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ABSTRACT

IMPROVING SEA-SURFACE REMOTE SENSING OF
OCEAN WIND VECTORS BY SCATTEROMETERS

SEPTEMBER 2015

JOSEPH W. SAPP

B.S., THE PENNSYLVANIA STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Stephen Frasier

Though scatterometers have been used to sense global ocean surface wind vectors

for over 40 years, there remain some significant shortcomings. The largest problems

appear in retrieving the wind vector when the ocean is being driven by high wind

speeds or when rain is present in the beam-illuminated volume. Geophysical model

functions (GMFs) developed using data from high-wind events can improve retrievals

at high wind speeds, but only if sufficient ground truth measurements exist in the

scatterometer swath. Airborne scatterometers, such as the Imaging Wind and Rain

Airborne Profiler (IWRAP) developed by the Microwave Remote Sensing Laboratory

(MIRSL) at the University of Massachusetts Amherst (UMass), are well-suited for

collecting such high-wind data, largely due to their abilities to reposition to areas

of interest, sample the ocean surface on a small scale, and use complementary in-

situ sensors. The IWRAP system is also able to investigate the effect of precipitation

ix



impact (the “splash effect”) on the sea surface normalized radar cross-section (NRCS),

since it can discriminate between volume and surface effects of precipitation. This

dissertation will improve upon the existing IWRAP GMF and quantify the effect of

precipitation on wind vector retrievals. Additionally, IWRAP is used to observe the

effects of Earth-incidence angle and polarization on the sea-surface radar backscatter,

helping scatterometer GMFs to be applicable to other satellite sensors.

IWRAP and collocated Stepped Frequency Microwave Radiometer (SFMR) data

were gathered from 4 years of flight experiments. Using this data, the high-wind

IWRAP GMF is extended to incidence angles near 22◦ at C- and Ku-band VV- and

HH-polarization from 15 m s−1 to 45 m s−1. There is also a revision made to the higher

harmonics of the GMF near 50◦ incidence, but the mean NRCS appears to be modeled

appropriately. There is no splash effect observed in the mean NRCS or first harmonic

at wind speeds from 15 m s−1 to 45 m s−1. The second harmonic shows some muted

behavior in precipitation. Lastly, a wind speed dependence is observed in the VV/HH

NRCS polarization ratio in both incidence angle and azimuth.
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CHAPTER 1

INTRODUCTION

1.1 Scatterometry
Since 1974, when the S-193 instrument was flown on the Skylab satellite, mi-

crowave radars have been measuring ocean-surface wind vectors from space [1]. These

radars, called scatterometers, transmit electromagnetic waves towards the Earth’s

surface and measure the average backscattered power. The primary goal of these

instruments is to measure ocean surface wind vectors.

Scatterometers are specialized radars, or active remote sensing instruments: a

signal is transmitted towards the object of interest and microwave energy scattered

by the object is received by the same instrument. In this case the object is the ocean

surface, which can be considered to be a collection of point targets. Electromagnetic

waves transmitted by the scatterometer interact with any gravity-capillary waves on

the ocean surface. Some power is scattered forward, away from the receiver, and some

of it back towards the receiver. The amount of backscattered power is dependent on

the surface wind stress and is used to infer the ocean surface wind speed and direction.

Capillary waves are believed to be in equilibrium with the wind-forced surface

stress, which makes the scatterometer a reasonable estimator of surface winds [2].

The relationship between the measured surface stress and the actual wind speed

at any altitude is dependent on atmospheric stability. These differences, however,

are small over the open ocean and at wind speeds greater than a few meters per

second. The reference altitude currently used for surface wind estimates is 10 m, and

at neutral atmospheric stability it is written U10N . This is the 10 m equivalent neutral
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wind. While the actual wind vector at 10 m is not necessarily the same as U10N , it is

often very close; for this reason, the phrase “surface wind” is often used in place of

“equivalent neutral wind.”

Since scatterometers measure backscattered power, a method is required to trans-

late this power into an equivalent neutral wind vector. Backscattered power measured

by a radar is dependent on properties of the target, the radar, and the orientation

of the two. To eliminate some of these instrumentation- and observation-related vari-

ables, power is converted to the unitless normalized radar cross-section (NRCS). In

order to understand this measure more fully, a brief review of radar principles is de-

scribed in section 1.2. For now it suffices to know that scatterometers measure NRCS

from the sea surface and NRCS is related to the wind vector.

In order to retrieve a wind vector from NRCS, a geophysical model function (GMF)

that relates NRCS to U10N is employed. All operational scatterometer GMFs are

empirically-derived based on ground truth measurements (often numerical weather

models) closely located in time and space to an instrument’s footprint. The model

function can then be used to infer the most likely wind speed and direction that

would produce the NRCS observed. Typically the direction has 2 to 4 ambiguities, so

an external source (such as a numerical weather model) is used to make a decision.

With a few exceptions, these model functions have not been specifically developed

for retrieving high wind speeds. This is generally due to a combination of the lack of

ground truth and few scatterometer measurements over extreme weather events.

A persistent problem of spaceborne scatterometers is making wind vector ob-

servations through an atmosphere containing precipitation. Precipitation changes the

desired signal by three means: attenuation, volume scattering, and ocean-surface mod-

ification due to the impact with the surface. These effects are not easily removed or

accounted for. This problem can be somewhat mitigated by collocating a radiometer

with the scatterometer for rain sensing, but all of the currently-operating spaceborne
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instruments do not have this luxury. In addition, it may not be possible to put a

radiometer on the same platform as a scatterometer due to power or space limita-

tions on the satellite. The precipitation problem is generally handled by detecting and

flagging rainy cells so that users of the retrievals know that they cannot be trusted

to the same level as the rain-free vectors. There have been many proposals on how to

better handle the problem of rain within scatterometer observations, some of which

are summarized in Portabella et al. [3] and Weissman et al. [4]. Overcoming the re-

trieval problems that precipitation presents may be more tractable if there were a

better understanding of the individual effects that rain has on backscattered power.

Besides scatterometers, imaging synthetic aperture radars (SARs) have been used

to retrieve ocean surface wind vectors [5], [6]. The ability to resolve small-scale fea-

tures compared to scatterometers while retaining a large swath is particularly useful.

However, obtaining wind direction information from SAR images is not as straightfor-

ward as from scatterometer measurements. Despite this, SAR wind speed retrievals

can augment scatterometer operation or validation. Empirical scatterometer GMFs

do not exist for all polarization combinations at C- and Ku-band (e.g., C-band HH-

polarization), which is how SARs retrieve wind speeds. This limits the additional util-

ity of instruments such as RADARSAT-2, which observes all linear transmit-receive

polarization combinations at C-band. As a result, some attempts have recently been

made to derive polarization ratio models to convert from VV- to HH-polarization at

C-band [6], [7]. These polarization ratios allow wind speed retrievals to be performed

from both the VV- and HH-polarization SAR images, augmenting the geophysical

data record and providing a reference for satellite scatterometer winds.

