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Abstract: The ubiquitous use of critical and private data in electronic format requires reliable and 

secure embedded systems for IoT devices. In this context, RRAMs (Resistive Random Access 

Memories) arises as a promising alternative to replace current memory technologies. However, their 

suitability for this kind of application, where the integrity of the data is crucial, is still under study. 

Among the different typology of attacks to recover information of secret data, laser attack is one of 

the most common due to its simplicity. Some preliminary works have already addressed the 

influence of laser tests on RRAM devices. Nevertheless, the results are not conclusive since different 

responses have been reported depending on the circuit under testing and the features of the test. In 

this paper, we have conducted laser tests on individual RRAM devices. For the set of experiments 

conducted, the devices did not show faulty behaviors. These results contribute to the 

characterization of RRAMs and, together with the rest of related works, are expected to pave the 

way for the development of suitable countermeasures against external attacks. 

Keywords: RRAM; laser attack; resistive switching; security 

 

1. Introduction 

RRAM (resistive random access memory) is one of the most promising candidates among 

emerging memory technologies due to their interesting features in terms of area, low power, 

frequency of operation, endurance, data retention, and CMOS compatibility [1–3]. An RRAM is a 

two-terminal device usually composed of an electrode/dielectric/electrode stack structure [4,5]. Its 

physical mechanism relies on formation and annihilation of a conductive filament (CF) in the oxide 

(dielectric) connecting the two metal electrodes [4]. For an RRAM in a pristine state, an initial 

operation (forming process) is typically necessary to generate the CF. Once this CF is formed, an 

RRAM can reversibly switch between a high resistance state (HRS) and a low resistance state (LRS). 

This reversible switching behavior is obtained by applying voltage pulses between the electrodes. 

The operation from HRS to LRS is called the SET process. Conversely, the switching operation from 

LRS to HRS is called the RESET process. Although the non-volatility properties of RRAMs motivated 

their initial use as memory devices, other fields such as digital logic, analog circuits, neural networks, 

and hardware security are currently receiving considerable attention. The main concerns for the 

massive commercialization of RRAMs are their inherent stochastic features such as probabilistic 
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switching [6], inter and intra device variability [7,8], and Random Telegraph Noise (RTN) [9,10]. 

However, the very same features, which may be a limiting factor in the majority of applications, favor 

the exploitation of new applications in the field of hardware security. Deep in the IoT era, the 

connected devices must be cheap and low consuming, but also reliable and secure. In this context, 

RRAMs arises as an outstanding technology for the development of security primitives [11] such as 

PUFs (Physical Unclonable Functions) [12–19] and TRNGs (True Random Number Generators) [20–

23]. In these applications, regardless of the technology, essential security criteria must be fulfilled to 

prevent an adversary from extracting information, and thus devices must be secure against attacks. 

Among the wide diversity in the typologies of attacks, a laser attack is an easy and common way to 

induce faults in a circuit. In fact, this attack is known to disturb the behavior of FLASH memories. In 

this context, some works have addressed the characterization of RRAMs against this class of attacks. 

One of the first approaches was considered in [24], which showed the occurrence of HRS to LRS 

transitions in 1T1R (1 transistor 1 resistor) RRAM cells due to a laser test. This behavior was attributed 

to the charge collection on the corresponding access transistor of the cell, since the RRAMs were 

reported to be insensitive in a standalone configuration. Another experiment was carried out in single 

RRAMs [25,26] where the devices were disturbed by laser exposition, performing also transitions 

from HRS to LRS. In this case, this behavior was justified by temperature increase brought by laser 

heating. The work in [27] applied some experiments based on MIS (Metal Insulator Semiconductor) 

structures with a transparent metal electrode, which did not absorb the induced photons. For this 

reason, the devices showed a light-triggered switching from the HRS to the LRS, in conjunction with 

a voltage bias, which was lower than at nominal conditions. Similar to [24], the authors in [28] 

considered a 1T1R memory array structure. The experimental results showed that the array was 

robust when the 1T1R cells were attacked. However, errors were induced when the peripheral 

circuits were irradiated. Table 1 summarizes the information related to the devices considered in 

these works. The discrepancies among these results demand for a better characterization of the 

influence of laser irradiation on RRAM based circuits. This must be done at the device and cell levels, 

where the access transistor may play an important role, and at the array level, where the peripheral 

circuits may also be irradiated. With all this information, the appropriate countermeasures could be 

developed and the recovery of information due to laser attacks mitigated. An example in this 

direction is the work in [29], where a specific 2T1R cell is proposed to mitigate upsets. The present 

work is another step forward in order to characterize the influence of laser irradiation on RRAMs. 

