all capsule 𝑗 in layer (𝑙 + 1): 𝑠𝑗 ← ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  

6: for all capsule 𝑗 in layer (𝑙 + 1): 

          𝑣𝑗 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗)                            squash computes Eq.1 

7: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙 + 1) : 

          𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖 ∙ 𝑣𝑗  

   return 𝒗𝒋 

                               

                                  Figure 12. The Routing Algorithm 
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   As stated before, the output of a capsule represents the probability that the input has the entity 

that the capsule describes. So, the range of the activation vector should be in the [0,1] interval. For 

this purpose, a squash function is applied to generate the final output vector 𝑣𝑗 as following:     

                                                    

𝑣𝑗 =
‖𝑠𝑗‖

2

1 + ‖𝑠𝑗‖
 

𝑠𝑗

‖𝑠𝑗‖
2 

                                         

The final outputs of the capsule layers for the given students’ answers are activation vectors 𝑣1  

and  𝑣2. Afterwards, we concatenate these vectors as [𝑣1, 𝑣2] and we feed this concatenation into 

a SoftMax layer that computes the probability for each correctness class. 

Experiments 

We test the proposed Bi-GRU-Capsnet model using different parameters settings and embedding 

approaches. We evaluate the performance of the proposed model using the DT-Grade dataset as 

described next. 

DT-Grade Dataset 

The DT-Grade dataset (Banjade et al., 2016) was created by extracting student responses from 

logged tutorials interactions between 36 junior level college students and a state of the art ITS. 

During the interactions, each student solved 9 conceptual Physics problems – they had to provide 

the correct answer and a full justification based on Physics principles. Their answer was evaluated 

and if the answer was incorrect or incomplete, e.g., a partial as opposed to full justification was 

provided, a dialogue followed in which the ITS helped the student discover the correct solution 

through personalized scaffolding in the form of hints that varied in their degree of information/help 
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provided depending on students’ needs. In case the student provided a correct but incomplete 

answer, the goal of the dialogue was to elicit the missing parts of the solution. Eliciting the full 

justification from the student reveals their thinking and whether they found the right answer 

through correct or incorrect reasoning. When detected, misconceptions are immediately corrected. 

Each instance in the DT-Grade dataset includes the following components: (1) the Physics 

problem description, (2) the tutor question, (3) the student answer (as typed by the students, i.e., 

without correcting spelling or grammatical errors) and (4) reference/ideal answer(s). Each student 

response was assessed by a team of human experts and categorized into one of the following four 

correctness classes:   

1. Correct:  Answer is correct 

2. Correct-but- incomplete: The response provided by the student is correct, but something 

is missing. 

3. Incorrect: Student answer is incorrect. 

4. Contradictory: The student answer is contradicting the reference answer. 

                 Table 10. Annotation example of the DT-Grade dataset 

Problem Description:  

A car windshield collides with a mosquito, squashing it. 

Question: 

How does Newton's third law apply to this situation? 

Student Answer: 

the windshield will apply a force to the mosquito equal the force 

applied by the mosquito to the windshield 

Reference answer 

1:  Since the windshield exerts a force on the mosquito, which we 

can call action, the mosquito exerts an equal and opposite force 

on the windshield, called the reaction. 
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In this work, we consider only two classes: correct and incorrect. The mapping from the original 

DT-Grade labels to ours was done as described next. The correct answers are those labeled as 

“correct” in the DT-Grade dataset. All the other instances are considered “incorrect”. As a result, 

we obtained the following class distribution shown in Table 11 below. 

Table 11. The distribution of classes in training (800 instances) 

 

and testing data (100 instances) 

 

 

Dataset Correct (%) Incorrect (%) 

Training  41          59 

Testing                      41.58                                                     58.41 

                                   

Experimental Setting 

Several experiments have been conducted with different capsule neural networks parameters 

settings varying the embedding representations and the number of capsules to evaluate the 

performance of our proposed model using the DT-Grade dataset. 

A first set of experiments have been conducted using the pretrained Glove embeddings with 100 

dimension and three different values of the number of capsules. Based on the literature, we have 

started with a value of 10 and added two other values: 15 and 20. This has been done to test the 

impact of different expressiveness levels of the capsule network layer on the performance. A 

second set of experiments have been conducted using word2vec embeddings with 100 dimensions 

while using the same different values of the number of capsules. Another set of experiments have 

been run using ELMo embeddings with 300 dimensions, which are the state of art of embeddings, 

while using the same values of the number of capsules. To compare the performance of our model 

with existing ones, we have empirically experimented the following baseline deep learning 
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models: (1) An LSTM (Long Short-Term Memory) neural network that consists of a Glove 

embedding and 240 cells. (2) A Bi-GRU network that consists of Glove embedding with 50 units. 

During the experiments, we used 80% of data set for training and 20% for testing. The 

distribution of classes, as shown in Table 3.2, in training and testing is imbalanced. To overcome 

this problem, we adjusted the class weights in the model during the training.     

Hyperparameters 

 In all the experiments, we used a Bi-GRU layer with 50 units. Several numbers of units have been 

tested and this value has led to higher accuracy. We also added a 0.2 Dropout to the Bi-GRU layer 

to prevent over-fitting. For the capsule layer, we used 3 iterations for the routing algorithm and 16 

for the capsule dimension. For optimization, we used the Adam optimizer (Kimgma et al.,2014) 

with a learning rate of 0.0001. The gradients are clipped to 0.5 to prevent exploding gradients. We 

trained our model for 100 epochs to obtain the results. The increase of epochs, particularly when 

using the ELMo embedding, showed an increase in the overall accuracy and F1-measure values.            

Results & Discussion 

Table 12 shows the results on the DT-Grade dataset. Our Bi-GRU-Capsnet model outperforms the 

baselines deep learning models, particularly the Bi-GU and LSTM models. The results show that 

our model reaches the highest accuracy of 72.5 and 0.7 of F1-measure when using the ELMo 

embedding yielding the start of the art results on the DT-Grade dataset. This is not a surprising 

result. Several research works have demonstrated that ELMo embeddings boosted the performance 

of deep learning models in various NLP tasks. However, the accuracy and F1 score decreased 

significantly when using the word2vec embedding approach.  The obtained accuracy is considered 



 
 

49 
 

a very good result for the DT-Grade dataset due to its small size in comparison with larger NLP 

datasets.            

Table 12. The performance results of various models. 

Model Accuracy % F1 Measure 

Bi-GRU-capsnet (Glove,10) 

Bi-GRU-capsnet (Glove,15) 

Bi-GRU-capsnet (Glove,20) 

Bi-GRU-capsnet (Word2vec,10) 

Bi-GRU-capsnet (Word2vec,15) 

Bi-GRU-capsnet (Word2vec,20) 

Bi-GRU-capsnet (ELMo,20) 

Bi-GRU-capsnet (ELMo,15) 

Bi-GRU-capsnet (ELMo,10) 

Bi-GRU(Glove) 

LSTM(Glove) 

      61 

      60.62 

      58.75  

      55 

      56.25 

      52.25 

      69.37 

      66.25 

      72.5 

      56.25 

      60 

61 

55 

60 

59 

57 

47 

68 

66 

70 

56 

60 

 

 

Conclusions 

 

Capsule Networks have demonstrated a good performance in several NLP tasks especially in text 

classification. Motivated by these successes, we proposed a Bi-GRU-Capsule Networks model to 

assess the correctness of the students answers within the state of art of intelligent tutoring systems 

DeepTutor. We have chosen this deep learning model to get benefits from its no requirements of 

hands-crafted features and external resources. Added to this, Capsule Networks have the capability 

to express the semantic meanings in a wider space using a vector that captures the instantiation 

parameters of the input such as the order of words and their semantic representation.  The 

experimental results showed that our model achieved the state of the-art-results on the DT-Grade 

dataset surpassing the previous methods such as LSTM based model. Particularly, our model 

reached the highest accuracy when using the ELMo embeddings.  

Despite the state of-the-art results, this proposed model was incapable to assess correctly 

the very short answers that contains very few words less than 5. The next proposed approach was 
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driven by overcoming this shortcoming.  Therefore, we proposed a deep learning model that 

utilizes a contextual attention mechanism. 
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                                                                Chapter 4 

An-Attention Based Transformer Model for Student Answers Assessment 

Introduction 

As stated in the previous chapters, student answers assessment is an important component in an 

intelligent tutoring system (ITS). Evaluating the knowledge state of students informs the adaptivity 

of the ITS and optimizes the learning gains of students. Detecting the struggling students with low 

performances makes the system provide the appropriate hints and feedbacks to find the missing 

steps in the solutions. Semantic similarity approach has been adopted widely by several researchers 

to tackle this problem. According to it, a similarity score between 0 and 5 is computed between a 

student answer and an expert answer. A high score implies the correctness of the answer, and low 

score implies the incorrectness of the student answer. This is a challenging task as students can 

use very short answers and pronouns to refer to some concepts in the previous question or problem 

description. 

The attention mechanism in deep learning allows to pay greater attention to specific factors 

when processing the data. The use of attention in a neural network can results in a performance 

gain as the weight computed by attention could help in capturing the most relevant items in the 

input and discard the irrelevant ones.  For these reasons, attention has become a frequent element 

of several neural architectures for NLP (Gatt & Krahmer, 2018; Young, Hazarika, Poria, & 

Cambria, 2018).  The following example explains how the attention woks on a higher level. 

                  Given the following input sentence:  

“The animal didn't cross the street because it was too tired”. 
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Does “it” refer to animal or street in the sentence? As this question may appear simple for human, 

it is extremely difficult for an algorithm. When the model processes the input, the attention 

mechanism looks at the other clues in the input and assign higher weights to better encode each 

word. As a result, the word “it” is associated with “animal” word.  

 

Figure 13. The attention mechanism allows to encode the word “it” based on focusing on  

 

“The animal” words. 

 

Attention was first introduced in NLP for machine translation tasks by Bahdanau, and Cho 

Bengio (2015). They proposed to utilize a context vector to align the source and target inputs. The 

context vector contains information from all hidden states from encoder cells and align them with 

the target output. Thus, the model can attend some elements of the source input and learn complex 

relationships between the source input and the target output. Shen et al (2018) proposed two novels 

attention mechanisms: (i): multi-dimensional attention that performs a feature-wise selection over 

the input sequence for a specific task and (ii): Directional Self-Attention that produces the context 

representations with temporal information encoded. Based on these proposed attentions, a 
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Directional Self-Attention Network (DiSAN) has been proposed for sentence encoding without 

recurrences or convolutions. Their experimental results showed that this model can achieve state 

of-the-art results in various NLP tasks as they illustrated using various datasets for various tasks:  

the Stanford Natural Language Inference (SNLI) dataset, the Stanford Sentiment Treebank (SST), 

Multi-Genre Natural Language Inference (MultiNLI), Sentences Involving Compositional 

Knowledge (SICK), Customer Review, MPQA, and TREC question-type classification and 

Subjectivity (SUBJ) datasets. Vaswani et al. (2017) has introduced a multi-head attention 

mechanism yielding  state-of-the art results in machine translation. The transformers based on this 

attention mechanism are good at parallelization, increasing the model’s performance. Added to 

this, the Transformer-based models overcome the main shortcoming of previous deep learning 

models in assessing the very short answers that consist of few words.  

In this work, we solve the reference matching problem in student answers by adding a contextual 

information to the student answer as a concatenation of its corresponding tutor question and 

problem description. For the shortness of answers containing less than 5 words, we propose an 

Attention-based Transformer that uses a multi-head attention mechanism that encodes the 

semantics of student and reference answers based on the most relevant context words. Our 

proposed model’s architecture is a Siamese network based on the Transformer’s encoder since we 

model the problem as a binary text classification task in which student responses are categorized 

as correct or incorrect. 

Related Prior Work 

Following the trend of transformers, several NLP researchers have explored their potential for the 

task of short textual similarity (STS), our focus in this dissertation work. For example, Tang et al. 
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(2018) proposed a shared sentence encoder to improve the multilingual semantic textual similarity 

(STS) in low resource language with insufficient labelling (e.g., Spanish, Arabic, Thai etc.). By 

exploiting the nature of a multilingual encoder, one sentence can have multiple representations for 

different target translation language which led to improved similarity results. Their proposed 

encoder STS model architecture consists of the following components: 1) word embedding, 2) 

masked multi self-attention and 3) Feed Forward Network. This Transformer-based model 

architecture is different from our proposed model in numerous ways. First, FastText (Bojanowski 

et al. 2017) embeddings were used only in their experiments. In our work, we used four different 

word embeddings: Glove, ELMo, FastText and Word2vec. Second, their attention mechanism is 

different from ours as it is based on an inter-sentence attention that follows the approach described 

in (Wang et al., 2016). Our attention mechanism is explained further in a later section. Finally, 

their proposed model was evaluated on a different task than ours. Our model is the first Encoder 

Transformer-based model applied for assessing the correctness of short student answers in the 

context of intelligent tutoring systems. In a continuous research effort, Yang et al. (2018) proposed 

an Encoder-based Network applied on the STS benchmark and SemEval 2017’s Community 

Question Answering (CQA) question similarity subtask. An Encoder-Transformer, as described in 

Vaswani et al. (2017), has been used to compute a sentence embedding of the input 𝑢 and the 

response embeddings 𝑣 which are passed through an additional fully connected layer to get the 

output 𝑣′. The final dot product between 𝑢 and 𝑣′ is computed to get the semantic score between 

the input and the response. The results of the conducted experiments for the STS Benchmark 

showed the competitiveness of the sentence encoding based models. 