Since this dissertation relies heavily on radar measurements, a brief introduction

of radar principles is presented in the next section. The section following describes a

short history of satellite scatterometers, and the last section of this chapter outlines

the rest of this dissertation.

3



1.2 Radar Operation
A radar is an active sensor that generally transmits a pulse of length τ and receives

signals for a time T − τ before repeating the sequence again. The time T is the pulse

repetition time (PRT) while the inverse (T−1) is the pulse repetition frequency (PRF).

Spaceborne Earth-observing radars deviate slightly from this description due to the

distances involved: multiple pulses are transmitted followed by a long receive time,

but this does not significantly change the following theory.

The simplest transmit pulse is a rectangular pulse, which is a single frequency

at a constant amplitude for a fixed amount of time. The echo power from a target

received by the radar is a function of the peak power and duration of this pulse. In

order to reduce the amount of noise in the received signal, it should be much greater

than the thermal noise of the receiver. Often physical and financial considerations

limit the maximum transmit power, and practical considerations limit the transmit

time, so a technique called “pulse compression” is sometimes employed to increase

the signal-to-noise ratio (SNR) of weak signals. This involves transmitting a long

variable-frequency “chirp” decoding the received signals in software. Knowing the

properties of the transmit pulse allows a matched filter to be generated and applied

to the received echoes, locating them in range with a finer resolution than is possible

with a simple pulse of the same length.

Pulse compression increases the effective transmit power by an amount referred

to as the compression gain. The compression gain is given by GC = BτLW , where

B is the bandwidth of the signal and LW is the loss imposed by the window applied

to the matched filter. For a radar with B = 4 MHz, τ = 10 µs, and a Hanning

window, the compression gain is GC = 40
4 = 10 dB. This window would also reduce

the measured noise power by a factor of 8
3 or 4.26 dB (since it is incoherent noise),

so the net improvement to the SNR of the received signal is 14.26 dB. While some of

the properties of the transmitted and received signals change with pulse compression,
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the remainder of this section applies to both the simple pulse and pulse-compressed

modes of operation.

If an electromagnetic wave were transmitted from an isotropically-radiating an-

tenna, the power density Siso would be

Siso(r) = Pt
4πr2

(
Wm−2

)
. (1.1)

Typically antennas are focused over a narrow volume in space. The radiated power

density within this volume S ′ can be described in terms of the isotropic power density

S ′(r, θ, φ) = G(θ, φ)Siso(r), (1.2)

where r is the range from the antenna, θ and φ are angles in orthogonal coordinate

systems, and G is referred to as the antenna gain. G typically encompasses losses

associated with the antenna system as well as the increase over Siso, such as those

incurred at the feed to the antenna and through the radome. At a distance far from

the antenna, the incident power density on a scatterer is

Si(r, θ, φ) = PtG(θ, φ)
4πr2 , (1.3)

where Pt is the power input to the antenna.

When an electromagnetic wave encounters a object, the wave is scattered away

from the object. To describe this generically, it is useful to think of the scatterer in

terms of the power density observed by the receiver. The object can be said to have

a radar cross-section (RCS) of σ, which is defined by the power density observed at

the receiver (Sr) if the incident wave were scattered isotropically:

Sr(r, θ, φ) = Si(r, θ, φ)σ(θ′, φ′)
4πr2 . (1.4)
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θ′ and φ′ describe the direction relative to the axis created by the receiver and scat-

terer. The RCS is the expected backscattering cross-section per unit area.

The power received by an antenna is

Pr(r, θ, φ) = Sr(r, θ, φ)Ae(θ, φ) (W) , (1.5)

where Ae = Gλ2

4π , the effective area of the antenna (at wavelength λ) from a direction

given by θ and φ. When the transmitter and receiver use the same antenna, the

received power is related to the scatterer by substituting equations (1.3) and (1.4)

into (1.5):

Pr(r, θ, φ) = PtG(θ, φ)2λ2

(4π)3r4 σ. (1.6)

For scattering from a surface, the NRCS, σ0, can be defined as the RCS that is

normalized to the area being illuminated by the antenna, Aill. In scatterometry σ0 is

the parameter of interest, so this so-called radar equation is usually expressed as

σ0 = Pr(4π)3r4

PtG2λ2Aill
. (1.7)

1.3 A Brief History of Satellite Scatterometry
In 1973, the S-193 scatterometer flew on the Skylab satellite. S-193 was the first

spaceborne scatterometer, and it provided confirmation of the theory that backscat-

tered microwave power is related to the surface wind speed. However, it did not

account for wind direction so the measurements were too scattered to determine an

exact relationship [8].

In 1978, the SEASAT-A satellite was launched, carrying a radar altimeter, ra-

diometer, SAR, and Ku-band scatterometer — the SEASAT-A Scatterometer (SASS).

SASS used four fanbeam antennas, two on each side of the spacecraft track, to illu-

minate two 475 km swaths. Though it only collected data for 3 months, retrieved
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wind speeds were shown to be accurate to ±2 m s−1 and directions to ±20◦ [9] at

wind speeds under 24 m s−1. Due to the antenna geometry, estimation of the wind di-

rection required auxiliary meteorological information to decide between four possible

solutions [10].

The ERS-1 (European Remote Sensing) satellite was launched in 1991 with a C-

band scatterometer similar to the design of SASS. It used fanbeam antennas mounted

to view the Earth off of one side of the spacecraft. In order to improve on the wind

direction sensing of SASS, it used three antennas at 45◦, 90◦, and 135◦ off of the satel-

lite track. The swath was approximately 500 km wide, with observed Earth-incidence

angles ranging from 24◦ to 47◦ [11]. ERS-2 was launched in 1995 with the same scat-

terometer payload in order to maintain a continuous ocean surface wind vector data

stream. ERS-1 was decommissioned in 1999 and ERS-2 was eventually decommis-

sioned in 2011.

The NASA Scatterometer (NSCAT) flew on the Japanese Advanced Earth Obser-

vation Satellite (ADEOS)/Midori satellite in 1996. It operated for 40 weeks, when an

electrical failure on the platform resulted in the loss of the spacecraft. NSCAT illumi-

nated two 600 km swaths on either side of the ADEOS track with 3 antennas each; the

outer two antennas were vertically-polarized while the middle was dual-polarized. It

was another Ku-band instrument, and it retrieved winds with an accuracy of 2 m s−1

rms (for winds from 3 m s−1 to 20 m s−1) and <20◦ rms in direction [12].

After the premature failure of the ADEOS platform, a replacement mission was

expedited and launched in 1999: the SeaWinds scatterometer on QuikSCAT[13]. The

hardware for this instrument was the spare components developed for the SeaWinds

scatterometer on the ADEOS-II/Midori 2 satellite, due to fly in 2003. Operating at

Ku-band, it was the first spaceborne “pencil-beam” scatterometer. Its one parabolic

dish antenna rotated at a rate of 18 RPM in order to observe the ocean surface from

multiple directions. The vertically-polarized beam had an incidence angle of 54◦ and
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the horizontally-polarized beam 46◦. QuikSCAT was designed for a 3 year operational

life, but its mission ended in November 2009 when its antenna stopped spinning [14].

