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Abstract. Personalization and active learning help educational systems
to close the gap between students with varying abilities. We run a com-
parative head-to-head study of learning outcomes for two popular on-
line platforms: Platform A, which delivers content over lecture videos
and multiple-choice quizzes, and Platform B, which provides interac-
tive problem-solving exercises and personalized feedback. We observe a
statistically significant increase in the learning outcomes on Platform
B. Further, the results of the self-assessment questionnaire suggest that
participants using Platform B improve their metacognition.

Keywords: Online and distance learning - Models of Teaching and
Learning - Intelligent and Interactive Technologies - Data Science

1 Introduction

We investigate the learning outcomes induced by two popular online learning
platforms in a comparative head-to-head study. Platform A is a widely-used
platform that follows a traditional model, where students learn by watching
lecture videos, reading, and testing their knowledge with multiple choice quizzes.
In contrast, Platform B* focuses on personalized, active learning approach with
problem-solving exercises [36]. Platform B is powered by an Al tutor, which
alternates between lecture videos and interactive problem-solving exercises. The
AT tutor shows students problem statements and students attempt to solve them.
Each incorrect attempt is addressed with personalized pedagogical interventions
tailored to student’s needs and misconceptions (see Figure 1).
In this study, we formulate and test the following hypothesis:

Hypothesis: Participants studying with Platform B have higher learning
gains than those studying with Platform A, because Platform B employs
personalized, active learning and problem-based learning and provides a
wider and more personalized set of pedagogical elements to its students.

4 Platform B is the Korbit learning platform available at www.korbit.ai.
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Fig. 1. Platform A follows a traditional learning approach utilizing videos and multiple
choice quizzes, while Platform B uses a personalized, active learning approach with
problem-solving exercises.

2 Related Work

Online learning platforms have the capability of bridging the gap and addressing
inequalities in society caused by uneven access to in-person teaching [13, 16, 18,
32,41, 45]. The current COVID-19 pandemic further exacerbates the need for high
quality online education being accessible to a wide variety of students [1, 4, 30].

Nevertheless, the efficacy of online and distance learning has been challenged
by researchers: specifically, it may be hard to address the differences in students’
learning needs, styles and aptitudes on such platforms [9, 15,39, 42]. This calls
for approaches that can be adapted and personalized to the needs of each par-
ticular student. Studies confirm that personalization is key to successful online
learning [28, 35|, as it can maximize the learning benefits for each individual stu-
dent [48]. In addition, problem-solving has been shown to be a highly effective
approach for learning in various domains [12, 19, 20, 46, 47]. Such problem-solving
and active learning activities can be addressed by intelligent tutoring systems,
which are also capable of giving personalized feedback and explanations and
incorporating conversational scaffolding [2,7,8,12,21, 23,26, 27,29, 33, 34].

In contrast to previous studies investigating learning outcomes with intelli-
gent tutoring systems, in this study the Al-powered learning platform, Platform
B, is a fully-automated system based on machine learning models [36]. The sys-
tem is trained from scratch on educational content to generate automated, per-
sonalized feedback for students and has the ability to automatically generalize
to new subjects and improve as it interacts with new students [37, 38].

To evaluate the impact of educational technology and online learning plat-
forms on student learning outcomes, we follow previous research [3,11, 17,24, 25,
31,40, 43]. We adopt the well-established pre-/post-assessment framework, where
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students are split into intervention groups and their knowledge of the subject is
evaluated before and after their assigned intervention. Further, we measure stu-
dent’s metacognition. Students’ ability to self-assess and develop self-regulation
skills plays a crucial role in online learning [17,27], though studies show that
students struggle to evaluate their own knowledge and skills level [5, 6, 10].

3 Experimental Setup

48 participants were randomly divided between the two platforms, where the
first group was asked to study the course from Platform A and the second from
Platform B. Each group completed a 3-hour long course on linear regression.
The majority fall into our target audience of undergraduates (89.6%) studying
disciplines not centered around mathematics (e.g. health sciences).

Linear regression was selected as the topic of study since it is one of the most
fundamental topics, that is covered early on in any course on machine learning
and data science, and the material covering this topic on both platforms is
comparable. To ensure a fair comparison, extra care was taken to ensure that
the courses and the subtopics they covered were as similar as possible.

The study ran over a 4-day period with strict deadlines and detailed in-
structions set for the participants. All participants were required to take an
assessment quiz on linear regression before the course (pre-quiz) and another
one after the course (post-quiz). The quizzes contained 20 multiple-choice ques-
tions each and were equally adapted to both courses, with questions in pre- and
post-quizzes isomorphically paired. Using pre- and post-quiz scores, we mea-
sure learning gains to quantify how effectively each participant has learned. A
student’s learning gain g is estimated as the difference between their pre-quiz
(pre_score) and post-quiz (post_score) scores. Further, a student’s normalized
learning gain gnorm is calculated by:

post_score — pre_score

9norm =

(1)

100% — pre_score

4 Results and Discussion

25 participants completed the course on Platform A and 23 on Platform B.
Average learning gains are shown in Figure 2 for the two platforms. The average
normalized learning gains for Platform B participants are 49.24% higher than
for Platform A participants, with the difference being statistically significant at
a 90% confidence level (p=0.068 w.r.t. one-sided t-test). Average raw learning
gains for Platform B participants are 70.43% higher than for Platform A partic-
ipants, with the difference being statistically significant at a 95% confidence level
(p=0.038 w.r.t. one-sided t-test). Overall, our hypothesis that learning outcomes
are higher for participants on Platform B than on Platform A is confirmed.
We estimate that participants on Platform B spent at least twice as much
time doing active learning (problem-solving exercises) compared to participants
on Platform A, although the total average study times on the two platforms
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Fig. 2. (a) Average learning gains g with 95% confidence intervals.” (b) Average nor-
malized learning gains gnorm with 95% confidence intervals.** Here * and ** indicate
a statistically significant difference at 95% and 90% confidence level respectively.

were equivalent. We further observed that the rate of correct answers on the
first try positively correlates with both learning gains (r=0.44) and post-quiz
results (r=0.46), and the number of exercises completed positively correlates
with the post-quiz score (r=0.28), suggesting that participants who spent more
time on active learning performed better and, as a result, obtained higher post-

quiz scores and learning gains.
60 mmm Platform B
40
0 %
3 4 5

"How would you rate your comprehension
of the topics you studied?" (score out of 5)

mmm Platform A

Normalized Learning Gains [%]

Fig. 3. Normalized learning gains for each self-assessed comprehension rating with 95%
confidence intervals. Only 1 participant gave a score lower than 3 (not shown here).

Finally, we evaluated meta-cognitive aspects related to the students’ learning
experience with the two platforms using a questionnaire. In particular, students
were asked the question “How would you rate your comprehension of the topics
you studied?”. As shown in Figure 3, it appears that Platform B not only in-
duced overall higher learning gains, but also gave participants a more accurate
understanding of their knowledge level and helped improve their meta-cognition.
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