Transformers have been applied successfully in other NLP tasks. In machine translation, 

Transformer-based models achieved the state-of-the-art results.  Tubay et al. (2018) have applied 
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a Transformer for a machine translation with multi-source Romance languages. It has been 

evaluated for the biomedical WMT 2018 task. The proposed Transformer consists of an encoder 

and decoder where the multi-head attention mechanism is the primary mechanism. The results of 

their experiments showed an improvement of over 6 BLEU points. In a continuous research effort, 

Bapna et al. (2018) trained significantly deeper Transformer and Bi-RNN encoders for machine 

translation. In their work, they used the latest version of the Transformer implementation from 

(Chen et al.,2018). One major challenge during experiments is the difficulty to train Transformer 

models when the encoder depth increases beyond 12 layers. To solve this problem, a transparent 

attention mechanism has been proposed. The results showed consistent gains in translation quality 

on both the WMT’14 (Eng  De) and WMT’15 (CsEn) data. Ahmed et al. (2018) proposed a 

weighted Transformer with a modified attention layer. Unlike the classical Transformer, which 

weighs all heads equally (as we do in our work), the proposed attention mechanism allows for 

ascribing importance to different heads. This prioritizes their gradients and eases the optimization 

process. The experimental results showed that the proposed model improves the state-of-the-art 

performance by 0.5 BLEU points on the WMT 2014 English-to-German translation task and by 

0.4 on the English-to-French translation task. In addition, the model converges 15-40% faster than 

the baseline network. Transformers have been applied successfully in the sentiment analysis task 

as well. Kant et al. (2018) have applied an Attention-based Transformer Network as described by 

Vaswani et al (2017) for a multi-emotion sentiment classification task. The model has achieved a 

0.69 F1 score on the SemEval Task, which is competitive with state-of-the-art models. The model 

has demonstrated high performance in a text classification task as well. Letarte et al. (2018) has 

proposed a self-attention network for text classification. One key difference between their model 

and Vaswani’s Transformer is that they only perform input-input attention with self-attention, as 
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they do not have sequences as output (the output is text classification). The experimental results 

showed a performance improvement of around 2% when using self-attention compared to a 

baseline without attention.  

Motivated by these successes of applying the Transformer in multiple NLP tasks, we 

propose an Attention-based Transformer, as described next, for the student answers assessment 

task. 

Model Architecture 

Our proposed model consists of several important components: 1)- an embedding layer, 2)-a 

positional encoding layer, 3)- a Transformer layer, and 4)-a SoftMax classifier (see Figure 14). 

We consider an extended student answer as the first input consisting of the concatenation of the 

corresponding problem description, the previous tutor question (which accounts as prior context), 

and the student answer. The inputs to the embedding layers are tokenized. 

Embedding Layer 

Given a student answer 𝑋 and a reference answer 𝑋′, we tokenize them into a sequence of word 

tokens: 𝑋 = [𝑤1, . . ., 𝑤𝑛] and 𝑋′ = [𝑤′1, …, 𝑤′𝑚]. Afterwards, each token is converted into a d-

dimensional (d=300,1024) vector through the embedding layer. We considered the following four-

word embeddings: Glove (Pennington et al.,2014), Word2vec (Mikolov et al.,2013), ELMo (Peters 

et al. ,2018) and FastText (Bojanowski et al.,2017). 
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Figure 14. the Attention-based Transformer architecture. It consists of the following 

components: (i)-an embedding layer, (ii) a Transformer Encoder, and (iii) a SoftMax layer. 

Positional Encoding 

Positional encoding is used to capture the order of the tokens in the input. Since the embedding 

layer captures the meaning of words and there is no recurrence and convolution in the proposed 

transformer network, the positional encoding is added to the input embeddings to inject the 

token order information. The positional encoding outputs have the same dimension 𝑑𝑚𝑜𝑑𝑒𝑙  as 

the embedding outputs so they can sum up.   

The position encodings are calculated using the sine and cosine functions as in the following:  
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                                        𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙
⁄⁄ )                  

 

                                       𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙
⁄⁄ )                

 

 where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension. That is, each dimension of the positional 

encoding corresponds to a sinusoid.  

For example, if we assume that the embedding has a dimensionality of 4, the actual position 

encoding would look as shown below:  

 

Figure 15.  Position Encoding Example 

The resulting sum vector of each embedding vector and its position encoding vector is imported 

into the multi-attention head mechanism.  

Transformer Layer 

The Transformer consists of a stack of identical encoder layers (see Figure 16). Each encoder is 

composed of two major components: 1) Multi-Head Attention mechanism and 2) Position-Wise 

Feed-Forward Network. What follows is a detailed explanation of each component.        
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Figure 16. Transformer architecture that consists of several identical encoders (left). 

Encoder structure (right). 

Multi-Head Self -Attention Mechanism 

The multi-head attention mechanism, as depicted in Figure 17, consists of several attention 

layers running in parallel. This mechanism has been introduced by Google and uses multiple 

iterations of computation to capture relevant information. Added to this, this component 

improves the performance of the attention layer in two ways. First, it expands the model’s 

ability to focus on different positions. Second, it gives the attention layer multiple 

“representation subspaces”. This will be explained further in more details. The major 

advantage of self-attention is that it ignores the distance between words and computes directly 

dependency relationships. Thus, making it capable of learning the internal structure of a 

sentence. 
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 Figure 17. Scaled dot product attention (left). Multi-Head Attention Structure (right). 

An attention function consists of mapping a query and a set of key-value pairs to an output, where 

the query, keys, values and output are all vectors. Given a word vector 𝑥1, calculating the self-

attention vector 𝑧1 consists of several steps.  

- The first step consists of creating a Query vector, a Key vector, and a Value vector for 

each word embedding vector 𝑥1. Three weight matrices are learned during the training 

process: 𝑊𝑞  , 𝑊𝑘  and 𝑊𝑣 . Multiplying 𝑥1 by 𝑊𝑞   weight matrix results in creating the query 

𝑞 of the associated word. Similarly, we create the Key and Value vectors associated with 

each word, by multiplying 𝑥1 by 𝑊𝑘  and 𝑊𝑣 , respectively.  

- The second step consists of calculating a score by taking the dot product of the Query 

vector  𝑞1 and the Key vector 𝑘1 associated with the word 𝑤1 in the input. For the second 

word 𝑤2 in the input, its score is calculating by multiplying 𝑞1 and its Key vector 𝑘2. 

- The third step consists of dividing the scores by the square root of the dimension of the 

key vectors  √𝑑𝑘 . To normalize the scores, we pass them through a SoftMax operation.  
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- The fourth step consists of multiplying each Value vector 𝑣1 with the resulted SoftMax 

score. This helps to assign the most relevant words high scores. Then, we sum up the 

weighted values vectors to produce the output vector 𝑧1 of the self-attention layer that 

corresponds to the word 𝑤1 in the input. The resulting vector is passed to the Feed-Forward 

network. 

As mentioned by Vaswani et al (2017), the self-attention calculation can be done using matrices 

instead of vectors. In this case, we can we compute the multi-head attention as follows: 

 

                         𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊0           

   

                               where       ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                        

                               

                                               𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇

√𝑑𝑘
) 𝑉        

 

where the queries, keys and values are packed into matrices 𝑄, 𝐾 𝑎𝑛𝑑 𝑉 .  

Since the multi-head attention component is based on multiple attention heads, we end up with 

multiple outputs from each attention head. And since the Feed Forward Network accepts one input, 

we concatenate the attention heads (𝑧1 , … , 𝑧𝑛) associated with each input and the multiply this 

concatenation with a learned weight matrix 𝑊0. This produces the final outputs 𝑍 and 𝑍′of the 
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multi-head attention component for the student answer input 𝑋 and the reference answer input  

𝑋′, respectively.  

Position-Wise Feed-Forward Networks 

The resulting vector of the multi-head attention module 𝑍 is passed through a fully connected 

forward network that computes linear transformations of the input. In this work, we consider two 

1-dimension convolutions with kernel size 𝑑𝑖𝑛𝑛𝑒𝑟_ℎ𝑒𝑎𝑑 , a dropout to avoid overfitting and a 

normalization layer (see Table 13). The dimensionality of input and output is 𝑑𝑚𝑜𝑑𝑒𝑙   .  

                                          Table 13. Feed Forward Network Architecture 

Layer Kernel size Stride 

Convolution 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅  1 

ReLU -   - 

Convolution 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅  1 

ReLU        -  - 

Dropout        -  - 

Layer 

Normalization 

       -  - 

                                         

Afterwards, we concatenate the outputs of the Feed-Forward Network  [𝑣1 , 𝑣2] and pass it to the 

final SoftMax layer to compute classification probabilities 𝑝1, 𝑝2  of belonging to the two classes: 

correct or incorrect. 

Experiments 

We test the performance of the proposed Attention-based Transformer using the previously 

introduced DT-Grade dataset. To this end, several experiments have been conducted using 

different parameters settings as explained next. To demonstrate the effectiveness of our proposed 

model, we compare the obtained results with previous results using previous applied deep learning 

models on the same dataset. 
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Data 

In this work, we use the DT-Grade dataset as it has introduced previously. It consists of 900 

instances of student answers extracted from logged tutorial interactions between 40 junior level 

college students and the state-of-the-art intelligent tutoring system DeepTutor. Each annotation 

example (See Figure 18) consists of the following attributes: (1) problem description, (2) tutor 

question, (3) student answer and (4) reference answers. In addition, the data includes the 

correctness class of each student answer. There are four classes: correct, correct but incomplete, 

incorrect, and contradictory. In this work, we consider two classes: correct and incorrect. The 

correct answers are those labeled as “correct" in the DT-Grade dataset. All the other instances are 

considered as belonging to the “incorrect” class. 

 

Figure 18 Snapshot of the DT-Grade raw dataset in XML form. The main attributes are:(i) 

Problem Description, (ii)-Question(iii)Student Answer and (iv) Reference Answers 
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Experimental Setting 

To evaluate the importance of the components of our attention-based transformer, we have 

conducted several experiments by varying the Transformer architecture and using different 

embedding approaches. 

A first set of experiments have been conducted using Word2vec embeddings with 300 

dimensions and different settings of the attention-based transformer. Based on the experiments 

conducted by Vaswani et al. (2017), we have tried various values of the number of attention heads 

(8, 10,15, 32). This has been done to test the impact of increasing and/or decreasing the number of 

attention heads (𝑛_ℎ𝑒𝑎𝑑) on the performance of our model.  We have, also, varied the depth of 

the transformer by experimenting with different number of the encoder layers. Other parameters 

have been modified as well such as the attention key dimension (d_k), the attention value 

dimension (d_v) and the number of the kernel size (𝑑𝑖𝑛𝑛𝑒𝑟_ℎ𝑒𝑎𝑑) of the convolution layers in the 

Feed-Forward Network. 

Another set of experiments has been conducted using Glove pre-trained embeddings with 

300 dimensions. Following the same setup of the first set of experiments, we have used the same 

values of the same parameters: number of heads of attention, the attention key dimension, the 

attention value dimension and the number of layers. 

As stated in several research works, ELMo embedding enhanced the performance of 

several deep learning models applied to various NLP tasks. For this reason, we have conducted 

another set of experiments using ELMo embeddings with 1,024 dimensions. We have followed 

the same setup of the previous sets of experiments and we have used the same values of the 

Transformer ‘s parameters. The only difference is the value of 𝑑𝑚𝑜𝑑𝑒𝑙  that is set to 1024 to be 

consistent with the ELMo embedding dimension so we can sum up via the position encoding. 
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In a continuous effort to test the impact of the embedding approach on the performance of 

the proposed model, we conducted another set of experiments using FastText embeddings. We 

kept the same parameters settings of the previous experiments. 

Hyperparameters 

In all experiments, the model was trained with a Categorical Cross Entropy Loss function. For 

optimization, we used the Adam optimizer (Kimgma and Ba,2014) with a learning rate of 0.0001, 

𝑏𝑒𝑡𝑎1 =0.9 and 𝑏𝑒𝑡𝑎2 = 0.99 . The gradients are clipped to 0.5 to prevent exploding gradients. 

To avoid overfitting, we applied a dropout = 0.9  to the sums of the embeddings and the 

positional encodings of each layer of the Transformer. In all experiments, we trained our model 

for 1,000 epochs to obtain the results. An increasing number of epochs, particularly when using 

the ELMo embedding, showed an increase in the overall accuracy.  

Results & Discussion 

Table 14 shows the accuracy of different architectures of our model using the word2vec 

embedding. The highest accuracy of 59% was reached when using (15,8,16) heads of attention and 

(2,6,6) layers, respectively. This result outperforms Bi- GRU-Capsnet with word2vec embeddings 

(Ait Khayi & Rus, 2019) on the same dataset. The highest accuracy of 60% was reached when 

using 16 heads of attention and 6 layers of the encoder. It seems that increasing the number of 

heads of attention above 16 has led to a decrease in accuracy. This led us to our first observation: 

there are specific heads of attention that play an important role in the transformer and a specific  
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Table 14.  Results of variations of the transformer architecture using word2vec embeddings. 

 

 

     

          

 

 

          

 

number of these heads of attention is sufficient to achieve good results. Thus, adding more heads 

of attention can be considered redundant for the transformer ‘s architecture. This performance is 

better than the performance obtained with the word2vec embeddings and outperforms the approach 

based on Bi-GRU-Capsnet with Glove embeddings. 

Table 15 shows results for different architectures of our model using Glove embeddings. 

The highest accuracy of 60% was reached when using 16 heads of attention and 6 layers of the 

encoder. It seems that increasing the number of heads of attention above 16 has led to a decrease 

in accuracy. Similar to the results obtained using word2vec, we observe that there are specific   

    Table 15.  Results of variations of the Transformer architecture using Glove embeddings.   

 

 

             

         

heads of attention that play an important role in the Transformer and a specific number of these 

heads of attention is sufficient to achieve good results. Thus, adding more heads of attention can 

𝒅𝒎𝒐𝒅𝒆𝒍 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅 𝒏_𝒉𝒆𝒂𝒅 𝒅_𝒌 𝒅_𝒗 𝒍𝒂𝒚𝒆𝒓𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

300 512 15 64 64 2 59 

300 512 10 64 64 2 57 

300 2048 8 64 64 1 58 

300 2048 32 128 128 8 58 

300 2048 8 64 64 6 59 

300 512 10 64 64 1 58 

300 4096 16 128 128 6 59 

𝒅𝒎𝒐𝒅𝒆𝒍 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅 𝒏_𝒉𝒆𝒂𝒅 𝒅_𝒌 𝒅_𝒗 𝒍𝒂𝒚𝒆𝒓𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

300 512 15 64 64 2 59 

300 512 10 64 64 2 57 

300 2048 8 64 64 1 56 

300 2048 32 128 128 8 56 

300 2048 8 64 64 6 56 

300 512 10 64 64 1 58 

300 4096 16 128 128 6 60 
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be considered redundant for the Transformer ‘s architecture. This performance is better than the 

performance obtained with the word2vec embeddings. 