During its lifetime, QuikSCAT provided marine forecasters with an invaluable tool

for assessing dangers due to high winds. In December of 2000, the National Weather

Service (NWS) began to issue warnings for hurricane force winds (at least 64 kt or

32.9 m s−1) in extratropical storms as a direct result of QuikSCAT’s data frequency

and quality [15]. ADEOS-II was expected to continue monitoring the global oceans,

but it too experienced a catastrophic failure 10 months after its launch in 2002. The

data gap would need to be filled by ERS-2 and the Advanced Scatterometer on the

MetOp satellite (ASCAT), which launched in October 2006.

ASCAT on MetOp-1 continued the tradition of European scatterometers that

operate at C-band (5.255 GHz) with fixed fanbeam antennas. The primary purpose

of this choice was that the measurement geometry and wind retrieval process for

such instruments is well-developed. Similar to SASS, NSCAT, and ERS, it has three

vertically polarized antennas on each side of the spacecraft at 45◦, 90◦, and 135◦ with

respect to the satellite track. The swaths cover 550 km of ocean on each side of the

track. Compared to the ERS scatterometers the incidence angle range extends further

out (25◦ to 65◦), which allows for a better wind direction retrieval [16]. The second

MetOp satellite launched in September 2012 and the third, and final, is planned for

2018.

The Indian Space Research Organization (ISRO) launched the Oceansat-II satel-

lite in 2009 with a scatterometer onboard, referred to as OSCAT. It had nearly the

same specifications as QuikSCAT, but due to other collocated instruments operated

at a slight tilt angle. This made calibration and wind vector retrievals challenging. In

April 2014, OSCAT’s mission came to an end when failures in the scanning mecha-

nism in the “main chain” and the power amplifier in the “redundant chain” proved

unrecoverable.
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The most recent scatterometer launched is ISS-RapidScat [17], which did so in

September 2014. RapidScat is QuikSCAT hardware mounted on the International

Space Station and is planned to be in operation for 24 months. Due to the different

orbit of the ISS and QuikSCAT, the incidence angles are slightly higher (49◦ and 56◦

for H- and V-polarization, respectively) and the swaths are smaller.

1.4 Dissertation Outline
The remainder of this dissertation will focus on different aspects of ocean wind

vector scatterometry, but all are related to improving retrievals from satellite in-

struments. Chapter 2 describes the instrumentation used for collecting the data pre-

sented in this dissertation. Data collected using an airborne scatterometer system

developed by the Microwave Remote Sensing Laboratory (MIRSL) at the University

of Massachusetts Amherst (UMass), the Imaging Wind and Rain Airborne Profiler

(IWRAP), is used in each chapter. A passive microwave ocean wind speed and precip-

itation sensor, the Stepped Frequency Microwave Radiometer (SFMR), is also used

throughout this dissertation. These and the flight experiments surrounding the data

collection are described in this chapter.

Chapter 3 presents observations of the ocean by the collocated IWRAP scatterom-

eter and SFMR at high-wind speeds. Using wind speeds retrieved by the SFMR, the

IWRAP geophysical model function is extended to new incidence angles at both VV-

and HH-polarizations and at C- and Ku-band. The averaging and filtering schemes

for the data, such as to ensure uniform observations and rain-free measurements, are

described. The equations used to model NRCS from a wind-roughened sea surface

are introduced. Finally, some experimental data collected between 2011 and 2014 is

developed into new geophysical model functions.

Chapter 4 investigates the effects of precipitation splash on backscatter from the

ocean surface at high wind speeds. Precipitation attenuates the NRCS measured from
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the ocean surface, so this effect is first removed. The IWRAP C- and Ku-band radars

are used in tandem to verify the ability of SFMR to estimate precipitation. Then

SFMR is used to correct attenuation of NRCS in both radars. The C- and Ku-band

backscattered power in both rain and rain-free circumstances are then qualitatively

compared.

Chapter 5 details an experiment performed to understand the backscatter response

of the ocean at VV- and HH-polarizations for incidence angles up to 60◦. The data

filtering and NRCS calculation methods are described. Due to the maneuvers of the

aircraft for this experiment, some special corrections to the data are performed. The

NRCS response at VV- and HH-polarizations to incidence angle at from 20 m s−1 to

36 m s−1 is shown. In the same wind speed range, the polarization ratios with respect

to incidence angle and wind-relative azimuth are also shown.

Lastly, chapter 6 summarizes the conclusions of each chapter and makes some

recommendations on future work with the IWRAP scatterometer.
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CHAPTER 2

INSTRUMENTATION AND FIELD EXPERIMENT
DESCRIPTIONS

2.1 The Imaging Wind and Rain Airborne Profiler
2.1.1 System Description

The Imaging Wind and Rain Airborne Profiler (IWRAP), initially described

in Fernandez et al. [18], is a dual-frequency conically-scanning Doppler radar de-

veloped by the Microwave Remote Sensing Laboratory (MIRSL) that is routinely

installed on the National Oceanic and Atmospheric Administration (NOAA) WP-

3D research aircraft. IWRAP is primarily designed as a scatterometer, to study the

signature of the ocean surface under wind forcing. Two pulsed radars, one C-band

and one Ku-band, scan at two incidence angles each, typically between 20◦ and 50◦.

Each radar is capable of implementing up to four simultaneous beams, however, two

simultaneous beams per radar has been the normal mode of operation since 2006.

The radar beam widths vary depending upon the selected incidence angle, owing to

properties of the frequency-scanned antenna, but are typically in the neighborhood of

10◦. The antennas are mechanically scanned in azimuth, nominally at a rate of 1 Hz. A

diagram of the typical configuration of IWRAP on the aircraft is shown in figure 2.1.

The receiver front-ends of each radar differ slightly due to the sensitivity of each

radar to attenuation in precipitation. Since the Ku-band radar is attenuated and scat-

tered more by rain, the low-noise amplifier (LNA) is placed as close as possible to the

antenna in order to be able to observe smaller surface echoes. So although the front-

ends are similar, their implementations are described separately. The specifications

of the hardware components are described in more detail in Dvorsky [19].
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θ1

θ2

C- and Ku-band
Two simultaneous beams

for each band

30m range gates

Conical Scan Rate
60RPM

SFMR Column
20 to 28◦ beamwidth

Figure 2.1. Typical configuration of the IWRAP scatterometer/profiler instrument
on the NOAA WP-3D aircraft. The incidence angle, conical scan rate, transmit and
receive polarizations, pulse compression mode, pulse length, and PRF, among others,
are all configurable.