Hence, the goal of this work is to determine how the data stored in single RRAMs could be altered 

by a laser test under different conditions of source power, spot size, and device size. 

Table 1. Comparison of RRAM devices irradiated by a laser source. 

Work Structure 
Dimensions 

(nm) 

Size  

(µm x µm) 
Cell Results 

[24] TiN/Hf/HfO2/TiN ?2/10/5/?2 105 x 120 1T1R 
HRS to LRS transitions when 

the transistor is irradiated 

[25] TiN/Ti/HfO2/TiN 50/10/5/10 3 x 3 1R HRS to LRS transitions 

[26] Ti/HfO2/TiN 10/10/101 3 x 31 1T1R HRS to LRS transitions 

[28] ?2/HfOx/?2 ?2/?2/?2 ?2 1T1R 
Transitions when peripheral 

circuits are irradiated 

This 

work 
TiN/Ti/HfO2/W 200/10/10/200 

2 x 2 

5 x 5 

15 x 15 

1R No transitions 

1 Not explicitly reported, 2 Data not reported 

 

2. Materials and Methods  
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The RRAM devices used in the experiments are TiN/Ti/HfO2/W structures [17]. The 10nm-thick 

HfO2 layer was deposited by atomic layer deposition (ALD) at 225 ºC using TDMAH and H2O as 

precursors. The top and bottom metal electrodes were deposited by magnetron sputtering. The top 

electrode consists of a 200 nm-TiN and a 10 nm-Ti layer acting as oxygen getter material. The bottom 

electrode consists of a 200 nm-W layer. Figure 1a shows a schematic cross-section of the device 

structure. Figure 1b illustrates a top view microscope image of the resulting devices, which are square 

cells of 15 x 15 μm2, 5 x 5 μm2 and 2 x 2 μm2. 

  

(a) (b) 

Figure 1. (a) Schematic device cross-section; and (b) Top view optical microscope image. 

The electrical characterization of the devices under test (DUTs) was performed using a Keysight 

B2912A Precision Source/Measure Unit (SMU). The instrument was connected to a computer via 

GPIB (General Purpose Interface Bus) and controlled using MATLAB so that successive 

measurements were automatically performed. First, the DUTs were electroformed using a positive 

voltage ramp with a compliance current (ICOMP) of 1 mA. Subsequently, the resistive switching 

behavior of the DUTs was assessed under DC. The voltage was applied to the top electrode whereas 

the bottom electrode was grounded, as illustrated in Figure 2a. Double-sweep voltage ramps were 

applied from 0 to 1.1 V for the SET operation and from 0 to -1.4 V for the RESET operation, as depicted 

in Figure 2b. Typical resistive-switching characteristics are shown in Figure 3a. As expected, cycle-

to-cycle variability is larger in the HRS than in the LRS. The equivalent device resistance was 

measured during the application of the corresponding SET/RESET voltage ramp when ±0.1 V (±VREAD) 

was applied between the terminals of the DUT (see Figure 3b). 
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(a) (b) 

Figure 2. (a) Schematic device measurement configuration; and (b) Diagram of the applied voltage 

ramps. 

Vap
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Figure 3. (a) DC resistive switching behavior during successive SET and RESET operations; and (b) 

High resistance state (HRS) and low resistance state (LRS) extracted from the DC resistive switching 

behavior.at - 0.1 V and + 0.1 V, respectively. 