Table 16 shows results for different architectures of our model using ELMo embeddings. 

We can observe a significant improvement in the overall accuracy in comparison with Glove and 

Word2vec embeddings. The highest accuracy of 71.5 was achieved when using 10 heads of 

attention and 2 layers only. This is a very competitive result in comparison with Bi-GRU-Capsnet 

and ELMo (72.5). 

            Table 16.  Results of variations of the transformer architecture using Elmo embeddings. 

 

 Table 17.  Results of variations of the transformer architecture using FastText embeddings 

 

 

 

 

 

 

    Table 17 shows results of the transformer using FastText embeddings. The highest accuracy of 

60% has been achieved when using 8 attention heads and 1 stack layer of encoders. This is the 

same accuracy obtained when using the transformer with Glove embeddings but with different 

values of the transformer’s parameters. 

𝒅𝒎𝒐𝒅𝒆𝒍 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅 𝒏_𝒉𝒆𝒂𝒅 𝒅_𝒌 𝒅_𝒗 𝒍𝒂𝒚𝒆𝒓𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

300 512 15 64 64 2 59 

300 512 10 64 64 2 59 

300 2048 8 64 64 1 60 

300 2048 32 128 128 8 57 

300 2048 8 64 64 6 57 

300 512 10 64 64 1 58 

300 4096 16 128 128 6 56 

𝒅𝒎𝒐𝒅𝒆𝒍 𝒅𝒊𝒏𝒏𝒆𝒓_𝒉𝒆𝒂𝒅 𝒏_𝒉𝒆𝒂𝒅 𝒅_𝒌 𝒅_𝒗 𝒍𝒂𝒚𝒆𝒓𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

1024 512 15 64 64 2 61 

1024 512 10 64 64 2 71.5 

1024 2048 8 64 64 1 64 

1024 2048 32 128 128 8 61 

1024 2048 8 64 64 6 61 

1024 512 10 64 64 1 67 
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         The depicted results in Table 18 show that the attention-based transformer has outperformed 

the Bi-GRU Capsnet when using the Glove embeddings: 60 % versus 56.25 % accuracy. It has 

outperformed also the Bi-GRU Capsnet when using the word2vec embeddings: 59 % versus 56.25. 

The highest accuracy of 71.5 has been achieved with ELMo embeddings. The results show also 

that our proposed model displays a superior performance over the baseline models:  Bi-GRU and 

LSTM models. An interesting finding in the conducted experiments (see some examples in Table 

19) is that the proposed attention model handles the assessment of shorts answers with a small 

number of words less than 6 better than the recurrent networks: Bi-GRU and LSTM. This can be 

explained by the fact that the self-attention mechanism in our proposed model allows the selection 

of the most relevant words in the students answer and reference answer.  Then, the assessment is 

computed based on those relevant words.  As shown in Table 19, giving the following reference 

answer: “The ball is slowing down at a constant rate “, the attention mechanism allows to focus 

on the most relevant part of this input:” slowing down”. This selected part has a similar semantic 

representation with the following student answer: “it is decreasing”. Thus, the Transformer is 

capable to assess this answer correctly. Similar observation has been made for additional short 

student answers with fewer words (see Table 19).        

Table 18.  Comparison between the Transformer and other deep learning models 

 

                      

                 

 

             

Model Accuracy 

Transformer (ELMo) 71.5 

Bi-GRU-Capsnet (ELMo) 72.5 

Transformer (Glove) 60 

Bi-GRU-Capsnet (Glove) 56.25 

Transformer (word2vec) 59 

Bi-GRU-Capsnet 

(Word2vec) 

56.25 

Bi-GRU  56.25 

LSTM  60 
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Table 19. Example of students and reference answers and their assessment using 

Bi-GRU and ELMo-Transformer 

 

                                                                    

 

 

 

 

 

 

 

 

Conclusions 

Previous Bi-GRU Capsnet model suffers from its incapability to assess correctly the very short 

responses consisting of very few words less than 5 and pronouns referring to concepts in previous 

answers or the tutor question. In attempt to mitigate this issue, we proposed to add a contextual 

information to the student answer and an Attention-based Transformer to assess the correctness of 

student answers. Several experiments have computed data from tutorial interactions between 

students and the state-of-art of intelligent tutoring systems DeepTutor. This is the first time the 

Transformer Encoder (at the time of publication) has been applied to this task. We have chosen 

this approach to take full advantage of the self-attention mechanism in assessing accurately the 

Student answer Reference answer Ground        

Truth 

Bi-GRU  Elmo 

Transformer 

 

second 

 

 

When the mover doubles his 

force, the push is greater than 

friction resulting in a non-zero 

net force acting on the desk 

and so Newton's second law 

can be applied. 

 

Correct 

 

Incorrect 

 

Correct 

it is decreasing 

 

The ball is slowing down at a 

constant rate. 

Correct Incorrect Correct 

They balance 

each other 

 

Because the net force on the 

desk is zero, the mover's 

push balances the opposing 

force of friction. 

Correct Incorrect Correct 

Equal to zero 

 

Since the child is being raised 

straight upward at a constant 

speed, the net force on the 

child is zero and all the forces 

balance. That means that the 

tension in the rope balances 

the downward force of gravity. 

Correct Incorrect Correct 
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very short student answers. In addition, the Transformer has demonstrated a great effectiveness in 

numerous semantic textual tasks. 

The proposed model is composed of several important components: i)- an embedding layer, 

ii)- a position encoding, iii)-a Transformer layer, and iv)- a SoftMax classifier. The experimental 

results on the DT-Grade dataset showed the high competitiveness of the proposed model in 

comparison with previous state-of-the-art approach.  The highest accuracy of 71.5% was achieved 

using 10 heads of attention, 2 encoder layers and ELMo embeddings. This result is very close to 

the result achieved by Bi-GRU-Capsnet (72.5%) on the DT-Grade dataset.  

In the future, we plan to further investigate other novel deep learning models that work 

well in low resource scenarios such ours, in attempt to enhance the current performance results on 

the DT-Grade dataset. 
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Chapter 5 

Towards Assessing Open-Ended Students Answers Using Graph Convolutional Networks 

Introduction 

Automatic assessment of open-ended students answers or called by some researchers; automatic 

short answers grading (ASAG) is a fundamental research problem in natural language processing 

(NLP). This assessment consists of comparing semantically a student answer with an expert 

generated answer. A high similarity implies the correctness of the student answer. 

Graph Neural Networks (GNN) were first proposed by Scarsell and colleagues (2009). It 

is an extension of Neural Networks for processing data represented in graph domains. In a graph, 

each node is naturally defined by its features and the related nodes. Recently, GNNs attracted a 

wide attention in the field of NLP because of its impressive performance, interpretability and the 

great expressive power of graphs to represent unstructured data such as text. In this context, Zayats 

and colleagues (2017) presented a novel approach for modelling threaded discussions on social 

media using a Graph-Structured Bidirectional LSTM that represents both hierarchal and temporal 

conversation structure. The experimental results showed the superior performance of the proposed 

model over the node-independent model for the popularity prediction task. In a continuous 

research efforts, Beck and colleagues (2018) proposed a model for Graph-To-Sequence learning 

that uses recent advances in encoder-decoder architectures. The model has been evaluated in two 

NLP tasks: generation from abstract meaning representations and machine translation. The 

experimental results showed the effectiveness of this proposed approach. Hamilton and colleagues 

(2017) presented GraphSAGE, a general inductive framework that leverages node feature 

information to efficiently generate node embeddings for previously unseen data. The performance 
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of the proposed GrapgSAGE has been tested on the following tasks: (i)- classifying academic 

papers into different subjects using the Web Science citation dataset, (ii)- classifying Reddit posts 

to different communities, and (iii) classifying protein functions across various interaction graphs. 

The results reinforce the effectiveness of the proposed approach that outperformed all the baselines 

(e.g. random classifier, regression-based classifier, DeepWalk algorithm etc..) with significant 

margin. 

Motivated by the successes of GNNs in numerous NLP tasks, we propose a Graph 

Convolutional Network (GCN), which is class of GNN, for student answers assessment task. First, 

we built a knowledge graph from the DT-Grade dataset. Then, we imported it to two layers of 

GCNs.  Finally, we applied a SoftMax classifier. 

Related Work 

Joining the efforts of several researchers in generalizing Convolutional Neural Networks (CNN) 

to work on arbitrarily structured graphs, Kipf and colleagues (2017) introduced a simplified Graph 

Neural Network called Graph Convolutional Network (GCN) yielding the state-of-the-art results 

on multiple graph datasets.  The application of GCNs in various NLP tasks led to very promising 

results. For example, Sahu and colleagues (2019) proposed a novel inter-sentence relation 

extraction model that builds a labelled edge GCN on a document-level graph. The graph is 

constructed with words as nodes and multiple intra- and inter-sentence dependencies between them 

as edges. Then fed to a GCN model to encode the graph structure and a multi-instance learning is 

utilized with bi-affine pairwise scoring to predict the relation of an entity pair. The experimental 

results showed that the model has achieved a comparable performance to state-of-the-art neural 

models on the inter-sentence relation extraction task. Working on the same task, Zhang and 

colleagues (2019) proposed a novel model for the relation extraction task. Their model consists of 
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the following components: 1) an instance encoder based on Convolutional Neural Networks 

(CNN) to encode the instance semantics into a vector, 2) a relational knowledge learning 

component that employs graph convolutional networks to learn explicit relational knowledge, and 

3) a  knowledge-aware attention component to select the most informative instance that matches 

the relevant relation. The experimental results showed that this model outperforms several 

baselines such as CNN. GCNs have been applied successfully as well for the semantic role labeling 

task that can be described as the task of discovering in texts who did what to whom. To this end, 

Marcheggiani and colleagues (2017) have proposed a model that consists of the following 

components:  1) word embeddings, 2) a Bi-LSTM encoder that takes as input the embedding 

representation of each word, 3) a syntax based GCN encoder that re-encodes the Bi-LSTM 

representation based on the predicted syntactic structure of the sentence, and 4) a classifier to 

predict the role associated with each word. The empirical results showed that this based GCN 

model has achieved the state of- the-art results. GCNs have been explored successfully in text 

classification. For this purpose, Yao and colleagues (19) proposed to use GCNs for text 

classification. They built a single text graph for the whole corpus based on word co-occurrence 

and document word relations then learnt a text graph convolutional network for the corpus. The 

proposed model has been evaluated using multiple benchmarks. The experimental results showed 

that GCN outperforms several baselines such as Bi-Directional LSTM and LSTM. In this work, 

we don’t consider a heterogenous graph where nodes present words and documents. The nodes 

represent documents only as a concatenation between student answers and reference answers. 

Based on these successes of GCN in numerous NLP related tasks, we have explored their potential 

for assessing student natural language answers. To the best of our knowledge, this is the first 

attempt at using GCNs for this task. GCNs have demonstrated impressive results in the question 
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answering task as well which is related to the students answers assessment task. To this end, Cao 

and colleagues (2019) proposed a Bi-Directional Attention Graph Convolutional Network (BAG). 

The graph is built from documents with multi-level features where nodes are entities and edges 

are relationships between them. The graph is then imported into GCNs to learn relation-aware 

representation of nodes. Finally, for final prediction, a bi-directional attention is introduced 

between the graph and a query to derive the mutual information. The experimental results showed 

that BAG achieves the state-of-the-art results on the used dataset. In a continuous work on the 

same task, De Cao et al (2019) proposed to model the question answering problem as an inference 

problem on graphs built from documents. The nodes are entities and edges represent the 

relationship between different mentions such as within and cross-documents coreferences. The 

built graph is then fed into GCNs to perform multi-step reasoning.  The experimental results show 

that this proposed model achieved the state-of-the art results on a multi-document question 

answering dataset, WIKIHOP (Welbl et al., 2018).  

In addition, GCNs have been explored successfully in other NLP tasks such as sentiment 

aspect classification (Zhang et al.,2019), abnormal text detection (Mishra et al.,2019; Li et al,2019) 

emotion recognition (Deepanway et al.,2019). 

Model Architecture 

Our proposed method (see Figure 19) consists of building first a knowledge graph from the DT-

Grade data. The built graph is imported into two GCN layers. Finally, we apply a classifier to 

predict the class of each text node. 

DT-Grade Graph 

We build a text graph from the DT-Grade dataset based on the citation relation approach (Kipf et 

al.,2017). We consider each document, whose content is the combination of the student answer  
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Figure 19: The model architecture consists of the following components:  i)- building a 

DTGraph, ii)- feeding it to two GCN layers, iii)- and finally applying a classifier 

and its corresponding reference answer, as a node which represents a specific question in Physics 

(e.g., What is Newton Law?). Thus, the classification of a pair of student answer and reference 

answer turns to a node classification task. The number of the nodes in the text graph is 900 which 

is the number of instances in the DT-Grade dataset. Formally given a graph   𝐺 = (𝑉, 𝐸) where 𝑉 

and 𝐸 are sets of nodes and edges. The weight of the edge between two nodes is calculated using 

two methods: a TF-IDF method and an embedding based method. In the first one, we compute the 

term frequency-inverse document frequency (TF-IDF) between two text nodes. We add an edge 

between two nodes if the cosine similarity is above a threshold of 0.9. The second method is based 

on word2vec embeddings. First, word2vec is used to learn a vector representation for each word 

in the text representing each node. Then, we compute the Word Mover’s Distance (WMD) to 

measure the similarity between two texts representing two nodes in the graph. Texts that share 

many words should have smaller distances than texts with very dissimilar words. WMD has been 
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introduced to measure the distance between two text documents that takes into account the 

alignments between words. In this paper, we consider the text associated with each node as a short 

document. The WMD algorithm finds the values of an auxiliary ‘transport’ matrix T, such that 𝑇𝑖𝑗  

describes how much 𝑑𝑖
𝑎  should be transported to 𝑑𝑗

𝑏. The WMD learns T to minimize:       

                           

                                             𝐷(𝑥𝑖, 𝑥𝑗) = 𝑚𝑖𝑛𝑇≥0 ∑ 𝑇𝑖𝑗‖𝑥𝑖 − 𝑥𝑗‖
2

𝑝𝑛
𝑖,𝑗=1                  

           

               Subject to:              ∑ 𝑇𝑖𝑗 = 𝑑𝑖
𝑎𝑛

𝑗=1 ,    ∑ 𝑇𝑖𝑗 = 𝑑𝑗
𝑏𝑛

𝑖=1    ∀ 𝑖, 𝑗      

 

  where: 𝑑𝑖
𝑎  and  𝑑𝑗

𝑏  are  the n-dimensional normalized bag-of-vectors for the two nodes’ texts,  

𝑥𝑖 ∈ 𝑅𝑑 is the embedding vector of the ith word ad 𝑝  is usually set to 1 or 2. 