PA

Isolation
switch

Tx/Rx
Lcable

Spinner

Pol

L

Rx/Cal

H V

Lcal

Lant

Ltx

Lrx

LNA

Figure 2.2. Block diagram of the IWRAP C-band front-end. The switches are con-
figured for transmit mode. The dashed box indicates the grouping of components
within a rack-mounted enclosure.
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The C-band front-end, shown in transmit mode within the dashed line box in

figure 2.2, is mounted near the radar operator. At the output of the power amplifier,

an isolator (not shown) is connected to a 30 dB coupler, off of which the calibration

pulse sample is obtained. This sample is attenuated to a level within the receiver’s

dynamic range and inserted into the receive chain by means of the receive/calibration

(Rx/Cal) switch. This signal path is referred to as the calibration path.

When traveling through the “through” port of the coupler, also referred to as

the transmit path, the signal first passes through an isolation switch. The purpose

of this switch is to direct most of the transmit power into a matched load while the

radar is in receive mode. This prevents noise from the power amplifier (PA) that leaks

through the transmit/receive (Tx/Rx) switch from significantly contributing to the

signal received from the antenna.

A low-loss cable with loss Lcable connects the Tx/Rx switch to a rotary joint on top

of the antenna spinner. This rotary joint allows the antenna to rotate while connected

to the stationary low-loss cable. A polarization switch is mounted at the bottom of

the spinner assembly and is then connected to the V- and H-polarized patch antenna

feeds. A slip ring allows low frequency signals and DC voltages to control the spinning

polarization switch.

In receive mode, the Tx/Rx switch directs radio frequency (RF) power through

the Rx/Cal switch. This switch allows the signal to pass through to the LNA and on

to the transceiver, which is described below.

The Ku-band front-end is shown in figure 2.3, also in transmit mode. The bulk of

the front-end is mounted below the antenna spinner, immediately above the antenna.

This location puts the least amount of loss between the antenna and the LNA, re-

sulting in a lower receiver noise figure. A radar with a low receiver noise figure can

detect lower power signals. This is especially important at Ku-band due to the high
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Figure 2.3. Block diagram of the current configuration of the IWRAP Ku-band front-
end. The switches are configured for transmit mode. The dashed boxes indicate the
grouping of components into rack-mounted enclosures, and the dotted boxes indicate
components grouped into separate boxes on the front-end/antenna mounting plate.
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attenuation of the received surface echo signal experienced when observing the sea

surface through precipitation.

While this configuration is advantageous for measuring the surface echo, it in-

creases the complexity of the system. Both the transmit and receive RF signals need

to be separate on the rotating side of the rotary joint, so a dual-channel rotary joint

is required here. The rotary joint has finite isolation that is dependent on the azimuth

position of the antenna. The receiver samples the received signal with the addition of

transmitter noise, less the isolation of the rotary joint. To reduce the impact of the

transmitter noise, the gain of the LNA should be high enough such that the noise

power from the antenna is sufficiently higher than the noise power of the transmitter

when amplified by the PA. Before the 2013 hurricane season, a medium-power ampli-

fier was installed following the LNA (not shown in figure 2.3) to achieve the necessary

gain level while retaining a low noise figure. To minimize losses, the Ku-band system

employs two low-loss cables running from the rotary joint to the PA and receiver

input.

After each front-end the RF signals are fed to the transceiver, which is where the

RF signals are converted to intermediate frequency (IF). This block is also where,

on transmit, the IF is mixed up to RF before the PA. The block diagrams of the

transceivers are shown in figures 2.4 and 2.5 for C-band and Ku-band, respectively.

On transmit, each RF source is mixed with a 30 MHz single-sideband mixer. The

lower sideband is passed on to the “Transmit RF” (or “Tx RF”) switch, which is

only active during transmit time, resulting in a transmitted frequency 30 MHz below

the RF source. This Tx RF switch reduces the PA output during receive, so leakage

through the calibration loop and Cal/Rx switch does not compete with the received

signal. The remainder of the transmit path is radar-dependent, as described above.

On receive, the RF signal is split and mixed down to 30 MHz IF. The mixers

use the same RF source as the transmit stage, which is split by a power divider.
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Figure 2.4. Block diagram of the current IWRAP C-band transceiver and front-
end. The switches are configured for receive mode. The RF portion is also shown in
figure 2.2.
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Figure 2.5. Block diagram of the current IWRAP Ku-band transceiver and front-
end. The switches are configured for receive mode. The RF portion is also shown in
figure 2.3.
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Recall that each incidence angle is transmitted at a different frequency, so this step

effectively separates incidence angles into different channels at IF. An IF amplifier

then boosts each signal to be within the dynamic range of the digital receiver (DR).

In-phase and quadrature components of the IF signal are sampled at a rate of 5 MHz,

which makes each so-called range gate in the radar profile 30 m long. The receiver

bandwidth is limited to 5 MHz by the bandpass filters in front of the DR, which are

not shown in the diagrams.

2.1.2 Summary of System Changes

Since IWRAP was first introduced in 2005 [18] the instrument has been deployed

on the NOAA WP-3D twice per year each year, with the exception of 2008. The

experiments are separated into two seasons per year: hurricane season, with flights

generally between August and October, and winter season, with flights generally dur-

ing January and February. In 2008, there was no winter season. The NOAA Aircraft

Operations Center (AOC) operates two WP-3D aircraft, N42RF and N43RF, and

IWRAP has been installed on both. Here the experiments used in this dissertation

and some of the major changes in the IWRAP subsystems since 2005 are described.

2.1.2.1 Changes to the Location of the Ku-band Front-End

Between winter 2007 and hurricane season 2007, the Ku-band front-end was moved

closer to the antenna in order to improve the sensitivity of the Ku-band system [20].

Effectively, the two dotted boxes in figure 2.3 were moved from above the rotary joint

to below the rotary joint. Since IWRAP could only measure co-polarized backscatter

at the time, only one cable ran from the front-end to a single-channel rotary joint.

An additional cable and a dual-channel rotary joint was required for this upgrade.

As mentioned in section 2.1.1, at Ku-band frequencies (12 GHz to 14 GHz) there

are significant scattering and attenuation effects in precipitation. Hurricane eyewalls

often contain strong rain bands, which were observed to be severe enough to attenuate
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the surface echo beyond the receiver noise floor [20], [21]. The receiver noise floor is

described by

Pn = kTBFrec, (2.1)

where k is the Boltzmann constant, T = 290 K, B is the receiver bandwidth (5 MHz),

and Frec is the receiver noise figure. In order to lower the noise floor, the noise figure

Frec must be reduced. The noise figure of a system with multiple gain and noise stages

is

Frec = F1 + F2 − 1
G1

+ F3 − 1
G1G2

+ . . .+ FN − 1∏N−1
i=1 Gi

, (2.2)

where Gi and Fi are the gain (or inverse loss) and noise figure, respectively, of the

ith stage. The first component has the most significant impact on the total receiver

noise figure. By reducing the loss of the first stage after the antenna, terms 2 through

N become smaller. Along with replacing the LNA with one that has a smaller noise

figure, locating the LNA closer to the antenna than the long cable (with loss of Lcable)

more than doubled the range capability of the Ku-band system in precipitation.