The laser tests were conducted at the APPLUS laboratories. We mainly used a laser bench with 

an infrared/IR wavelength available, 1064 nm, with power output up to 2 W. Some experiments were 

also conducted with two other infrared/IR laser sources: the first one (1024 nm) with a power output 

up to 5.2 W and the second one (976 nm) with a power output up to 2W. All the laser sources were 

with single photon absorption and a nominal pulse width of 100 ns. They were synchronized with 

the SMU so we could control when the laser pulse was triggered. The default focused laser spot size 

was 25 μm, but two smaller spots sizes (12 μm and 3 μm) were also considered. A summary about 

the specifications of the laser sources is found in Table 2. 

The laser test was initiated once the proper operation of the RRAM was assessed. The assessment 

of the operation consisted in 25 cycles composed of a SET and a RESET operation based on the double-

sweep voltage ramps reported in Figure 2b. Once the behavior of the DUT was validated, the laser 

test was conducted with the 1064 nm laser source and a spot size of 25 μm. The attack consisted in 

applying a laser pulse after the application of a SET operation in order to disrupt the LRS, see Figure 

4.a. The resistance state of the RRAM was measured and then a RESET operation was applied. This 

sequence was repeated 25 times. A similar test was conducted in order to disrupt the HRS (Figure 

4b). In this case the laser pulse was applied after a RESET operation. The resistance state of the RRAM 

was measured and then a SET operation was applied. This sequence was also repeated 25 times. 

Table 2. Information about the laser sources considered in this work. 

Laser 

Source 
Type 

Maximum 

power (W) 

Wavelenght 

(nm) 

Spot size 

(µm) 

1 

single photon absorption 

2 1064 

3, 12 and 25 2 5.2 1024 

3 2 976 

 

 

(a) 

 

(b) 
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Figure 4. Laser test (a) With the device in LRS and (b) With the device in HRS. 

3. Results and Discussion 

During the first set of experiments, the laser source (1064 nm) with power output up to 2 W was 

considered. Different source powers were taken into consideration with a spot size of 25 μm. Figure 

5a and 5b summarize the results when one DUT was irradiated in the LRS and the HRS, respectively, 

considering different powers of the laser source (33%, 66% and 100%). Although some resistance 

shifts are observed in the distributions, they can be classified within the range of typical shifts due to 

the cycle-to-cycle variability. Hence, the laser pulse does not have any noticeable impact on the 

resistive state of the RRAM regardless of the power source and the resistance state of the device (LRS 

or HRS). The reversible switching behavior was preserved during the 25 cycles of the experiment. In 

fact, the DUT still reported the resistive switching behavior after the experiment. 

  
(a) 

 
(b) 

Figure 5. Cumulative distributions of the resistance values for a RRAM (15 x 15 μm2) before and after 

a single laser pulse (spot size of 25 μm)., sweeping the power source value (a) RRAM in the LRS (b) 

RRAM in the HRS. 

The same tendency was observed for the rest of experiments. From here on, the maximum power 

of the laser source was always considered. Figure 6a shows the results for another DUT applying a 

laser pulse during 25 cycles. No noticeable influence of the laser test was observed. Equivalent 

experiments were conducted with 8 different DUTs of different sizes (2 devices of 2 x 2 μm2, 3 of 5 x 

5 μm2 and 3 of 15 x 15 μm2). The cumulative probability is shown in Figure 6b, where the reported 

resistance at LRS and HRS (before and after applying the laser pulse) is the average resistance during 

the 25 cycles of the experiment. Results for every specific device are also summarized in Table 3. 

Although the device-to-device variability is significant at both HRS and LRS, the laser did not 

influence any of the devices regardless of their size. Subsequently, the initial spot size (25 µm) was 

decreased to 12 µm to concentrate the power provided by the laser source, but the results for a DUT 

with 5 x 5 μm2 did not show any observable change, as illustrated in Figure 7. The spot size was 

reduced to 3 µm with a DUT of 2 x 2 μm2, but the results did not report any significant variation, as 

shown in Figure 8. Experiments were also conducted with the other infrared/IR laser sources 

available, the first one (1024 nm) with power output up to 5.2 W and the second one (976 nm) with 

power output up to 2 W. The maximum power for each laser source was considered during these 

experiments and, similar to the results with the initial laser source (1064 nm), no significant impact 

on the resistive state of the devices was observed. It must be pointed out that sweeping the initial 

pulse width of the laser source (100 ns) up to 3 µs did not induce a fault on the DUT either. 
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(a) (b) 