The resulted graph is fed afterwards into a two-layer GCN, as explained next. 

Graph Convolutional Networks (GCN) 

GCN is a recent class of multilayer neural networks that operate on graphs (Duvenaud et al.,2015; 

Kipf et al.,2017). For every node in the graph, GCN encodes relevant information about its 

neighborhood as a real-valued feature vector. Formally given a graph 𝐺 = (𝑉, 𝐸) where 𝑉 and 𝐸 

are sets of nodes and edges. Every node is assumed to connect with itself, i.e., (v,v)∈ E for any 𝑣 

. Let 𝑋 ∈  𝑅𝑛×𝑚  be a matrix containing all n nodes with their features, where m is the dimension 

of the feature vectors, each row xv∈ R  is the feature vector for 𝑣. We consider A  an adjacency 

matrix of the graph 𝐺 and its degree matrix 𝐷 where 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 .  When using GCN with multiple 

layers, the information about larger neighbors is captured. Following the recommendation of Kipf 
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et al (2017) that multiple layers yield in better performance, we consider two layers of GCN.  The 

new k-dimensional node feature matrix of layer 𝐿(𝑗+1)  is computed as following: 

                                                            

L(j+1)  = ρ(ÃL(j)Wj) 

                                            

Where  �̃� = 𝐷−
1

2  𝐴 𝐷−
1

2     is the normalized is the normalized symmetric adjacency matrix and 𝑊𝑗   

is a weight matrix and   𝜌   is an activation matrix and   L(0)=X  . 

In this thesis work, we are interested in implementing a convolution operation in the 

spectral domain with a nonlinear trainable filter that maps the node features in a new space (Bruna 

et al.,2013; Henaff et al.,2015). To this end, we consider the following filters: 

-  Local pooling filter: Kipf and colleagues (2017) proposed spectral convolutions on 

graph defined as the multiplication of a scalar for every node with a filter in the 

Fourier domain.   

- Chebyshev polynomial filter: Chebyshev polynomials are exploited to implement 

fast localized filters in a GCN as described in (Defferrard et al.,2016). The use of 

this filter allows avoiding to eigen-decompose the Laplacian by approximating the 

filter convolution. 

- Auto-Regressive Moving Average (ARMA) filter: Bianchi and colleagues (2019) 

have proposed a Graph Neural Network that implements convolutional layers based 

on an ARMA filter that provides a more flexible response. The experimental results 

showed that ARMA outperforms the polynomial filters. 
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SoftMax Classifier 

The output of the second GCN layer is fed into a SoftMax layer as follows: 

 

                                          Z = softmax(ÃRELU(ÃXW0)Wj)    

                                                        

Where   �̃� = 𝐷−
1

2  𝐴 𝐷−
1

2     is the normalized is the normalized symmetric adjacency 

matrix,  𝑊𝑗 , 𝑊0   are weight parameters and   𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑖)𝑖
 . 

 �̃�𝑋𝑊0 contains the first layer document embeddings and (�̃�𝑅𝐸𝐿𝑈(�̃�𝑋𝑊0)𝑊𝑗)contains the   

second layer document embeddings.   

Experiments 

Several empirical experiments have been conducted to test the performance of the proposed GCN 

based model on the DT-Grade data as explained in a previous section. For this purpose, the model 

has been tested with different parameters settings and different filters. Then has been compared 

with previous methods. 

Experimental Setting 

To evaluate our proposed method, we have conducted numerous experiments with different 

parameters settings. To this end, we train and evaluate a two-layer GCN, as described previously, 

using the DT-Grade dataset. In all experiments, we train our model for a maximum of 1000 epochs 

(training iterations) using Categorical Cross Entropy Loss function and Adam optimizer (Kingma 

& Ba., 2014) with a learning rate of 0.01. And we stop the training if the validation loss does not 
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decrease for 100 consecutive epochs, as suggested in work (Kipf et al.,2017). To avoid overfitting, 

we apply a  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.5. For the graph convolution layer, we use a hidden layer size of 16 

units with an L2 regularization and ReLU activation. We select randomly 600 instances to evaluate 

the training accuracy, 100 instances to evaluate the validation accuracy and 200 instances to assess 

the testing accuracy. 

In first set of experiments, we have used the TF-IDF approach to compute the weight of 

the DT-Grade graph edges. Then we repeated the experiment with the following filters as described 

in the previous section: 1- local pool filter which is considered as a baseline filter for Graph 

Convolutional Networks, 2- Chebyshev polynomial filter with two values of the maximum 

polynomial degree (2,3) and 3 – ARMA filter.  We report the accuracy of the model for each filter. 

We repeat the same set of experiments using the embedding based approach to extract features. 

In a second set of experiments, we have used word2vec embedding with 300 dimension 

and WMD to compute the weight of the edges. Then, we report the accuracy of the model using 

three different filters as described previously.  We repeated the same set of experiments with 

different methods of features extraction. 

Results & Discussion 

Table 20 summarizes the performance results of using GCN with different parameters settings. 

Several observations can be made of these obtained results. First, the use of TF-IDF method to 

compute the weights between the edges outperformed the word2vec based method in all 

experiments. This result is in line with the fact that TF-IDF method captures more informative 

information between two texts presented by two nodes. The highest accuracy obtained within      

TF-IDF was 73 % versus 70% of the word2vec method. Second, the experimental results show 
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that applying ARMA filter has outperformed the other polynomial filters. A highest accuracy of 

73% has been achieved. This is consistent with the work of Bianchi and colleagues (2019). In 

another set of experiments, we varied the maximum polynomial degree using two values: 2 and 3. 

The depicted results in Table 20 show that when using the TF-IDF and the value of 2, a higher 

accuracy of 72% has been achieved versus 70% for the value =3.  These two values have been 

selected from the literature. 

                                 Table 20. Performance of GCN with different filters 

Model Accuracy 

GCN (TF-IDF+localpool filter)       68 

GCN (TF-IDF+ Chebyshev filter K=2)       72 

GCN (TF-IDF+ Chebyshev filter K=3)       70 

GCN (TF-IDF+ARMA filter)       73 

GCN (word2vec+WMD+ localpool filter)       62.5 

GCN (word2vec+WMD+chebyshev filter K=2)       69.5 

GCN (word2vec+WMD+chebyshev filter K=3)       70 

GCN (word2vec+WMD+ARMA filter)       70 

                               

To test the impact of the number of units in the hidden layer on the performance of the models, we 

have carried another set of experiments by varying the number of the units in the hidden layer of 

the GCN when using the TF-IDF approach and the ARMA filter. The highest accuracy in the all 

experiments of 73% has been achieved when using 20 units in the hidden layer.  The lowest 

accuracy of 69 % has been achieved when using 68 units.  It seems that increasing the number of 

units hurts the performance of the GCN. The results are depicted in the following table. 

Table 21. Performance of GCN with different number of units 

Model Accuracy 

GCN (TF-IDF+ARMA filter+ 16 units)      72.5 

GCN (TF-IDF+ARMA filter+ 20 units)       73 

GCN (TF-IDF+ARMA filter+ 30 units)       72 

GCN (TF-IDF+ARMA filter+ 40 units)       71 

GCN (TF-IDF+ARMA filter+ 50 units)       69 
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Table 22 summarizes a performance comparison between our proposed model and other deep 

learning models that have been applied on the DT-Grade dataset. The results show that baselines 

such as LSTM and Bi-GRU perform less than the other models. The proposed GCN model 

surpasses the previous deep learning models yielding the state of-the-art results on the DT-Grade 

dataset at the time of publication. 

              Table 22. Comparison between GCN and other models for the DT-Grade dataset 

  

Model Accuracy 

GCN (TF-IDF+ARMA filter+20 units)       73 

LSTM       60 

Bi-GRU       56.25 

Transformer Encoder +ELMo       71 

Bi-GRU Capsnet+ELMo       72.5 

          

Conclusions 

Motivated by the good results of applying Graph Convolutional Networks (GCN) in various NLP 

tasks, we propose to use a GCN based model to assess the correctness of student answers in 

conversational intelligent tutoring systems. It should be noted that is the first time such model is 

applied for this task. The results demonstrated the effectiveness of the proposed model by yielding 

the state of the-art results on the DT-Grade dataset (at the time of the publication). A highest 

accuracy of 73 % has been achieved when using the TF-IDF and the ARMA filter.  

Despite the good results obtained by the proposed GCN model on our DT-Grade dataset, they still 

less promising compared to the results obtained for the large NLP datasets. This is due to the small 

size of our annotated data as collecting and labelling data for this domain is very expensive and 

tedious. To overcome this limitation, we plan in the future to apply a transfer learning approach 

based on the pretraining-finetuning paradigm.  
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Chapter 6 

Towards Improving Open Student Answer Assessment using Pretrained Transformers 

 

Introduction 

In the recent past, researchers have made significant progress in solving the open student answer 

assessment task while accounting for context and other knowledge sources using deep learning 

methods (Khayi et al.,2019, Khayi et al.,2020, Maharjan et al.,2018, Gong et al.,2019). The success 

of deep learning methods depends on the availability of large amount of high-quality labeled data. 

In many cases, including ours, the size of available data is small. An option to alleviate this 

limitation is using transfer learning models, the focus of our work presented here, to incorporate 

knowledge from other sources. 

The main idea behind transfer learning is to pretrain a model on large amounts of unlabeled data 

to obtain a powerful language model which can then be specialized for solving specific NLP 

downstream tasks by adding new layers and training them on the target data. These pretrained 

language models have been used recently to obtain state-of-the-art results in many NLP tasks 

(Devlin et al., 2019; Yang et al., 2019; Dong et al., 2019; Liu et al., 2019; Lan et al., 2019). 

Motivated by these successes, we explore the potential of finetuning several pretrained 

transformers on the student answers assessment downstream task. We experimented with such 

pretrained transformers on the DT-Grade dataset (Banjade et al. 2016) which contains 900 

instances categorized in four classes: correct (367 instances), incorrect (238 instances), correct but 

incomplete (210 instances), and contradictory (84 instances). To overcome the problem of class 

size imbalance in the dataset and given its relatively small size, we considered a binary 
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classification where all instances in the incorrect, correct but incomplete, and contradictory 

categories are deemed as incorrect. 

Related Work 

The student answer assessment task has attracted broad attention recently. Several researchers have 

explored the   potential of pretrained transformers as they led to state of-the-art results in numerous 

NLP tasks. For example, Camus and colleagues (2020) experimented with fine tuning multiple 

pretrained transformers for the automatic short answer grading (ASAG) downstream task, which 

is related to our task, on the SemEval-2013 dataset. They also investigated the impact of transfer 

learning from the Multi-genre Natural Language Inference (MNLI) dataset to SemEval-2013 

dataset on performance and generalization. The experimental results showed a significant gain of 

15% improvement in performance score. The results also showed that distilled versions of the 

pretrained models with reduced parameters led to a slight decrease in the performance score but 

still feasible for the ASAG task. 

Working on the same task using our DT-Grade dataset, Candor (2020) finetuned BERT on the 

ASAG downstream task. The model has been evaluated using Cohen’s Kappa as a measure of 

inter-rater reliability between the automated system and the human rater. The Experimental results 

showed that pretrained models such as BERT can help achieve more consistent human ratings. In 

their research  efforts to improve the performance results of the ASAG task, Sung and colleagues 

(2019) proposed new ways to enhance the performance of BERT. To this end, they proposed to 

pretrain BERT on domain specific data such as textbooks and use labeled automatic short answer 

grading data to enhance the language model. Then, they finetuned the pretrained BERT model on 

the downstream task by considering two inputs: the student answer and the reference answer. The 
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experimental results showed that fine tuning BERT using the enhanced pretrained model achieves 

superior performance on the ASAG downstream task. 

In this chapter, we explore for the first time the potential of pretrained transformers such as T5 

and XLNET models and others for the open student answer assessment task. 

Methods 

BERT (Devlin et al., 2019): pretrains deep bidirectional representations from unlabeled text by 

jointly conditioning on both left and right contexts in all layers. The model is trained on the Book 

Corpus (Zhu et al.,2015) and English Wikipedia. The pair of sentences (student answer/A and 

reference answer/B) is packed into a single sequence and separated with a special token ([SEP]) 

and a classification token [CLS] at the beginning. An additional learned embedding is added to 

every token indicating whether it belongs to sentence A or sentence B. The resulted embedding H 

of the [CLS] token is then fed into a SoftMax layer that predicts the probability of classification 

label c.  

T5 (Raffel et al.,2019):  transforms all NLP tasks into a text-to-text format where the inputs and 

outputs are text strings. The model was pre-trained on the Colossal Clean Crawled Corpus (C4). 

The pre-training objective of T5 is similar to BERT’s with a small modification which is utilizing 

a Masked Language Model that masks 15% of the input tokens and replaces them with multiple 

mask key words instead of a unique one as in the case of BERT. Then, the model is trained to 

recover the masked tokens. T5 model’s architecture is based on both the encoder and decoder of 

the transformer (Vaswani et al., 2017). 

RoBERTa (Liu et al.,2019):  retrains BERT with an improved training methodology which 

involves 1,000% more data and computation power. RoBERTa has a different encoding 
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mechanism from BERT. That is, the student  answer and reference answer are separated with two 

[SEP] tokens and a [CLS] token is added at the beginning. 

XLNet (Yang et al.,2019): uses a permutation-based language modeling objective to capture 

bidirectional contexts while retaining the benefits of autoregressive (AR) models. Permutation 

language models are trained to predict one token given preceding context in some random order. 