2.1.2.2 Pulse Compression

Since hurricane season 2008, IWRAP has been capable of using a pulse-compressed

transmit/receive mode [22], [23]. This provides better sensitivity to low surface wind

speeds or rain-attenuated surface echoes, but it significantly increases the blind range

of the radar. For example, the standard 200 ns pulse has a blind range of 30 m while

a 10 µs chirp has a blind range of 1.5 km. The blind range is generally not a problem

except when IWRAP is used as a rain profiler or when the aircraft is flown close

to the ocean surface. However, only the outer incidence angle is chirped, leaving the

inner channel pulsed for rain profiling. Additionally, pulse compression is only used

when operating IWRAP at altitudes above 2 km to avoid issues with the blind range.
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2.1.2.3 Dual- and Cross-Polarization

Prior to hurricane season 2010, IWRAP was only able to measure one co-polarized

backscatter channel (VV or HH) at a time. This was primarily due to the use of single-

polarization antennas and lack of a switch on the dual-polarized antennas. Since then,

IWRAP has been capable of changing its polarization configuration during the flight,

allowing for measurement of VV-polarization, HH-polarization, or both in a time-

multiplexed mode [19].

Before the 2011 hurricane season, the polarization switch logic and hardware were

also upgraded to make IWRAP capable of receiving a different polarization than it

transmits. This has allowed time-multiplexed co-polarized and cross-polarized mea-

surements (i.e., switching between VV-pol and VH-pol after a fixed number of pro-

files). While the ability to sample cross-polarized sea-surface normalized radar cross-

section (NRCS) is promising, opportunities to make observations have been limited to

date. The low isolation of the antenna (estimated from antenna patterns to be 10 dB

to 12 dB) requires high wind speeds in order for the weaker cross-polarized signal to

overcome the leakage of the co-polarized backscatter from the other antenna.

2.1.2.4 Software-Configurable Incidence Angles

As mentioned in section 2.1.1, IWRAP usually operates with two simultaneous

incidence angles. Starting with the winter season of 2011, the frequencies dictating the

outer incidence angles on the radars have been generated by compact programmable

synthesizers [19]. These sources are limited in frequency range (4.9 GHz to 5.5 GHz

at C-band and 12.2 GHz to 13.5 GHz at Ku-band), but they span the range over

which the antenna was designed. The synthesizers require a few milliseconds to be

programmed, which makes them not feasible for frequency hopping sampling tech-

niques. The inner incidence angles continue to be generated by dielectric resonator

oscillators (DROs), which are fixed-frequency sources. After this season the DROs and
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frequency settings of the synthesizers have generally remained the same, resulting in

several seasons of data at the same incidence angles.

2.1.2.5 Calibration and Digital Receiver Improvements

Prior to the 2012 winter storm season, the Ku-band calibration loop coupler (la-

beled Lcal in figure 2.3) was located between the bottom of the rotary joint and the

isolation switch. Since the goal of the calibration loop is to sample as much of the

transmit path as possible, the coupler was moved to its present location.

Dvorsky [19] describes a persistent issue with measuring the Ku-band calibration

pulse: an azimuth-dependent isolation that is small enough to affect the calibration

pulse. The potential for this problem was recognized by Chu [20] when the Ku-band

front-end was first moved. It can be addressed with either more isolation between

rotary joint channels, as was initially done, or more amplification on the receive rotary

joint channel. As mentioned in section 2.1.1, a medium-power amplifier was installed

following the LNA before the 2013 hurricane season. This was done for economical

and practical purposes, since it avoids needing a Ku-band dual-channel rotary joint

with extreme isolation requirements.

Between the winter and hurricane seasons of 2013, the digital receiver was up-

graded from a Pentek 7131 to an Ettus Research USRP N210. The Pentek 7131 is

a two-channel digital receiver with a PCI interface. The model used in the IWRAP

system has two 14-bit analog-to-digital converters (ADCs) that sample at 80 MHz.

It has a user-configurable Xilinx Virtex-II XC2V1000 field-programmable gate array

(FPGA), but this feature was never used. The onboard TI/Graychip GC4016 digital

downconverters were combined in pairs to obtain a 5 MHz bandwidth for each IF in-

put. Raw I/Q data from the Pentek card is streamed to the host computer via the PCI

bus. The USRP N210 is a two-channel software-defined radio with a Xilinx Spartan

3A-DSP 3400 FPGA, 100 MS s−1 dual ADC, and 400 MS s−1 dual digital-to-analog
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converter (DAC). Raw I/Q data is streamed to the host computer over a Gigabit

Ethernet interface.

The most significant aspect of this upgrade is that the IWRAP system is now

able to properly sample the polarization switch state and antenna position associated

with a profile. Compared to the Pentek FPGA, the Ettus system is also more easily

modified. The primary accomplishment was to sample these switch states and insert

them into the raw data. With the Pentek system, profile samples are buffered so any

sampling of the switch or encoder by user space software is not matched in time with

the profile. As a result, the polarization state in previous years was determined from

the amplitude of the backscattered power. The control over the FPGA configuration

also allowed the implementation of a profile counter in the sampling hardware.

2.2 The Stepped Frequency Microwave Radiometer
C-band radiometers have been used on aircraft for measuring high-speed ocean

surface winds since 1980. Jones et al. [24] describes the Langley Research Center

(LRC) Stepped Frequency Microwave Radiometer (SFMR), which was flown twice

through Hurricane Allen on a NOAA C-130 aircraft in 1980. This instrument was used

to develop an early algorithm for remotely retrieving ocean surface wind speed (at a

height of 20 m). LRC SFMR was a nadir-pointing microwave radiometer operating at

either two or four frequencies in the C-band, depending on the user configuration. The

variation of the ocean surface and atmosphere under the aircraft allows for retrieval

of surface wind speed and mean rainfall rate within the beamwidth the radiometer

antenna.

The theory behind ocean wind sensing via microwave radiometry relies on the fact

that all objects emit electromagnetic radiation. A perfect absorber of electromagnetic

radiation is called a blackbody; being a perfect absorber also means that it is also a

perfect emitter when the object is in thermodynamic equilibrium. An ideal antenna
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with bandwidth B that observes only a blackbody at a temperature T can be shown

to yield an output power

Pbb = kTB, (2.3)

where k is the Boltzmann constant (1.38× 10−23 J K−1) [25]. Note that this is the

same output power as is measured at the terminals of a noisy resistor at temperature

T . The power available at this ideal antenna’s output terminals is determined by

the physical temperature of the blackbody. Since no blackbodies exist in reality, a

blackbody equivalent radiometric temperature can be defined for a scene observed by

an antenna. This equivalent temperature is called the brightness temperature (Tb).

The brightness temperature of the ocean surface can be described as

Tb,ocean = (εocean · SST + (1− τatm) Tdown) τatm

+ (1− τatm) Tup,
(2.4)

where εocean is the emissivity of the ocean, SST is the sea-surface temperature, and

τatm is the transmissivity of the atmosphere. The first term of (2.4) is the energy from

the ocean surface (both ocean and anything covering the surface) and the reflected

downwelling energy from the atmosphere (Tatm,down). The second term is the upwelling

energy from the atmosphere (Tatm,up). Contributions to Tb from the atmosphere at

the frequencies of interest in are largely due to water, both precipitating and non-

precipitating.

