203,049 research outputs found

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Coordination of Decisions in a Spatial Agent Model

    Full text link
    For a binary choice problem, the spatial coordination of decisions in an agent community is investigated both analytically and by means of stochastic computer simulations. The individual decisions are based on different local information generated by the agents with a finite lifetime and disseminated in the system with a finite velocity. We derive critical parameters for the emergence of minorities and majorities of agents making opposite decisions and investigate their spatial organization. We find that dependent on two essential parameters describing the local impact and the spatial dissemination of information, either a definite stable minority/majority relation (single-attractor regime) or a broad range of possible values (multi-attractor regime) occurs. In the latter case, the outcome of the decision process becomes rather diverse and hard to predict, both with respect to the share of the majority and their spatial distribution. We further investigate how a dissemination of information on different time scales affects the outcome of the decision process. We find that a more ``efficient'' information exchange within a subpopulation provides a suitable way to stabilize their majority status and to reduce ``diversity'' and uncertainty in the decision process.Comment: submitted for publication in Physica A (31 pages incl. 17 multi-part figures

    Consensus Emerging from the Bottom-up: the Role of Cognitive Variables in Opinion Dynamics

    Get PDF
    The study of opinions −- e.g., their formation and change, and their effects on our society −- by means of theoretical and numerical models has been one of the main goals of sociophysics until now, but it is one of the defining topics addressed by social psychology and complexity science. Despite the flourishing of different models and theories, several key questions still remain unanswered. The aim of this paper is to provide a cognitively grounded computational model of opinions in which they are described as mental representations and defined in terms of distinctive mental features. We also define how these representations change dynamically through different processes, describing the interplay between mental and social dynamics of opinions. We present two versions of the model, one with discrete opinions (voter model-like), and one with continuous ones (Deffuant-like). By means of numerical simulations, we compare the behaviour of our cognitive model with the classical sociophysical models, and we identify interesting differences in the dynamics of consensus for each of the models considered.Comment: 14 pages, 8 figure

    Modelling Collective Opinion Formation by Means of Active Brownian Particles

    Full text link
    The concept of active Brownian particles is used to model a collective opinion formation process. It is assumed that individuals in community create a two-component communication field that influences the change of opinions of other persons and/or can induce their migration. The communication field is described by a reaction-diffusion equation, the opinion change of the individuals is given by a master equation, while the migration is described by a set of Langevin equations, coupled by the communication field. In the mean-field limit holding for fast communication we derive a critical population size, above which the community separates into a majority and a minority with opposite opinions. The existence of external support (e.g. from mass media) changes the ratio between minority and majority, until above a critical external support the supported subpopulation exists always as a majority. Spatial effects lead to two critical ``social'' temperatures, between which the community exists in a metastable state, thus fluctuations below a certain critical wave number may result in a spatial opinion separation. The range of metastability is particularly determined by a parameter characterizing the individual response to the communication field. In our discussion, we draw analogies to phase transitions in physical systems.Comment: Revised text version. Accepted for publication in European Physics Journal B. For related work see http://summa.physik.hu-berlin.de/~frank/active.html and http://www.if.pw.edu.pl/~jholys

    Opinion Polarization by Learning from Social Feedback

    Full text link
    We explore a new mechanism to explain polarization phenomena in opinion dynamics in which agents evaluate alternative views on the basis of the social feedback obtained on expressing them. High support of the favored opinion in the social environment, is treated as a positive feedback which reinforces the value associated to this opinion. In connected networks of sufficiently high modularity, different groups of agents can form strong convictions of competing opinions. Linking the social feedback process to standard equilibrium concepts we analytically characterize sufficient conditions for the stability of bi-polarization. While previous models have emphasized the polarization effects of deliberative argument-based communication, our model highlights an affective experience-based route to polarization, without assumptions about negative influence or bounded confidence.Comment: Presented at the Social Simulation Conference (Dublin 2017
    • …
    corecore