Unlike the other previous pretrained models, the architecture of XLNet is based on the XL-

Transformer (Dai et al.,2019). Similar to the finetuning used for BERT, we concatenate the student 

answer and reference answers separated with a [SEP] token. The [CLS] is added at the end. 

DistilBERT (Sanh et al., 2019): uses a technique called    distillation which approximates the large 

model of BERT with a smaller one. DistilBERT is distilled on very large batches by leveraging 

gradient accumulation using dynamic masking and without the next sentence prediction objective. 

The experiments have demonstrated a high impact of this reduction on computation efficiency. 

The encoding mechanism is similar to BERT.  

ALBERT (Lan et al., 2019): has the same architecture as BERT. It implements two design changes 

that yields a model with 12M parameters, and 89% parameter reduction compared to the BERT 

model. This results in an efficiency improvement versus a minor performance degradation. The 

encoding mechanism of the student answer and reference answer is similar to the one we presented 

earlier for BERT. 

Experiments and Results 

We conducted experiments with the above-described methods using the DT-Grade dataset 

(Banjade et al., 2016) that was created by extracting student responses from logged tutorials 

interactions between 36 junior level college students and a state of the art conversational ITS. 
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We performed all our experiments using a Tesla K80 GPU and a total of 12 GB of RAM. All 

the models were implemented using the HuggingFace’s library (Wolf at al., 2019). We used the 

base versions of the pretrained transformers that are trained for 4 epochs. The Adam optimizer 

(Kingma et al., 2014) with a learning rate of 3e-5 was used and the gradients were clipped to 1.0 

to prevent exploding gradients. We evaluated our models using the Sparse Categorical Cross-

entropy loss and the Sparse Categorical accuracy. About 80% of data was used for training and 

20% for testing. Each experiment was repeated 100 times with increased random seeds in an 

attempt to increase the models’ performance (Dodge et al., 2020). We report the best performance 

results across the 500 conducted experiments.  

Table 23 shows performance results of finetuning the pretrained transformers on the DT-Grade 

dataset. As shown in the table, all the pretrained models outperform the previous methods with a 

significant margin. The T5 transformer has achieved the highest performance with an accuracy of 

0.88 and an F1 score of 0.88. The results also showed that the  distillation of  BERT parameters is 

feasible for the student answers assessment task. ALBERT and DistilBERT have performed less 

than other pretrained   transformers with an accuracy of 0.80 and an F1 score of 0.80. But still, it 

is a very good result in comparison with previous methods such as Bi-GRU-Capsnet (Ait Khayi et 

al., 2019), an attention-based transformer (Ait Khayi et al.,2020), and a Graph Convolutional 

Network (Ait Khayi et al.,2020). Another observation can be made from the obtained results is 

that BERT outperforms XLNET which works better for longer sequences, which is not the case of 

our student and reference answer which are relatively short. 
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                                 Table 23: Performance results of the pretrained models.    

Model Accuracy F1  

BERT 0.86(+0.13) 0.86 

RoBERTa 0.87(+0.14) 0.87 

T5 0.88(+0.15) 0.88 

XLNET 0.84(+0.11) 0.84 

ALBERT 0.80(+0.7) 0.80 

DistilBERT 0.80(+0.7) 0.80 

Graph Convolutional Network 0.73 0.73 

Bi-GRU-Capsnet+ELMo 0.72 0.70 

Transformer+ELMo 0.71  0.70 

LSTM+Glove 0.60 0.60 

            

                             

Overall, the experiments have demonstrated that these pretrained transformers assess correctly the 

very short answers in comparison with previous methods. For example, RoBERTa handles the 

assessment of very short student answers concatenated with reference answers with a small number 

of words (average of 10.5 words) better than the Bi-GRU-Capsnet network. 

During the experiments, we investigated whether the learning rate and the sequence length 

parameters have an impact on the performance results. The experimental results showed that the 

smaller the learning rate the better the performance results. The value of 3e-5 has led to the best 

results versus the values of 4e-5 and 5e-5. The results also showed that the longer the length of the 

input sequence the better the performance results. 

Conclusions 

Several research studies have demonstrated the effectiveness of the transfer learning pretraining-

finetuning paradigm for low resource scenarios in NLP as it is the case for the open student answer 

assessment task. Motivated by these successes with small datasets, we explored the potential of 

several pretrained transformers on the student answers assessment downstream task. To this end, 

we finetuned T5, XLNET, BERT, DistilBERT, ALBERT and RoBERTa transformers on the DT-
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Grade dataset for the first time. The experimental results showed the effectiveness of these 

pretrained transformers that surpassed all the previous methods with a significant margin. The T5 

transformer has achieved the highest performance with an accuracy of 0.88 and an F1 score of 

0.88. This is a new state of the art on the DT-Grade dataset. 

 In the future, we plan to find better strategies to fine tune and pretrain these transformers 

on domain related data in order to improve the assessment results. 
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Chapter 7 

Discourse based Automated Essay Scoring using XLNET Model 

Introduction 

As an extension of the short student answers assessment, we tackle the Automated Essay Scoring 

(AES) task, which is an important educational application in Natural Language Processing. It 

consists of evaluating and grading the quality of written natural language essays using machine 

learning. Most of the research work done in the AES task is based on a holistic approach, which 

summarizes the quality of an essay with a single score (Page,1996; Phandi et al.,2015; Zesch et 

al.,2015; Taghipour et al.,2016; Dong et al., 2016, 2017; Zhang et al., 2018, 2020). This approach 

has been criticized of its inability to provide constructive feedback for the learner about which 

aspects of the essays need improvement. To overcome this drawback, several researchers in AES 

started to score a particular dimension of the essay quality such as sentence fluency (Chae et 

al.,2009), organization (Persing et al., 2010; Taghipouret al., 2017; Mathias et al. 2018; Song et 

al. 2020), sentence clarity (Persing et al., 2013; Ke et al. 2019), prompt adherence (Persing et al., 

2014), argument strength (Persing  et al., 2015; Taghipour et al., 2017), style (Mathias et al., 2018) 

and narrative quality (Somasundaran et al. 2018).  

         However, little attention has been paid to score the discourse aspect (i.e., structure) of the 

essay regardless its importance. Two types of discourse have been discussed in the literature: 

coherence and cohesion. A coherent essay contains related parts with strongly connected words. 

For example: “I was born in Glasgow. Glasgow is the largest city in Scotland”. Whereas an 

incoherent text contains unrelated parts. For example: “I was born in Glasgow. It is very nice in 

Scotland”.  Cohesion refers to the presence or absence of linguistic cues in the text that allow the 

reader to make connections between the ideas in the text. Examples of these cues include 
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conjunctions such as discourse indicators (DIs) (e.g., “because” and “for example”), coreference 

(e.g., “he” and “they”), substitution, ellipsis, etc. 

In general, the AES based models can be divided to two streams: features engineering 

based models and deep learning-based models that extract effective semantic features.  The first 

consists of predicting the score of an essay using handcrafted features (e.g., spelling errors, length 

of essay etc.) and a simple regression model (Amorim et al., 2018; Litman et al.,2018). Although 

this approach has the interpretability and explainability advantages, the features extraction process 

is tedious and expensive to achieve high scoring accuracy. To alleviate this drawback, researchers 

have applied extensively deep models to obviate the need for the features engineering process 

(Yang et al.,2020; Mayfield et al.,2020; Rodriguez et al.,2019; Hirao et al.,2020; Nadeem et 

al.,2019; Farag et al.,2018). For instance, these two approaches can be considered complimentary 

since the handcrafted features can capture features that the neural network cannot extract from the 

text and vice-versa. To get the benefit of both approaches, several researchers recently proposed a 

hybrid approach which consists of incorporating expert features into deep learning models (Uto et 

al.,2020; Liu et al.,2019; Ridley et al.,2020).  The experimental results demonstrated the 

effectiveness of this hybrid approach outperforming the traditional AES approaches with a 

significant margin. 

Motivated by the successes of the hybrid approach in the AES task, we propose a hybrid 

model to evaluate the discourse aspect of an essay. Our model is composed of important 

components. Giving a written essay, we apply the pretrained XLNET based model to generate a 

distributed representation of the essay. Next, we concatenate this representation with several 

handcrafted discourse features. First, we select some novel discourse features that have not been 

explored in the AES task such as the lexical chains (Morris et al.,1991). Then we select another 
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set of discourse handcrafted features from the language analysis Coh-Metrix tool (McNamara et 

al.,2014) that do not correlate with the first set. Finally, we apply a linear function to predict the 

final score. To interpret the generated embedding features from XLNET, we computed their 

correlation with the Coh-Metrix based features.  

Related Work 

To take the benefit of the AES featuring engineering approach and the AES neural approach, 

several researchers recently proposed a hybrid approach that integrates both approaches. For 

example, Dasgupta and colleagues (2018) highlighted the limitations of current deep neural 

networks such as LSTM and CNN in identifying the interconnection between the different factors 

involved in assessing the quality of a text. To overcome this drawback and enhance the 

performance of the AES task, the authors proposed a deep neural network AES with an additional 

recurrent network that processes a sequence of several handcrafted enhanced features such as, 

lexical diversity, informativeness, cohesion and well-formedness. The experimental results 

showed that this hybrid approach has achieved the state-of-the-art result at the time of the 

publication. Uto and colleagues (2020) criticized the increased complexity of this previous 

framework because of the applied RNN on the handcrafted features which can negatively affects 

the training time. As a remediation of this raised issue, the authors proposed to apply a DNN on 

the essay to generate a distributed representation, then concatenate it with a handcrafted features-

based vector (e.g., readability features, lexical features, syntactic features etc.). And finally, feed 

the merged vector to a linear layer to predict the final score. The authors proposed two types of 

DNN: 1- a recurrent based model such as LSTM and 2- a transformer-based model such as BERT. 

This approach can be applied on other DNN-AES models easily without increasing the model 

complexity and it improves the performance prediction. Adopting the same approach, Liu and 
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colleagues (2019) proposed Two-Stage Learning Framework (TSLF) which integrate both 

encoded features using DNN and handcrafted features. In the first stage, the authors proposed an 

LSTM based model to compute three different scores:1- semantic score , 2-coherence score and 

3- prompt-relevant score. In the second stage , the three scores are concatenated with handcrafted 

features (e.g. grammar errors, essay length in words and characters, vocabulary size etc. ) and then 

fed to a boosting tree model to predict the overall score. The experimental results demonstrate the 

effectiveness and robustness of the  TSLF framework which outperform many strong baselines 

such as CNN and LSTM on the five-eight prompts of the ASAP dataset.  Ridley, and colleagues 

(2020) highlighted the problem of cross-prompt AES in the scenario where there are no labelled 

target-prompt essays available for training. To alleviate this issue, the authors proposed a neural 

network combined with traditional linguistic features, avoiding the need for pseudo-labelling, the 

need for abundant unlabeled target-prompt essays, and the need for suitable distribution of quality 

in the target-prompt essays. This proposed approach allows to avoid overfitting to the non-target -

prompt essays. The experimental results demonstrated the effectiveness of the proposed method 

yielding the state-of-the-art result at the time of publication. 

To get the benefits of the hybrid approach as stated previously in this chapter, we propose to 

evaluate the discourse aspect of an essay using a hybrid model. First, we extract the discourse 

embeddings of an essay using the pretrained XLNET model which suits better the long sequences 

(Yang et al.,2019). Second, we concatenate these generated embeddings with handcrafted 

discourse features derived from the lexical chains, the Coh-Metrix tool, and others. Finally, we 

apply a linear function to predict the overall score. 
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Proposed Model 

Our proposed hybrid model (see Figure 20) consists of extracting an embedding based 

representation of an essay using the pretrained XLNET based model. Then we concatenate the 

generated embeddings vector with discourse handcrafted features. Finally, we apply a linear 

function to  predict the final score. 

 

 

 

                                              

                                                     

 

 

                                                        Figure 20. Model Architecture 

XLNET Pretrained Model 

The main raison of choosing XLNET (Yang et al.,2019) is that it includes segments of recurrence, 

introduced in Transformer-XL (Yang et al.,2019), allowing it to digest effectively longer texts. 

XLNet is a generalized autoregressive pretraining method that enables learning bidirectional 

contexts by maximizing the expected likelihood over all permutations of the factorization order. 

Generally, XLNET has two parameter intensive settings: 
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- XLNETBASE: 12 layers, 768 hidden dimensions and 12 attention heads (in transformer) 

with the    total number of 110 M parameters. 

- XLNETLARGE: 24 layers, 1024 hidden dimensions and 16 attention heads (in 

transformer) with the total number of parameters, 340M. 

Two Stream Self Attention 

The main feature of the XLNET model is that is based on the permutation language modeling that 

predicts the t-th word given the t-1 pervious words as a context. The objective function of the 

permutation language modeling can be expressed as follows:             

     

                                                        𝑚𝑎𝑥𝜃𝐸𝑧~𝑍𝑇
[∑ log 𝑝𝜃(𝑥𝑧𝑡

|𝑋𝑧<𝑡)𝑇
𝑡=1 ]    

  

Where:   

- Z: set of all the possible permutations of the length of the T-index 

sequences [1,..,T] 

- 𝑝𝜃: likelihood function 

- 𝑥𝑧𝑡
 : the t-th token in the factorization order 

- 𝑋𝑧<𝑡 : the tokens before the t-th token 

 However, there are two requirements that the transformer can’t do: 

1. The prediction of the t-th token requires the information about its position in the 

original sequence and not its content.  For instance, the transformer embeds the position 

of the token in its embedding and can’t separate this information. 
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2. The prediction of the t-th token requires encoding all the t-1 previous tokens as a 

content (semantics and syntactic). 

XLNET resolves these issues by considering a two-attention mechanism: 

- Query Stream: has access to the contextual information Xz(<t) and the position z(t), but 

not the content Xz(t). This is initialized with a random weight. 

- Content Stream: which is the standard self-attention mechanism in a transformer. It 

includes both contextual information of previous tokens Xz(<t) and content at z(t). This is 

initialized with the corresponding word embeddings. 

To understand the intuition behind the two-stream attention, we can think of XLNET replacing the 

[MASK] in BERT with query representation learned by query attention stream. 