The ocean surface influences Tbs in two parts: the emissivity of the ocean at nadir,

which is a function of SST, salinity, and frequency [26], and the so-called excess

emissivity due to wind forcing. At higher wind speeds (greater than 15 m s−1) the

excess emissivity, which is a frequency-dependent function of fractional foam coverage

within the beamwidth of the instrument, is a stronger component than the smooth-

surface nadir emissivity. At lower wind speeds there is little to no foam coverage.

The foam covering the ocean surface in the open ocean results from breaking surface

23



gravity waves, which is more related to wave energy dissipation, but not necessarily

wind energy input [27]. As a result, microwave emissions from the ocean surface

depend on the sea state to some extent. Uhlhorn and Black [28] noted an error in

wind speed retrievals from a microwave radiometer in hurricanes of about 2.5 m s−1,

depending on the quadrant of the tropical cyclone (TC) sampled. They attribute this

error to the difference in sea state in these quadrants.

After LRC SFMR, the University of Massachusetts Amherst (UMass) developed

a dual-polarization, multi-frequency microwave radiometer named the Simultaneous

Frequency Microwave Radiometer (SFMR2), first operated in 1999 [29]. Also a C-band

instrument, SFMR2 simultaneously sampled each frequency (4.63 GHz, 5.50 GHz,

5.92 GHz, 6.34 GHz, 6.60 GHz, and 7.05 GHz) at a rate of 20 Hz. Tbs were first mea-

sured with this instrument from within TCs from a NOAA WP-3D aircraft in the fall

of 1999. In 2000, the digital acquisition and switching systems within the instrument

were upgraded and subsequently used by Fernandez et al. [30] to develop a geophys-

ical model function (GMF) for C- and Ku-band scatterometers. The measurement

precision (∆T ) of the SFMR2 is approximately 0.4 K. Fernandez et al. [30] averaged

Tbs to 1 Hz, resulting in a ∆T of less than 0.1 K. After 2006, when SFMR was declared

a national need, SFMR2 was not used regularly. It was repaired in 2009 in prepara-

tion for deployment alongside IWRAP and SFMR during the 2010 IWRAP winter

season experiments. Besides some repairs in hardware, the most significant change

was in transitioning the operating system from Microsoft Windows to a GNU/Linux

distribution. Linux kernel modules were written to use the relatively old hardware

with a then-modern kernel (in the 2.6 series), and sampling software was created in

C based on the existing design in Visual Basic. Though measurements were taken

during several flight experiments in the winter of 2010, it does not offer much benefit

over the SFMR already installed on both NOAA WP-3D aircraft and has not been

used since.
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AOC operates a SFMR, developed by ProSensing, Inc. of Amherst, MA based on

the design concepts of LRC SFMR. It is also a C-band nadir-pointing microwave ra-

diometer, but it steps through six frequencies (4.74 GHz, 5.31 GHz, 5.57 GHz, 6.02 GHz,

6.69 GHz, and 7.09 GHz), dwelling at each for 0.5 s [31]. This instrument is installed

on each of the NOAA WP-3D aircraft and is referred to as simply “the SFMR” here-

after. The receiver channel bandwidth is 100 MHz and the instrument has a precision

of 0.5 K.

In order to develop an algorithm for retrieval, surface wind ground truth is required

to map Tbs to wind speed. The reference wind speeds used to develop the algorithm

for LRC SFMR were from a NOAA WP-3D flying at 450 m to 1500 m, extrapolated

to a 20 m height. LRC SFMR used the brightness temperatures measured at both

four and two frequencies in order to retrieve wind speed and rain rate. This algorithm

was the basis of the 2003 algorithm for the SFMR, which was developed using flight-

level wind speeds extrapolated to the surface and global positioning system (GPS)

dropwindsondes as the ground truths [28]. In 2007, Uhlhorn et al. [27] revised the

GMF relating excess emissivity to surface wind speed. This relationship is a critical

part of retrieving wind speeds and rain rates from the SFMR; Uhlhorn et al. [27]

found that the 2003 algorithm overestimated high wind speeds. Selected aspects of

the current SFMR GMF are shown in figure 2.6. The left panel shows the change in

Tbs as a function of wind speed only, the center panel shows the same as a function

solely of rain rate, and the right panel shows the Tb response to SST.

The retrieval algorithm for SFMR is currently only reliable at nadir incidence. As

a result, in this work retrievals are only used from data collected from incidence angles

within ±3◦. Retrieval accuracy is dependent on the accuracy of the Tb measurements,

the surface emissivity GMF, accuracy of the assumptions made about the atmosphere

and ocean state, and the SFMR GMF. Any bias in Tb affects retrieved wind speed

and rain rate, with the degree depending on the surface wind speed. Before beginning

25



0 20 40 60 80

100

150

200

250

Wind−Speed−Only SFMR GMF

0 20 40 60 80
Wind Speed (m/s)

100

150

200

250

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 (

K
)

7.09 GHz6.69 GHz6.02 GHz5.57 GHz5.31 GHz4.74 GHz

7.09 GHz
6.69 GHz
6.02 GHz
5.57 GHz
5.31 GHz
4.74 GHz

Rain−Rate−Only SFMR GMF

0 20 40 60 80
Rain Rate (mm/hr)

100

150

200

250

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 (

K
)

SST−Only SFMR GMF

−5 0 5 10 15 20 25 30
SST (deg C)

100

150

200

250

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 (

K
)

Figure 2.6. SFMR GMF developed by Uhlhorn and Black [28]. The left panel shows
the change in Tbs as a function of wind speed only. The center panel shows the same
as a function solely of rain rate. The right panel shows the Tb response to SST.
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a season of experiments that use the SFMR, AOC will perform a calibration flight

in an attempt to remove Tb biases. Tbs provided by AOC SFMR are used, assuming

they have been, and remain throughout the season, well-calibrated. However, the

retrievals are performed again after taking some additional steps. Removal of any

residual biases of the observed Tbs with respect to the GMF are attempted first.

Usually these biases are on the order of less than 1 K. Any Tb channels contaminated

by RFI are omitted from the retrieval process. Finally, SST and salinity models are

used as inputs to the emissivity GMF. The resulting retrievals serve as the ground

truth for the rest of this dissertation.

2.3 Experiment Descriptions
In section 2.1.2, it was noted that since hurricane season 2011, the incidence

angles on both the C-band and Ku-band radars have generally been the same. For

this dissertation, flight experiments have been selected from between hurricane season

2011 and hurricane season 2014 that exhibit reasonable behavior of NRCS and SFMR

wind speed. Additionally, as will be described in chapter 3, rain-free data at high

wind speeds are needed in order to calibrate the NRCS in each flight. So the flight

experiments must be filtered further so that only flights that can be calibrated are

used. The following is a brief description of these flight experiments.

