485 research outputs found

    Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication

    Get PDF
    In this Chapter, we review the recent progress on resistance drift mitigation techniques for resistive switching memory devices (specifically memristors) and its impact on the accuracy in deep neural network applications. In the first section of the chapter, we investigate the importance of soft errors and their detrimental impact on memristor-based vector–matrix multiplication (VMM) platforms performance specially the memristance state-drift induced by long-term recurring inference operations with sub-threshold stress voltage. Also, we briefly review some currently developed state-drift mitigation methods. In the next section of the chapter, we will discuss an adaptive inference technique with low hardware overhead to mitigate the memristance drift in memristive VMM platform by using optimization techniques to adjust the inference voltage characteristic associated with different network layers. Also, we present simulation results and performance improvements achieved by applying the proposed inference technique by considering non-idealities for various deep network applications on memristor crossbar arrays. This chapter suggests that a simple low overhead inference technique can revive the functionality, enhance the performance of memristor-based VMM arrays and significantly increases their lifetime which can be a very important factor toward making this technology as a main stream player in future in-memory computing platforms

    On the variability-aware design of memristor-based logic circuits

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Ever since the advent of the first TiO 2 -based memristor and the respective linear model published by Hewlett-Packard Labs, several behavioral models of memristors have been published. Such models capture the fundamental characteristics of resistive switching behavior through simple equations and rules, so they received a lot of attention and contributed significantly to the fast progress of research in this new and emerging device technology field. However, while this technology is maturing, accurate physics-based models are being developed, which go deeper into the device dynamics and capture more details than what just would be the fundamentals: i.e. parasitics of the device structure, variability of threshold voltages and resistance states, temperature dependency, dynamic current fluctuations, etc. In this work we build upon such a physics-based model of a bipolar metal-oxide resistive RAM device, showing how to take into account device variability and its significance in evaluation of processing circuits. With the Cadence Virtuoso suite, we focus on a family of memristive logic gate implementations showing that read & write errors can emerge due to both variability and state-drift impact, features rarely seen so far in results shown in other relevant published works.Peer ReviewedPostprint (author's final draft

    Hardware Considerations for Signal Processing Systems: A Step Toward the Unconventional.

    Full text link
    As we progress into the future, signal processing algorithms are becoming more computationally intensive and power hungry while the desire for mobile products and low power devices is also increasing. An integrated ASIC solution is one of the primary ways chip developers can improve performance and add functionality while keeping the power budget low. This work discusses ASIC hardware for both conventional and unconventional signal processing systems, and how integration, error resilience, emerging devices, and new algorithms can be leveraged by signal processing systems to further improve performance and enable new applications. Specifically this work presents three case studies: 1) a conventional and highly parallel mix signal cross-correlator ASIC for a weather satellite performing real-time synthetic aperture imaging, 2) an unconventional native stochastic computing architecture enabled by memristors, and 3) two unconventional sparse neural network ASICs for feature extraction and object classification. As improvements from technology scaling alone slow down, and the demand for energy efficient mobile electronics increases, such optimization techniques at the device, circuit, and system level will become more critical to advance signal processing capabilities in the future.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116685/1/knagphil_1.pd

    Impact of laser attacks on the switching behavior of RRAM devices

    Get PDF
    The ubiquitous use of critical and private data in electronic format requires reliable and secure embedded systems for IoT devices. In this context, RRAMs (Resistive Random Access Memories) arises as a promising alternative to replace current memory technologies. However, their suitability for this kind of application, where the integrity of the data is crucial, is still under study. Among the different typology of attacks to recover information of secret data, laser attack is one of the most common due to its simplicity. Some preliminary works have already addressed the influence of laser tests on RRAM devices. Nevertheless, the results are not conclusive since different responses have been reported depending on the circuit under testing and the features of the test. In this paper, we have conducted laser tests on individual RRAM devices. For the set of experiments conducted, the devices did not show faulty behaviors. These results contribute to the characterization of RRAMs and, together with the rest of related works, are expected to pave the way for the development of suitable countermeasures against external attacks.Postprint (published version

    HARDWARE ATTACK DETECTION AND PREVENTION FOR CHIP SECURITY

    Get PDF
    Hardware security is a serious emerging concern in chip designs and applications. Due to the globalization of the semiconductor design and fabrication process, integrated circuits (ICs, a.k.a. chips) are becoming increasingly vulnerable to passive and active hardware attacks. Passive attacks on chips result in secret information leaking while active attacks cause IC malfunction and catastrophic system failures. This thesis focuses on detection and prevention methods against active attacks, in particular, hardware Trojan (HT). Existing HT detection methods have limited capability to detect small-scale HTs and are further challenged by the increased process variation. We propose to use differential Cascade Voltage Switch Logic (DCVSL) method to detect small HTs and achieve a success rate of 66% to 98%. This work also presents different fault tolerant methods to handle the active attacks on symmetric-key cipher SIMON, which is a recent lightweight cipher. Simulation results show that our Even Parity Code SIMON consumes less area and power than double modular redundancy SIMON and Reversed-SIMON, but yields a higher fault -detection-failure rate as the number of concurrent faults increases. In addition, the emerging technology, memristor, is explored to protect SIMON from passive attacks. Simulation results indicate that the memristor-based SIMON has a unique power characteristic that adds new challenges on secrete key extraction
    corecore