Features Extraction 

 Given an input essay of N tokens [t1, t2, · · · , tN ]  , each token is transformed to its embedding 

and passed to the base version of XLNET. Then we collect the output of the [CLS] token which is 

a vector H of 768 dimension and used as a text representation of the essay. Then, we concatenate 

the resulting H vector with a set of discourse handcrafted features. 

Discourse features 

They encode the discourse structure of an essay and have been derived from lexical chains. To be 

noted, this is the first time the lexical chains are explored in the AES task. Lexical chains represent 

sequences of related words semantically in a text. They have been used as an indicator of text 

cohesion (Morris et al., 1991). Intuitively, an essay that contains many lexical chains, especially 

ones where the beginning and end of the chain cover a large span of the essay, tend to be more 
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cohesive (Somasundaran et al., 2014). In this work we consider the following lexical chains 

features: 

- Average chain size 

- Number of large chains 

- Percentage of large chains 

- Number of varied chains 

- Percentage of large, varied chains 

- Number of large, varied chains 

Additionally, we consider grammatical errors as a discourse measure (Burstein et al.,2013). 

This feature addresses errors in grammar that could interfere with a reader’s ability to construct 

meaning. We also consider the word unigrams, bigrams, and trigrams as they encode discourse 

information about essays (Ke et al.,2019). For instance, the bigram” people is” suggests 

ungrammaticality; the use of discourse connectives (e.g.,” moreover”,” however”). The key 

advantage of using n-grams as features is that they are language-independent.    

Coh-Metrix features 

Coh-Metrix is a language analysis tool that assess texts via cohesion, coherence, and readability. 

It provides 110 metrics that are classified into 11 groups: 

1. Descriptive; used to check the patterns in the text such as number of paragraphs, sentences, 

and words.  

2. Text Easability Principal Component Scores; provide a clear picture about the text ease 

that emerge from the linguistic characteristics of the text. They are also aligned with 

theories of text and discourse comprehension. 
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3. Referential Cohesion;  which assesses the number of cohesion relations that a human reader 

could do based on the propositions and sentences of the text. 

4. Latent Semantic Analysis, which measure the semantic overlap between sentences and 

paragraphs. The scores range from 0 (low cohesion) to 1 (high cohesion). 

5. Lexical Diversity, which measures the type of token ratios to deduce high cohesion 

6. Connectives, which counts the incidence of connectives in the text. 

7. Situation Model, which has been used in discourse processing to refer to the level of mental 

representation for a text that involves much more than the explicit words. 

8. Syntactic Complexity, which syntactically analyzes the sentence and assesses the word 

density. 

9. Syntactic Pattern Density; which assesses the incidence of different types of patterns in the 

texts. 

10. Word Information, which shows the word type density in the text. 

11. Readability, which assesses the text readability with formulae such as Flesch Reading Ease 

and Flesch-Kincaid Grade Level (Graesser et al., 2005). 

Linear Layer 

  In this work, we proceed as a regression task. We use the following scoring function to map 

the essay representation H to a scalar value by applying ReLU activation function.    

                                 

𝑦 =  𝑅𝑒𝐿𝑈 (𝑤. 𝐻 + 𝑏) 

                                        

                          where w is the weight vector, b is the bias and y is the computed  score. 
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Experiments and Results 

To evaluate the performance and effectiveness of our proposed model, we have conducted several 

experiments using the Automated Student Assessment Prize (ASAP) dataset as described next. 

ASAP dataset 

The Automated Student Assessment Prize dataset contains eight prompts with different topics, 

including narrative essays, response essays and argumentative essays. In total, there are nearly 

13000 essays in the dataset. Each of the essays was written by high school student belonging to 

classes 7 to 10. Each essay is assigned a score given by the instructors. The following table displays 

some statistics of the dataset. 

                           Table 24. Statistics of the ASAP dataset; Range means the score range. 

 

 

 

 

 

 

Experimental Settings 

We performed all our experiments using a Tesla K80 GPU and a total of 12 GB of RAM. The 

model was implemented using the HuggingFace’s library (Wolf at al., 2019). We used the base 

version of the pretrained XLNET that is trained for 4 epochs. The maximum sequence length of 

XLNET is changed per prompt. The Adam optimizer (Kingma et al., 2014) with a learning rate of 

1e-5 was used and the gradients were clipped to 1.0 to prevent exploding gradients. We evaluated 

Prompt # of Essays Avg. Len Range 

1 1783 350 2-12 

2 1800 350 1-6 

3 1726 150 0-3 

4 1772 150 0-3 

5 1805 150 0-4 

6 1800 150 0-4 

7 1569 250 0-30 

8 723 650 0-60 
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our model using the Mean Squared Error (MSE) loss. About 80% of data was used for training 

and 20% for testing. Each experiment was repeated several times and we selected the best model. 

Before running the main experiment, we run the Coh-Metrix tool on the ASAP data to extract 110 

features. Then, we compute the correlation between these extracted features and the discourse 

features (e.g., number of lexical chains, unigrams, bigrams, etc. ) described previously in order to 

discard the correlated ones. We consider a p-value with a threshold of 0.8. Then we preprocess the 

text essays by removing the usernames, Nan values, punctuation and stop words. 

Evaluation Metric 

Following the prior works, we use the Quadratic Weighted Kappa (QWK) to evaluate the 

performance of our proposed method.  It measures the agreement between calculated scores and 

gold ones.  

First, we compute the weight matrix following this formula: 

 

𝑊𝑖,𝑗  =  
(𝑖 − 𝑗)2

(𝑁 − 1)2
 

   

where i,j are the golden scores and calculated scores respectively and  N is the 

number of possible ratings. 

Second, we compute the QWK score as follows: 
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𝑘 =  
∑ 𝑊𝑖,𝑗𝑂𝑖,𝑗𝑖,𝑗

∑ 𝑊𝑖,𝑗𝐸𝑖,𝑗𝑖,𝑗
 

 

 where 𝑂𝑖,𝑗  is the number of essays obtained a rating i by a human annotator and a rating j   by the 

AES system. And the matrix E is calculated as the outer product of histogram vectors of the two 

ratings. The matrix E is then normalized such that the sum of elements in E. 

Results and analysis 

Table 25 displays the empirical results of our proposed model on the ASAP data as well as the 

result of other models that have been derived from the literature. We report the QWK scores in 

each prompt and then we average the scores.  As shown in the table, our proposed model 

outperforms several existing AES systems, in terms of the average score of the Quadratic Weighted 

Kappa, such as the baselines LSTM, CNN and logistic regression.  It also outperforms BERT with 

an improvement of 3%. The results also demonstrate that incorporating handcrafted features into 

the deep learning models increaseS the average performance significantly. Adding features to the 

LSTM increases the average QWK score from 0.55% to 0.72%. We can observe the same 

performance improvement when we added the discourse features to the XLNET model with 1% 

improvement in the average QWK score. 

Table 25. Experimental Results 

Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5 Prompt6 Prompt7 Prompt8 Avg 

LSTM 0.37 0.40 0.51 0.77 0.76 0.76 0.63 0.17 0.55 
CNN 0.80 0.65 0.63 0.76 0.75 0.76 0.75 0.68 0.72 

XLNET 0.77 0.68 0.69 0.80 0.78 0.79 0.78 0.62 0.74 
BERT 0.82 0.39 0.76 0.88 0.87 0.58 0.81 0.54 0.71 

Logistic regress 0.82 0.64 0.66 0.70 0.78 0.67 0.72 0.60 0.70 
LSTM+features 0.80 0.62 0.60 0.77 0.77 0.77 0.76 0.64 0.72 

XLNET+features 0.85 0.65 0.68 0.81 0.78 0.72 0.79 0.73 0.75 
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In addition, our proposed model reached the highest scores in prompt1 and prompt8 with QWK 

scores of 0.85 % and 0.73% respectively. 

XLNET Encoded Embeddings Interpretation 

To understand the encoded embeddings generated from XLNET, we generated the encoded 

embeddings of 768 dimensions using the testing ASAP dataset which consists of 270 text essays. 

Then, we computed the correlation between every feature of this embedding matrix and the Coh-

Metrix features extracted from the same dataset.  We consider a threshold of p-value of 0.7. We 

found that every encoded feature correlates with at least one Coh-Metrix feature or 15 features at 

most. This explains the discourse nature of the encoded features encoded by XLNET.  

To avoid this overlap, we have conducted a final experiment by excluding all the Coh-Metrix 

features from our proposed model.  

Table 26 displays the experimental results across all the eight prompts. 

   Table 26. experimental results without Coh-Metrix features 

 

Prompt QWK % 

Prompt1   0.80 

Prompt2   0.79 

Prompt3   0.78 

Prompt4   0.83 

Prompt5   0.84 

Prompt6   0.80 

Prompt7   0.81 

Prompt8   0.78 

Average   0.8073 

                        

The above results show an improvement in the average QWK score after discarding the Coh-

Metrix features from the model yielding the state-of-the-art results on the ASAP dataset. 
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Conclusion 

As an extension of the short student answers, we tackle the problem of Automated Essays Scoring. 

To provide constructive feedback to the learner about the aspect of the essay that needs 

improvement, we assessed the discourse aspect of the essay which has not been explored 

extensively in the literature. Motivated by the successes of the hybrid approach in the AES task, 

we proposed a hybrid method which consists of extracting the encoded features from the essays 

using XLNET model and concatenating them with handcrafted features that capture the discourse 

aspect of essays in terms of cohesion and coherence. We have conducted several experiments 

including and excluding the Coh-Metrix features. The experimental results demonstrated the 

effectiveness of our approach yielding the state-of-the-art results.   

In the future, we are planning to overcome the shortcoming of XLNET in processing the longer 

sequences more than 512 tokens. In Prompt 8, the average length of all essays is about 650 words, 

which is larger than the limit.  Discarding some important tokens may negatively affected the 

performance. We believe taking this direction may improve the current QWK results. 
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Chapter 8 

Deep Knowledge Tracing using Temporal  Convolutional Networks 

 

       Introduction 

 

Modeling students’ knowledge states reflecting their level of mastery with respect to a domain or 

set of targeted skills and concepts as well as predicting their future performance is an important 

task in learning science and engineering and is known as the Knowledge Tracing task (KT). It is 

usually leveraged to optimize students’ learning trajectories, experiences, and outcomes. KT is a 

challenging task due to the complexity of the human learning processes (e.g., guessing, forgetting 

etc.) and the inherent difficulties of modeling knowledge (e.g., prior background; (Piech et 

al.,2015)). Further improvements in KT, which is the focus of our work, will have a wide range of 

benefits including better adaptation to individual learner’s needs and, consequently, improved 

effectiveness at inducing learning gains and better learning experiences. There are other benefits 

of better KT solutions, as exemplified next. Given the tight link between domain models, i.e., the 

set of concepts to be mastered in a target domain, and better KT models will inform the refinement 

of domain models. In addition, better KT will lead to designing new, more effective learning 

materials and instructional strategies. 

 Given the success of deep neural networks in other domains, deep KT models have gained 

significant attention recently. They use deep learning techniques to represent learners’ latent 

knowledge states using large vectors of “artificial neurons”. The parameters of these vectorial 

representations are inferred from data. Existing Deep KT models use one hot encoding of the 

identification numbers (IDs) of the instructional activities, e.g., questions or problems to be solved, 

ignoring those items’ characteristics. Several research works demonstrated that incorporating the 

items’ semantics in the form of text embeddings into deep KT models can boost their prediction 
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performance (Sonkar et al., 2020). Despite the state-of-the-art results obtained by these models, 

there is room for improvement. For instance, many of the existing deep KT models do not account 

for other important information such as the number of the correct attempts to solve a task and the 

duration of each step, which can be viewed as indicators of        levels of engagement. To address these 

limitations and enhance the    capabilities of KT models, many researchers incorporated into deep  KT 

models various components such as learning ability (Minn et al.,2018), prior knowledge (Shen et 

al.,2020),  and slipping and guessing effects (Cheng et al.,2020). Furthermore, existing deep KT 

models consider all questions/items under a specific concept as equivalent observations. In attempt 

to improve instruction adaptation (Shailaja et al., 2014) which will maximize (effectiveness) and 

speedup (efficiency) students’ learning, we propose a generic framework that explores the 

underlying information among questions to enhance the performance of KT. The key components 

of our framework are: 

 an NLP embedding component using the Sentence Universal Encoder (Cer, D.M. 

et al.,2018). Given a question, we extract the semantics associated with its 

knowledge components (KCs) by averaging the embeddings corresponding to the 

textual descriptions of these knowledge components. 

 a component capturing the engagement level of the student by dynamically assigning 

students into various groups based on their frequency interactions data using K-means 

clustering. To the best our knowledge this the first time an engagement level 

component is included in a deep KT model. 

 a question/item difficulty component. 

 knowledge embeddings resulted from the fusion of all these inputs (engagement level, 

text embeddings and item difficulty), using concatenation. The embeddings should 
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lead to similar representations for items targeting similar concepts and having similar 

difficulty levels. 

 an LSTM-based model to infer the students’ latent knowledge states and a Temporal 

Convolutional Network to predict future responses.  

We conducted series of experiments on the Cognitive Tutor datasets (Stamper et al.,2010) and we 

compared our proposed model to existing deep KT models. 

Related Work 

Several researchers incorporated important information about questions/items that can help better 

capture the wider learning context and therefore lead to improved ways to solve the KT problem. 

For example, Liu and colleagues (Liu et al., 2020) proposed a Pre-training Embeddings via 

Bipartite Graph (PEBG) to learn a low dimensional embedding for each question based on 

additional information including question difficulty, question similarity, and skill similarity. They 

also introduced a product layer to fuse all the input features and obtain the final question 

embeddings which are incorporated into existing deep KT models. Experiments indicated an AUC 

(Area Under the Curve) improvement over state-of-the-art results by 8.6 % on average. Ghosh and 

colleagues (Ghosh et al.,2020) proposed an attentive knowledge tracing (AKT) model which 

combines an attentive neural model with various novel and interpretable model components 

inspired by cognitive and psychometric models. In addition to the question similarity, AKT uses 

Rasch model parameters: question difficulty and learning ability. The goal was to learn question 

embeddings that capture individual differences among questions targeting the same concept. 