Although the 2011 hurricane season was an active storm season, there were not

many opportunities for data collection. Between installing the equipment later than

usual and problems with the aircraft, there were only three storm flights during the

season. Two of these flights did not have much high-wind data, so only the flight

through Hurricane Hilary in the East Pacific was used. Since most of the time was

spent investigating the cross-polarization capabilities of the system, there is not much

HH-polarized data from this flight.
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During the 2012 winter season, IWRAP flew in the North Atlantic out of Halifax,

NS, Canada. The Ku-band radar was not functioning for a few of the early flights, so

there is more C-band data from this season than Ku-band. Much of this season was

also devoted to operating IWRAP in alternating VV- and VH-polarization modes, so

HH-polarized data at the higher wind speeds is lacking.

In the hurricane season of 2012, IWRAP was operated in two storm systems: Leslie

and Sandy. These were both low-wind systems, as the aircraft was only able to reach

Leslie while it was transitioning to a tropical storm. And though Sandy was called a

hurricane, this was primarily for public safety purposes. During most of the time in

the storm, the wind speeds were not above hurricane force. Sandy was unique in that

it had large fields of relatively uniform winds, much like the winter storm systems.

However, there was much more precipitation than in the typical winter storm. IWRAP

observed a wide range of stratiform rain, sometimes even observing graupel. During

the first flight through Sandy, the Ku-band system was non-operational.

In winter 2013, IWRAP flew again out of Halifax, NS. Though instrumentation

problems cropped up occasionally, two of the flights over the Labrador Sea (January

23 and February 2) encountered surface winds over 25 m s−1. During one of these

flights winds up to about 43 m s−1 were observed, which is the strength of a Category

2 hurricane.

During the hurricane season of 2013, IWRAP was flown through three different

systems: Gabrielle, Ingrid, and Karen. Of the three, only Ingrid made it to hurricane

status; it was almost strong enough to be in Saffir-Simpson Category 2 [32]. Gabrielle

was a very disorganized and weak storm with a significant amount of precipitation. In

fact, it lost tropical storm status in the second of the three missions flown through it.

Because of the low winds the data were unable to be calibrated, so they are not used

for this work. The first flight through Ingrid when it was a tropical storm suffered from

the same circumstances. Tropical Storm (TS) Karen was characterized by low winds
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and significant rain, resulting in little usable data for this dissertation. Therefore,

only data from Hurricane Ingrid is used here.

The 2014 winter season was once again out of Halifax, NS. IWRAP generally

observed rain-free conditions with winds in the 20 m s−1 to 30 m s−1 range. However,

one of the challenges with relying on SFMR in the winter is that the retrieval algorithm

does not work reliably when crossing steep SST gradients. As this was an issue this

year, some flights from this season were omitted.

Effectively all of the hurricane 2014 season was able to be used for this dissertation,

with the exception of flights before and after hurricanes. The season started off with

a flight through AL96, which would turn into Hurricane Cristobal on August 26.

Flights through Hurricane Edouard on September 15 and 16 presented the highest

winds observed by IWRAP since before 2011, with wind speeds exceeding 40 m s−1

according to SFMR. However, Hurricane Gonzalo on October 16 and 17 had winds

exceeding even Edouard, reaching 50 m s−1 (Category 3). At these high winds IWRAP

was configured to operate in VV/VH mode, meaning they alternated between the two

polarization configurations after a set number of profiles. This means that there is less

HH-polarized data at the highest wind speeds. Additionally, some of the highest winds

were contaminated by rain. Despite these limitations, this season provided most of the

data at the high end of the wind speed range observed in all seasons, near 45 m s−1.
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CHAPTER 3

HIGH-WIND-SPEED RAIN-FREE GEOPHYSICAL
MODEL FUNCTION IMPROVEMENT

3.1 Introduction
Radar scatterometers are used to remotely sense ocean surface wind vectors. These

instruments have traditionally operated in the C-band (4 GHz to 8 GHz) and Ku-band

(12 GHz to 18 GHz). Since 2003, the Microwave Remote Sensing Laboratory (MIRSL)

at the University of Massachusetts Amherst (UMass) has regularly operated an air-

borne scatterometer, the Imaging Wind and Rain Airborne Profiler (IWRAP), that

utilizes both frequency bands [18]. MIRSL has a data archive from this instrument

dating back to 2005.

Ocean vector wind retrievals are based on the normalized radar cross-section

(NRCS), or σ0, measured from the ocean surface. NRCS is typically modeled by

the function

σ0 (U10N , θ, χ, p, λ) =A0 (U10N , θ, p, λ)

+ A1 (U10N , θ, p, λ) cosχ

+ A2 (U10N , θ, p, λ) cos 2χ,

(3.1)

where χ is the wind-relative azimuth angle, θ is the incidence angle, p is the polariza-

tion, and λ is the wavelength. The geophysical model function can be used to retrieve

the most likely wind speed and direction that would produce the NRCS observed.
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(3.1) can also be written

σ0 = A0 (1 + a1 cosχ+ a2 cos 2χ) (3.2)

to eliminate the influence of A0 on the higher harmonics during analysis. While the

general shape of this model fits the geophysical response of the ocean surface in NRCS,

the model does not match well its minima with the physical crosswind directions (90◦

and 270◦ azimuth). The locations in azimuth of the minima of the model depend

on the amplitudes of both the A1 and A2 terms. These locations are determined by

minimizing the derivative of (3.1):

dσ0

dχ
= −A1 sinχ− 2A2 sin 2χ. (3.3)

The locations of NRCS minima (where (3.3) is 0) are at the azimuth

χmin = cos−1
(−A1

4A2

)
, (3.4)

and 360◦ − χmin.

A0 is the mean term and has a strong response to wind speed. A1 controls the

upwind/downwind anisotropy; the difference between upwind and downwind peaks (in

linear units) is 2A1. A1 and A2 combine to control the upwind/crosswind difference,

assuming crosswind is at χmin:

σ0
up − σ0

cross = (A1 + 4A2)2

8A2
= A0

(a1 + 4a2)2

8a2
. (3.5)

If a1 is small relative to a2, then (3.5) becomes 2A2.
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The parameterization of the A0, A1, and A2 terms from (3.1) is chosen following

the formulation in [30]:

A0 (U10N , θ, p) = 10β(U10N ,θ,p) · [U10N ]γ0(U10N ,θ,p)

· [U10N ]γ1(U10N ,θ,p)·log(U10N )

· [U10N ]γ2(U10N ,θ,p)·log2(U10N ) ,

(3.6)

A1 (U10N , θ, p) = A0 (U10N , θ, p) · [c0 (U10N , θ, p)

+ c1 (U10N , θ, p) · U10N

+ c2 (U10N , θ, p) · U2
10N ] ,

(3.7)

A2 (U10N , θ, p) = A0 (U10N , θ, p) · [d0 (U10N , θ, p)

+ d1 (U10N , θ, p) · U10N

+ d2 (U10N , θ, p) · U10N · tanh
(

U10N

d3 (U10N , θ, p)

)
],

(3.8)

where U10N is the 10 m equivalent neutral wind speed, θ is the incidence angle, and

p is the polarization. The dependence of all these parameters on frequency band is

implied. Expressed in decibel units, (3.6) may be written

A0 (U10N , θ, p) = 10 · [β + γ0 (U10N , θ, p) log (U10N)

+ γ1 (U10N , θ, p) log2 (U10N)

+ γ2 (U10N , θ, p) log3 (U10N) ] . (dB)

(3.9)

The convention in the remainder of this document will be for A0 to be expressed in

dB units while A1 and A2 are in linear units.
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With a few exceptions, scatterometer geophysical model function have not been

specifically developed for high wind speed operation. A high-wind-speed GMF was

developed in 2006 by Fernandez et al. [30] (hereafter referred to as the IWRAP GMF).

