6 research outputs found

    An Improved Ocean Vector Winds Retrieval Approach Using C- And Ku-band Scatterometer And Multi-frequency Microwave Radiometer Measurements

    Get PDF
    This dissertation will specifically address the issue of improving the quality of satellite scatterometer retrieved ocean surface vector winds (OVW), especially in the presence of strong rain associated with tropical cyclones. A novel active/passive OVW retrieval algorithm is developed that corrects Ku-band scatterometer measurements for rain effects and then uses them to retrieve accurate OVW. The rain correction procedure makes use of independent information available from collocated multi-frequency passive microwave observations provided by a companion sensor and also from simultaneous C-band scatterometer measurements. The synergy of these active and passive measurements enables improved correction for rain effects, which enhances the utility of Ku-band scatterometer measurements in extreme wind events. The OVW retrieval algorithm is based on the next generation instrument conceptual design for future US scatterometers, i.e. the Dual Frequency Scatterometer (DFS) developed by NASA’s Jet Propulsion Laboratory. Under this dissertation research, an end-to-end computer simulation was developed to evaluate the performance of this active/passive technique for retrieving hurricane force winds in the presence of intense rain. High-resolution hurricane wind and precipitation fields were simulated for several scenes of Hurricane Isabel in 2003 using the Weather Research and Forecasting (WRF) Model. Using these numerical weather model environmental fields, active/passive measurements were simulated for instruments proposed for the Global Change Observation Mission- Water Cycle (GCOM-W2) satellite series planned by the Japanese Aerospace Exploration Agency. Further, the quality of the simulation was evaluated using actual hurricane measurements from the Advanced Microwave Scanning Radiometer and iv SeaWinds scatterometer onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The analysis of these satellite data provided confidence in the capability of the simulation to generate realistic active/passive measurements at the top of the atmosphere. Results are very encouraging, and they show that the new algorithm can retrieve accurate ocean surface wind speeds in realistic hurricane conditions using the rain corrected Ku-band scatterometer measurements. They demonstrate the potential to improve wind measurements in extreme wind events for future wind scatterometry missions such as the proposed GCOM-W2

    Atmospheric Research 2018 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earths atmosphere and the influence of solar variability on the Earths climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions

    Lower Atmosphere Meteorology

    Get PDF
    The Atmosphere Special Issue “Lower Atmosphere Meteorology” deals with the meteorological processes that occur in the layer of the atmosphere close to the surface. The interaction between the biosphere and the atmosphere is made through the lower layer and can greatly influence living beings and materials. The analysis of the meteorological parameters provides a better understanding of processes within the lower atmosphere and involved in air pollution, climate, and weather. The mixed layer height, the wind speed, and the air parcel trajectory have a relevant interest due to their marked impact on population and energy production. The research also comprises aerosols, clouds, and precipitation, analysing their spatiotemporal variations. This issue addresses features of gases in the atmosphere and anthropogenic greenhouse emission estimates, which are also conditioned by the lower atmosphere meteorology

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue
    corecore