Experimental results demonstrated improved performance of the AKT over prior KT models with 

a reported AUC improvement of up to 6%. To better model the individualization of prior 

knowledge and learning rates of various students, Shen, and colleagues (Shen et al.,2020) proposed 
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a novel Convolutional Knowledge Tracing (CKT) model. More specifically, Hierarchical 

Convolutional layers were designed to extract learning rate features by processing many 

continuous learning interactions within a sliding window. Individualized prior knowledge was 

assessed according to students’ historical learning interactions. Yang and colleagues (Yang et 

al.,2020) argued that knowledge tracing is affected by the most recent questions answered by 

students according to the forgetting curve theory. Based on this assumption, they proposed a 

Convolutional Knowledge Tracing (CKT) model that captures the long-term effect of the entire 

question-answer sequence and short-term effect of the recent questions using 3D convolutions. 

The experimental results showed an AUC improvement relative to existing KT models. 

Cheng and colleagues (Cheng et al.,2020) proposed an adaptable knowledge tracing (AKT) 

framework that integrates slipping and guessing factors into the model to obtain more reasonable 

knowledge state results and leverage the semantics of question texts for more precise knowledge 

tracing. They obtained improved performance over several KT models. 

Shin and colleagues (Shin et al.,2020) proposed SAINT+, a successor of SAINT which is a 

Transformer based knowledge tracing model. The main addition in this new version is 

incorporating two temporal features: elapsed time which is the time taken by the student to answer 

a question and lag time, the time interval between adjacent learning activities. The empirical results 

showed an improvement in the AUC over the SAINT model on EdNet, the largest public dataset 

in the education domain according to some metrics, e.g., data from almost 800k students. It should 

be noted that EdNet contains learning data from the domain of English learning, i.e., it does not 

target learning of complex STEM topics. 

In a continuous effort to overcome the major limitation of deep KT models in capturing 

differences among questions targeting the same concept and to enhance the knowledge tracing 
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ability, we consider, as already noted, additional information such as students’ engagement level. 

We also consider the semantics of the key concepts targeted by each question using a novel natural 

language processing (NLP) algorithm, i.e., the Universal Sentence Encoder. We also employ for 

the first time a novel times series model based on a Temporal Convolutional Network to predict 

student performance. 

Model Architecture 

Our proposed framework (see Figure 21) comprises several important components.  

 

                                                      Figure 21.  Model Architecture 

First, we account for the engagement level of students in the form of a one hot encoded vector of 

the engagement cluster that the student belongs to at each time t. Second, our model uses an 

averaged embedding vector of the knowledge components (key concepts) associated with each 

question. The third component consists of a one hot encoded vector reflecting the difficulty level 

of each question. Fourth, we use a one hot encoded vector of the ID of each question. Then, we 
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fuse all these inputs to generate a knowledge embedding for each question answered by the 

students. The sequence of these knowledge embeddings of each student are passed to an LSTM 

based model to learn students’ knowledge states \ for specific concepts. The sequences of these 

vector are then passed to a Temporal Convolutional Network (TCN) connected with a Sigmoid 

layer to predict performance. 

Dynamic Assessment of the Engagement Level of Students using Clustering 
 

Several research studies have revealed the positive correlation between student engagement and 

academic performance with higher engagement level associated with better grades (Casuso-

Holgado et al., 2013; Lee, 2014). Therefore, we take into consideration this information in 

predicting the future student performance. Inspired by the frequency-based metrics proposed by 

Reid et al (Reid et al.,2012) to assess engagement level, we propose to use the following metrics 

available in the Cognitive Tutor dataset: 

- Step Duration:  the elapsed time of the question in seconds, calculated by adding all 

of the durations for transactions that were attributed to the question. 

- Incorrects: total number of incorrect attempts by the student on the question. 

- Corrects: total correct attempts by the student for the question.  

- Hints: total number of hints requested by the student for the question. 

Based on these metrics, we dynamically assess students’ engagement level by clustering, where 

each cluster represents a level of engagement. Assigning students into a group with similar 

engagement level at each time step is performed by k-means clustering. Following the research 

results of Moubayed and colleagues (Moubayed et al.,2020), we consider a three-level model to 

classify the students’ engagement levels. Hence, the parameter k of the k-means clustering 

algorithm is set to 3. 
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After clustering students into three groups with distinct levels of engagement, the clustering 

results are added to the training data. That is, given a student with a specific concept (KC), we add 

its corresponding cluster value (e.g.,1,2 etc.). Then, a student’s engagement level is encoded as a 

vector 𝑒𝑡 
𝑖  with C+1 dimensions where C is the number of concepts or knowledge components in 

the dataset. We encode in this vector, the associated concepts, and the engagement level cluster 

that the student belongs to at each time step t (an instance in the data records) as following: 

 

                                                 𝑒𝑡 
𝑖 [𝑘𝑐𝑡

𝑖] = 1  and 𝑒𝑡
𝑖[𝐶 + 1] = 𝑐𝑚         

 

where 𝑘𝑐𝑡
𝑖 is the associated knowledge component or concept for the question 𝑞𝑡

𝑖 at a specific time 

t and 𝑐𝑚 is the engagement level cluster where  𝑐𝑚  ∈ {0,1,2}. 

 

Figure 22. Engagement level evolution of a student at different 

time steps while interacting with Cognitive Tutor. 

 
As an example, Figure 22 illustrates the evolution of the engagement level of one student at 

different time steps on three knowledge components: “simple fractions”, “multiplication”, and 

“combine like terms”. Each bar in the figure represents a different KC. The red color reflects that 

the student belongs to the low engagement group, blue color reflects belonging to the medium 
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engagement group, and gray color reflects their belonging to the high engagement group. It is 

important to emphasize that the engagement level of the student differs from a concept to another. 

NLP Embedding 

To enhance the knowledge tracing ability and improve the prediction of our proposed deep KT 

model, we add an NLP embedding component that captures the semantics of the knowledge 

components. To this end, we use the recently proposed NLP embedding approach called Universal 

Sentence Encoder (USE) [Cer, D.M. et al.,2018]. USE employs the encoder component of the 

transformer.                  

 

Figure 23. The architecture of the Universal Sentence Encoder  

As shown in Figure 23, first, each textual description of a concept (e.g., Calculate product of two 

numbers, Identify proper fraction from options etc.) is converted to lowercase and tokenized into 

tokens using the Penn Treebank (PTB) tokenizer. USE relies on a self-attention mechanism that 

takes into consideration the token order and its surrounding context for generating each token’s 

representation. The context-based token representations are then converted to a fixed length text 

vector by computing the element-wise sum of the representations at each token position. The 
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encoder outputs a 512-dimensional vector for the knowledge component text embedding. Then, 

we average the embeddings of the knowledge components of each question at each time step t to 

capture the semantics of each question with respect to the targeted concepts or KCs 

Difficulty Constraint 

 

To capture difficulty of a question, the main assumption we make is that the more the number of 

mathematical concepts required to answer a specific question the more difficult and sophisticated 

the question is. Therefore, we calculate the difficulty level of each question by dividing the total 

number of KCs in a question by the total number of KCs in the Cognitive Tutor dataset. 

After calculating questions’ difficulty, we encode the question   difficulty as a vector with C+1 

dimension where C is the number of concepts. Following the prior works, the first C entries of the 

vector represent the one hot encoded   concepts. The last entry of the vector represents the difficulty 

level of the question. 

Knowledge Tracing using LSTM 

After obtaining the knowledge embedding sequences of each student at time t, we pass them to an 

LSTM base model to compute the knowledge hidden states that represent the mastery level of 

different KCs. 

The resulted hidden states are passed to the Temporal Convolutional Network (TCN) to compute 

the prediction of future answers. 

Response Prediction using Temporal Convolutional Network (TCN) 

Temporal Convolutional Networks (TCN) have been proposed first by Lea et al (Lea et al.,2016) 

for the video-based action segmentation task. The distinguishing characteristics of TCNs are: 
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𝑡 

- the convolutions in the architecture are causal, meaning that there is no leakage from 

future to past. 

- the model can take a sequence of any length and map it to an output sequence with the 

same length. 

Added to this, TCN-based models outperform the LSTM-based models for time series 

predictions. 

Motivated by these advantages, we propose to use TCN to improve the prediction of future 

responses, as described next. Let 𝐻𝑖 be the knowledge state with respect to the target domain of 

student i at time step t. The TCN’s architecture is composed of 1D pooling/upsampling and channel 

wise normalization layers in the encoder. For each of the convolutional layers in the encoder, we 

apply a set of 1D filters that capture how the input signals evolve over the course of an action. 

Pooling enables us to efficiently compute activations over a long period of time. The channel wise 

normalization has been effective in recent CNN methods. 

 The i-th component of the activation vector output of the encoder is calculated as follows: 

 

�̂�𝑖,𝑡
𝑙 = 𝑓 (𝑏𝑖

(𝑙)
+ ∑ 〈𝑊𝑖,𝑡′

(𝑙)
, 𝐸𝑡+𝑑−𝑡′

(𝑙−1) 〉
𝑑

𝑡′=1
) 

 

where f(.) is a Leaky Rectified Linear Unit, 𝑏𝑙 represents the biases, 𝐸(𝑙−1) is the activation matrix 

from the previous layer, and d is the filter duration, and it is set as the mean segment duration for 

the shortest class from the training set. 

The pooled activation vector �̂�𝑡
𝑙 is then normalized by its highest response at that time step m = 

𝑚𝑎𝑥𝑖 �̂�𝑖,𝑡
𝑙  with small 𝜺 such that: 
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                                                                     𝐸𝑡
(𝑙)

=
1

𝑚+𝜀
�̂�𝑡

𝑙            

The decoder part of the TCN is similar to the encoder and the order of the operations is the 

following: upsample, convolve, then normalize. The activation output is 𝐷𝑡
(𝑙)

. 

Finally, we compute the prediction probabilities of answering future questions by passing the 

activation matrix output of the decoder to a sigmoid function as follows: 

 

𝑌𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐷𝑡
(𝑙)

 ) 

 

Experiments 

We conducted several experiments to demonstrate the effectiveness of our proposed model for the 

knowledge tracing (KT) task using the Cognitive Tutor datasets. Details about the data are 

provided next. 

The Data 

 

Our datasets come from the Cognitive Tutor (Anderson et al.,1995) that teaches students algebra 

(middle school and high school). Cognitive Tutor presents a problem to a student in form of 

questions (also called steps) of many skills/concepts. That is every question targets multiple KCs. 

The Cognitive Tutor uses Knowledge Tracing to determine when a student has mastered a skill. 

In this work, we consider the following attributes of each record in the dataset: Student ID, Step 

Name that represents the question, Step Duration (sec), KC(Default/SubSkills) that represents the 

associated skill or concept, Incorrects, Corrects, Hints, and Correct First Attempt that is a binary 

attribute and we consider it as the target to be predicted in our model. 
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We used three of the development datasets from Stamper and colleatues (2010): the “2005-2006 

Algebra“ dataset, the “2006-2007 Algebra” dataset, and the “Bridge to Algebra 2006-2007” 

dataset. The Algebra I dataset consists of 813,661 total responses over 387 skills covering practice 

attempts for 3,310 students. The Bridge to Algebra dataset contains data from 1,146 students and 

includes 3,679,199 total logged responses for 494 sills.  

 Table 27 details important statistics of the data after preprocessing. 

Table 27. Cognitive Tutor Datasets Statistics 

 

 

 

                                          

Experimental Setup 

Data Preprocessing 
 

Consistent with data preprocessing in prior works, we conducted the following data preprocessing 

steps: removed duplicate records, removed records with NaN KCs, removed records with dummies 

KCs, discarded learners that have fewer than 10 interactions with the system and discards skills 

answered by less than 10 students. 

Training and Testing 

In all experiments, we perform 5-cross fold validation using a Tesla K80 GPU and a total of 12 

GB of RAM. We split all datasets at the student level: at each iteration, 80% of students were used 

for training and 20% were used for testing. For LSTM, we considered 100 units as the 

dimensionality of the output space. For the TCN parameters settings, we set the number of filters 

to use in the convolutional layers to 64. The kernel size was set to 6 and we considered a dilation 

list = [1,2,4,8,16,32,64]. An Adam optimizer with a learning rate of 0.001 was used and gradients 

 #Records #Students #Skills 
Algebra I 2005-2006 809694 574 113 
Algebra I 2006-2007 2270384 1338 492 
Algebra to Bridge 3679199 1146 494 
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were clipped to 1.0 to prevent exploding gradients. Due to the large size of our datasets, we 

considered a small batch size of 5. To evaluate the performance of our model, we customized the 

Binary Cross Entropy loss since our model gives predictions for all skills/concepts. Given a new 

student in the testing data, the model predicts her performance in all the concepts in the Cognitive 

dataset. Thus, to generate the prediction for a specific skill, we take the column-wise dot product 

between the predictions and a one-hot encoding of the skill. 

Our model was evaluated on the test data and the performance of the model is reported using the 

area under the ROC curve (AUC). AUC measure ranges from 0.5 reflecting a low ability to 

distinguish from correct and incorrect answers to 1.0 reflecting a perfect discrimination. We 

compute the AUC by obtaining the prediction of each student in the testing data across all concepts. 

Compared Methods 

To demonstrate the effectiveness of our proposed model, we compare its AUC results with 

existing methods the reported results on the same Cognitive Tutor data sets. The methods are: 

- DAS3H (Chofin et al.,2019): incorporates item-skills relationships and forgetting 

effects. 

- qDKT (Sonkar et al., 2020): models every learner’s success probability on individual 

questions over time. qDKT incorporates graph Laplacian regularization to smooth 

predictions and uses an initialization scheme inspired by the fastText algorithm. 

- DynEmb (Xu et al.,2020): enables the tracking of student knowledge without the 

concept/skill tag information that other KT models require. 

- Transformer-based DKT (Pu, et al.,2020): a Transformer based model that addresses 

the forgetting issue by accounting for elapsed time. It also uses the questions-skills 

associations to learn representations of both frequent and rare questions. 
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Results and Discussion 

Table 28 lists the AUC performance results of our proposed model using the three datasets of 

Cognitive Tutor. Including all the model components: the engagement level, the question difficulty 

and the knowledge component text embeddings, the model performs better on the Algebra 2006-

2007 dataset with an AUC of 96.57%, followed by the Algebra 2006-2007 dataset with an AUC 

of 92%, and the Bridge dataset with an AUC of 91%. As shown in Table 4, these results reflect a 

significant performance gain in comparison with existing deep KT methods. 