Figure 6. Cumulative distributions (a) of the resistance values for a single RRAM (15 x 15 μm2) before 

and after a single laser pulse; and (b) of the average resistance for 8 RRAMs of different sizes (152 

devices of 2 x 2 μm2, 3 of 5 x 5 μm2 and 3 of 15 x 15 μm2) before and after a single laser pulse. The spot 

size is 25 μm. 

Table 3. Average resistance for 8 RRAMs of different sizes before and after a single laser pulse. 

DUT 
Size  

(µm x µm) 

RLRS-Before 

(Ω) 

RLRS-After 

(Ω) 

RHRS-Before 

(Ω) 

RHRS-After 

(Ω) 

1 2 x 2 185 187 7945 9436 

2 5 x 5 637 648 12199 11532 

3 5 x 5 529 541 5103 5205 

4 15 x 15 189 190 9703 9510 

5 5 x 5 604 617 4120 3939 

6 2 x 2 363 371 5986 5840 

7 15 x 15 261 259 6063 6424 

8 15 x 15 248 245 6704 6850 

 

 
(a) (b) 

Figure 7. Cumulative distributions of the resistance values for a single RRAM (5 x 5 μm2) before and 

after a single laser pulse for different spot sizes (a) RRAM in the LRS; and (b) RRAM in the HRS. 
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Figure 8. Cumulative distributions of the resistance values for a single RRAM (2 x 2 μm2) before and 

after a single laser pulse. The spot size is 3 μm. 

Finally, a last experiment was conducted to force a 5 x 5 μm2 DUT to be upset by the laser source 

(1024 nm). 50 double-sweep (SET and RESET) voltage ramps were initially applied without laser 

pulse. Subsequently, another 50 double-sweep voltage ramps were applied with the laser pulse in-

between. In this case, the laser source was configured to the Continuous-Wave (CW) mode to release 

energy continuously during the application of the 50 cycles. The measured resistance of the device 

during every cycle is reported in Figure 9a. Typical switching behavior is observed during the first 

50 cycles, with higher cycle-to-cycle variability in the HRS than the corresponding variability in the 

LRS. Once the laser pulse was enabled, the switching behavior continued until the DUT was 

destroyed (around cycle 84). No resistive switching behavior was eventually reported and the DUT 

remained in a high resistance state, although significantly higher than the one corresponding to the 

HRS. A photograph of the DUT after the experiment is depicted in Figure 9b. On the cross-point 

where the device is located a black spot is observed, confirming that the device was burned by the 

heat. However, it must be mentioned that the device presented several cycles of reversible switching 

behavior while the laser test was applied, without any fault or transient behavior until the sudden 

catastrophic failure arose. 

 

 

 

 
(a) (b) 

Figure 9. (a) Equivalent resistance for a RRAM during the experiment where the laser source released 

energy continuously; and (b) Photograph of the RRAM after the experiment. 

4. Conclusions 

We investigated the effect of a laser attack on single RRAMs. Experiments were conducted on a 

set of devices of different sizes. Different conditions were considered during the laser test, modifying 

Laser test 
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the laser source, source power, pulse width, and resistance state of the devices. However, no faults 

were injected by the different laser tests, although a catastrophic failure was eventually caused when 

continuous test was applied, destroying the resistive switching behavior of the device. These results 

are in line with the ones reported in [24], but are different from the ones in [25,26], where, according 

to the authors, the devices were disturbed in HRS, passing to the LRS after the laser pulse due to a 

heating effect. The results of the present work can be useful for a better understanding of RRAM 

devices under the influence of laser attacks. In fact, the discrepancies among the experimental works 

encourage the continuous research on this area in order to find the most appropriate RRAM devices 

in terms of dimensions and materials to be resilient against laser attacks and also in order to develop 

strategies to mitigate the undesirable effects of this attack in RRAM based circuits. 
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