Table 28. The performance results of the proposed model and the ablation experiments results. 

Model AUC Result (%) 
EL+QD+KCE-Algebra2005-2006 92 
EL+QD+KCE-Algebra2006-2007      96.57 
EL+QD+KCE-Bridge2006-2007 91 

 

Table 29 lists some examples of the results of our proposed framework based on the engagement 

level and the difficulty of the questions. As shown in the table, the engagement level of the student 

has more impact on the performance in comparison with the difficulty of the questions. Students 

with high levels of engagement perform well regardless of the difficulty of the questions. However, 

it is less probable that the low engaged students perform well especially when the question is 

difficult. 

Table 29. Example of the results in terms of engagement level and difficulty of the question 
 

Engagement 

Level 

Difficulty of 

Questions 

Performance % of testing 

data 
High (1) Easy (<0.5) High 13 
High (1) Easy (<0.5) Low 6 

  High (1) Difficult (>0.5) High 13 
High (1) Difficult (>0.5) Low 6 
Low (2) Easy (<0.5) High 0.4 
Low (2) Easy (<0.5) Low 1 
Low (2) Difficult (>0.5) High 0.47 
Low (2) Difficult (>0.5) Low 2.68 
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Ablation experiments 

To test the impact of each key component of our model on the overall performance, we conducted 

a series of ablation experiments. The ablation experiments are: 

- First, we removed the engagement level component from the model inputs and evaluated 

the resulting model on the Algebra2006-2007 dataset. The experiments showed that the 

model AUC has decreased by 1.07 %. This is a significant statistical drop in the AUC results 

reflecting the important of this component. 

- Second, we removed the question difficulty from the model inputs. The results showed that 

the model AUC has decreased by 0.01% which is not statistically significant.  Thus, the 

question difficulty component is not important in the framework. 

- Third, we removed the knowledge component text embeddings from the model’s inputs. The 

AUC of the model has decreased, reflecting the importance of this component. Generally, the 

Universal Sentence Encoder boosts the prediction ability of deep learning models. 

 

Table 30. Comparison of performance results between our proposed model and the existing DKT 

methods using the Cognitive Tutor datasets 

Model AUC Result (%) 
EL+QD+KCE-Algebra2006-2007     96.57 
DAS3H 86 
qDKT 89.5 
DynEmb 86 
Transformer- based DKT 78.4 
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Figure 24. Evolution of knowledge states of a student over time 

 

                                             

                                Figure 25. Mastery level of two students in six concepts. 

Visualizations 

Naturally, students’ knowledge states evolve over time. To illustrate this evolution process, we 

generated several visualizations which are more intuitive and user-friendly representations of 

mastery levels at one moment in time and over time. Figure 24 depicts a student’s knowledge 

states over a sequence of 91 questions, covering 17 concepts (e.g., identifying units, perform 

multiplication, simple fractions, etc.), from the Algebra 2005-2006 dataset. At each time step t, a 

knowledge state consists of an activation vector of 8 dimensions. The lighter the color the lower 
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the mastery level of the student on a specific concept. Figure 25 shows the mastery level of two 

students on 6 concepts. Students can recognize their poor knowledge points and the ITS makes 

individual learning schemes by tracing the knowledge state. 

Conclusions 

In a continuous research effort to enhance the ability of knowledge tracing and improve the 

prediction of future responses, we proposed a generic framework that includes several important 

components. First, the model assesses dynamically the engagement level of students across           

concepts and incorporates this information into the learned knowledge embeddings. Second, it 

includes the semantics of the knowledge concepts through learning embeddings using a the 

recently proposed method called the Sentence User Encoder. Third, the model calculates the 

difficulty of each question and uses this information together with the other inputs to make 

predictions. Knowledge embeddings of students are then learned by concatenating all these 

components. Finally, students’ knowledge states’s evolution over time was modeled using an 

LSTM neural network. These learned sequences of the hidden states is then passed to a Temporal 

Convolutional Network to predict the future performances of students. The experimental results 

showed the effectiveness of our proposed model in comparison with existing deep KT methods, 

yielding high AUC results on Cognitive Tutor datasets. The conducted ablation experiments 

demonstrated the importance of the engagement level, the text embeddings of the knowledge 

components and the Temporal Convolutional Network algorithm. Their elimination or substitution 

led to a decrease in the AUC results. More specifically, the students showing high levels of 

engagement perform very well for both the difficult (difficulty rate >0.5) and easy questions 

(difficulty rate <0.5). However, it is less probable that students with low levels of engagement 
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perform well, especially, when a question is difficult. This probability increases slightly when the 

question is easy. 

In our future work, we will apply this proposed framework on other educational datasets. We will 

also investigate additional was to enhance the model’s interpretability and improve its prediction’s 

performance. 
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Chapter 9 

Conclusion and Future Work 

The main contribution of this work is proposing effective and novel algorithms to automatically 

assess the knowledge of students while interacting with intelligent tutoring systems. In chapter 2, 

we proposed effective clustering algorithms to assess students’ prior knowledge as a way to 

balance, on one hand, authoring costs, and adaptiveness and effectiveness, on the other hand. From 

chapter 3 through chapter 7, we investigated the potential of the deep learning approach in 

providing an accurate assessment of the natural language students answers.  We took the full 

advantage of deep learning in capturing rich semantic and syntactic features from the text inputs. 

Thus, enhancing the performance results of the assessment task.  In chapter 8, we propose a novel 

times series model for the knowledge tracing task. 

Research Question 1: What are the most effective ways of assessing the knowledge of students 

within dialogue based intelligent tutoring systems? 

Assessing the knowledge state of students plays a vital role in improving the effectiveness 

of the intelligent tutoring systems because fully adaptive tutoring presupposes accurate assessment 

(Chi et al. 2001; Woolf 2008). In this work, we process this assessment from three perspectives: 

assessing the prior knowledge of students, assessing the open-ended natural students ’responses 

and knowledge tracing. 

Assessing the prior knowledge of students within dialog based ITS facilitates the adaptivity 

of the instruction. Hence, enhancing the tutoring experience for students and optimizing the 

learning gains. In this context, we propose to cluster students with similar prior knowledge patterns 

to lower the authoring costs of the system and inform the adaptivity of the ITS.  
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Assessing the open-ended students’ responses is a fundamental component in an ITS as it 

can inform the system with the level of understanding of students towards a specific subject and 

provides the appropriate hints and feedbacks when the answers are incorrect. It is an extremely 

challenging NLP task due to the variability of student answers and the shortness of some of them. 

Deep leaning has recently revolutionized the NLP field yielding the state-of-the-art results in 

multiple tasks and benchmarks. The great semantic expressiveness, interpretability and 

performance boost of deep learning networks are the main motivation behind applying them on 

the students answers assessment task. 

Tracing the mastery level of students on a specific topic over time is a formative assessment 

of the knowledge of students. In this work, we propose a generic framework that incorporates the 

engagement level, the questions semantics, and the difficulty of questions into a deep knowledge 

tracing model that learns the hidden knowledge states of students over time and predicts their 

future performances. 

Research Question 2: How can we achieve a tradeoff between the adaptivity and authoring costs 

within intelligent tutoring systems? 

Clustering students based on their prior knowledge allows to identify students’ groups and analyze 

them based on their misconceptions and mastered concepts. The identified groups could then be 

used to inform the authoring of instructional tasks and within-task instructional strategies and 

feedback for each group as opposed to each learner, which would be a much more expensive 

process. To this end, we have applied several clustering algorithms such as DP-means, K-means, 

Agglomerative clustering, and K-modes algorithm using a data that consists of pretest numeric 

and text answers collected from 264 high-school students. The experimental results showed the 

effectiveness of these applied algorithms. Three distinct groups of students have converged: i)- 
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high knowledge level group, ii)-medium knowledge level and iii)- low knowledge level.  The prior 

knowledge level of each cluster was consistent with the post knowledge level. 

We plan in the future to further investigate the resulting clusters for a better understanding 

of the characteristics of the students in each cluster. Such information can provide information 

about the major misconceptions of students in each class struggle with. This information can be 

shared with teachers to help them better plan their lessons plans to address major misconceptions 

their students may have. 

Research Question3: Can a Capsule Network-based model improve the assessment of open-

ended natural language answers? 

In this dissertation, we proposed a Bi-GRU-Capsnet model to assess the correctness of the students 

answers within the intelligent tutoring system DeepTutor. We have chosen this deep learning 

model to get benefits from its no requirements of hands -crafted features and external resources. 

Added to this, Capsule networks have the capability to express the semantic meanings in a wider 

space using a vector that captures the instantiation parameters of the input such as the order of 

words and their semantic representation. Our proposed model is composed of several important 

components: an embedding layer, a Bi-GRU layer, a capsule layer and a SoftMax layer. We have 

conducted several experiments considering a binary classification task: correct or incorrect 

answers. The experimental results show that our model reached the state-of-the-art results on the 

DT-Grade dataset at the time of publication. Particularly, our model reached the highest accuracy 

when using the ELMo embeddings.  The major limitation of this proposed model is its inability of 

assessing the very short answers and resolving the reference matching problem. 
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In the future, we plan to investigate more deep learning models to enhance the assessment results 

and overcome the main limitations of the Bi-GRU-Capsnet. 

Research Question4: Can an Attention-based Transformer model improve the performance 

results of assessing the short students’ answers? 

In this dissertation, we proposed an Attention-based Transformer to assess the correctness of 

student answers freely generated by students in dialog based ITS. The model has been chosen due 

to promising results that transformers have achieved in various NLP tasks. Furthermore, attention 

allows deep learning models to semantically process short texts effectively using the most relevant 

words in the text.  Our proposed model is composed of several important components: an 

embedding layer, a positional encoding module, a transformer layer and a SoftMax layer. 

Experimental results on the DT-Grade dataset show high competitiveness of the proposed model 

rivalling previously proposed state of the art methods. Added to this, our proposed model 

leveraged an accurate assessment for the very short answers. 

In the future, we plan to further explore additional novel deep learning models to improve 

the current assessment results on the DT-Grade dataset. 

Research Question5: Can a Graph Convolutional Network be utilized to achieve an accurate 

assessment of open-ended students’ answers? 

Graph Convolutional Networks have achieved impressive results in multiple NLP tasks such as 

text classification. However, this approach has not been explored yet for the student answer 

assessment task. In this dissertation, we propose to use Graph Convolutional Networks to 

automatically assess freely generated student answers within the context of dialogue-based 

intelligent tutoring systems. We convert this task to a node classification task. First, we build a 
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knowledge graph where each node represents a concept in Physics whereas the edges represent the 

relatedness between nodes. Second, the graph is fed to two layers of Graph Convolutional 

Networks that computes the nodes embeddings. Finally, the output of the second layer is fed to a 

SoftMax layer for classification. The empirical results showed that our model reached the state-

of-the-art results by obtaining an accuracy of 73%. 

In the future we plan to explore novel deep learning models that perform well in low resource 

scenarios such as ours. 

Research Question 6: Can finetuning the pretrained transformers improve the current 

performance results of the short students answers assessment downstream task? 

Transfer learning has been effective for low resource scenarios. The Pretraining-Finetuning 

paradigm has revolutionized the NLP field yielding state-of the art results. Motivated by these 

successes, we fine-tuned the pretrained BERT, RoBERTa, DistilBERT, ALBERT, XLNET and 

T5 on the short students answers assessment downstream task. The experimental results have 

demonstrated the great effectiveness of this approach yielding state-of-the-art results with a 

significant improvement of 8%-15% in accuracy over the previous methods. Particularly, T5 

model has achieved an accuracy of 88%. 

In the future, we are planning to find better pretraining and finetuning strategies such as pretraining 

these models on domain related data, layers wise Learning Rate and others. 

Research Question 7: How can we effectively assess the discourse aspect of long essays? 

Automated Essays Scoring (AES) is an important educational application in NLP. Most of the 

research work done in this area is based on a holistic approach which summarizes the quality of 

an essay with a single score. The drawback of this approach is its inability to inform the learner of 
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what aspect of the essay needs improvement. To alleviate this limitation and get benefit of the 

success of the hybrid approach in the AES task, we have proposed a discourse based XLNET 

model. First, we generate a distributed representation of an essay using the pretrained XLNET. 

Then, we concatenate this representation with handcrafted discourse features derived mainly from 

lexical chains and the Coh-Metrix tool. The experimental results demonstrated the effectiveness 

of this proposed model on the ASAP dataset yielding state-of-the-art results with an average 

Quadratic Weighted Kappa score of 80.3%. 

In the future, we are planning to address the major limitation of XLNET in processing the 

longer sequences with more than 512 tokens. For instance, the average length of prompt 8 in the 

ASAP dataset is 650. We believe that including all the essay’s tokens in the final distributed 

representation of the essay can improve the prompt ‘s QWK score. 

Research Question 8: How can we enhance the knowledge tracing capability and performance? 

Despite the good performance of deep knowledge tracing models, they suffer from several 

limitations. For example, they ignore pertinent information such the prior knowledge of 

students, the forgetting and slipping effects, difficulty of questions etc. These factors can 

improve the performance of the knowledge tracing. To overcome this limitation, we proposed 

a generic framework that accounts for the engagement level of students, embeddings of the 

knowledge components that capture rich semantics, and the difficulty of questions. These 

inputs are used to construct the initial knowledge embeddings of students by concatenating 

them. Then, we passed these embeddings sequences to an LSTM that learns the hidden states 

of the knowledge of students. Finally, we passed these hidden states of knowledge to a 

Temporal Convolutional Neural Network to predict future performances. Several experiments 

have been conducted using the Cognitive dataset to evaluate the proposed framework. The 
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empirical results demonstrated the superior performance of this proposed framework over 

several existing methods in the literature. An AUC of 96.57% has been achieved on the 

Algebra 2006-2007 dataset. 

 In the future, we will apply this proposed framework on other educational datasets. 

We will also investigate additional ways to enhance the model’s interpretability and improve 

its prediction’s performance. 
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