They used data from the IWRAP airborne scatterometer in C-band and Ku-band at

VV- and HH-polarization, along with surface wind speed retrievals from Stepped

Frequency Microwave Radiometer (SFMR) as a reference. The data was collected

from 10 hurricanes between 2002 and 2003 in wind speeds from 25 m s−1 to 65 m s−1.

One of the notable observations of this work was a saturation in the backscatter

response at high wind speeds: beyond a certain wind speed, the NRCS does not

increase. Additionally, the HH-pol NRCS at high incidence angles appears to be the

co-pol configuration that saturates at the highest wind speeds, making it a good

choice for high-wind-speed retrievals.

The CMOD5.n model function [33] was developed as the latest adjustment in a

long history of C-band VV-polarization model functions in the CMOD family [34].

CMOD5 is claimed to increase the maximum wind speed capability of the GMF to

35 m s−1 [35]. The most recent revision, CMOD5.n was developed to remove an ob-

served 0.5 m s−1 underestimation of wind speed retrievals from the ERS scatterometer.

Soisuvarn et al. [36] developed a hybrid model function based on CMOD5.n and

the saturation wind speed of the IWRAP GMF. In order to improve retrievals from

ASCAT at wind speeds above 10 m s−1, they modified the wind speed response of the

azimuthal mean term of CMOD5.n. They did not alter the performance of the GMF

below 10 m s−1 or the directional retrieval accuracy. By requiring saturation in the

GMF, disagreement with QuikSCAT and WindSat retrievals at wind speeds above

15 m s−1 was reduced.

Ricciardulli andWentz [37] used data from the SeaWinds scatterometer on QuikSCAT

to develop the Ku-2011 GMF at Ku-band. QuikSCAT operated at both VV and HH

polarizations, each with a different incidence angle: 53◦ at VV-polarization and 46◦ at
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HH. They used 7 years of rain-free winds from the WindSat polarimetric radiometer

as ground truth wind speeds [38] to calibrate the scatterometer between 20 m s−1 and

30 m s−1.

With the exception of the IWRAP GMF, these model functions were designed for

use at the low end of the wind speed range observed in this dissertation. Despite this,

they are the closest GMFs that exist for comparison with high-wind data.

3.2 Adjustment to theWind Speed Dependence of the IWRAP

Geophysical Model Function
When the IWRAP GMF was originally developed, it used wind speeds retrieved

from SFMR2 as its ground truth. In 2007, after the IWRAP GMF was developed, an

adjustment was made to the SFMR excess emissivity model to correct an observed

low bias at extreme wind speeds and a high bias lower than about 58 m s−1. The

model developed in 2003 is a quadratic wind-speed-dependent model while the 2007

model is quadratic only between 7 m s−1 to 31.9 m s−1. Outside of this range it is linear.

Figure 3.1 illustrates the change in retrieved wind speed due to the different emissivity

model. The solid line shows the 2003 wind speed retrievals for the equivalent retrievals

with the 2007 model. Additionally, AOC obtained its own SFMR for operational use

on the WP-3D aircraft, making SFMR2 somewhat redundant.

In order to correct the IWRAP GMF for this adjustment to the wind speeds it

depended on, the following algorithm was performed for each coefficient in (3.1) (note

the term “vector” is used in the sense of linear algebra here):

1. Generate a vector of wind speeds from 25 m s−1 to 65 m s−1 in increments of

5 m s−1 (the “true” wind speed);

2. Compute Tbs for this vector of wind speeds (with all other parameters fixed)

using the new excess emissivity GMF;
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3. Perform wind speed retrievals from these Tbs using the 2003 model;

4. Compute the scatterometer GMF coefficients for these retrievals using the ex-

isting IWRAP GMF;

5. Perform a least-squares fit to these coefficients using the “true” vector of wind

speeds as the dependent variable.

For the adjustment to a2, the d3 parameter was held constant since these were stated

to have been obtained from Donnelly et al. [39] (though the d3 parameter at the lowest

incidence angle at each radar seems to have been interpolated from the values at the

lowest two incidence angles). The final parameters obtained as a result of applying this

correction are shown in tables 3.1 to 3.3. The GMF change is illustrated in figure 3.2.

Note that the overestimation of wind speeds below approximately 58 m s−1 resulted

in an increase in the NRCS as a function of wind speed and vice versa for winds

above 58 m s−1. This correction likely also modifies the saturation wind speed at each

polarization and incidence angle, but these values were not derived again.

3.3 Variability and Calibration Methods
Normalized radar cross-section of the ocean surface measured by a scatterometer

varies from one pulse to the next. However, the sampled NRCS also changes with

respect to SFMR wind speed during flights, between flights, and between seasons

despite accounting for system changes through external calibration of the IWRAP

radars. Figure 3.3 shows the NRCS as a function of SFMR wind speed from four flights

during the 2014 hurricane season. The data are from the 47.4◦ VV-polarization C-band

radar channel. The solid lines are means for each season (with one composite mean)

with standard deviations shown as the error bars. The differences between data points

within the same wind speed bin and between each flight are explained by variability

in any of four categories: statistical variability, geophysical variability, calibration
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Figure 3.1. Illustration of the change in SFMR model of excess emissivity due to
wind. The 2003 model overestimated wind speeds below approximately 58 m s−1.

Table 3.1. Remapped IWRAP GMF Coefficients: A0 Parameters

Radar Pol. Incidence
Angle (◦) β γ0 γ1 γ2

C-band

VV

29.0 −3.1803 3.3693 −0.9923 0
34.0 −4.1806 4.2092 −1.1996 0
40.0 −4.9856 4.8417 −1.3290 0
50.0 −6.2902 6.2018 −1.7647 0

HH

31.0 −4.2560 4.0461 −1.1776 0
36.0 −5.3874 5.0899 −1.4213 0
42.0 −5.9355 5.3750 −1.4185 0
49.0 −6.6837 5.8551 −1.4971 0

Ku-band

VV

29.0 22.4580 −46.2950 30.9660 −6.8162
34.0 3.0119 −10.0330 8.2751 −2.0871
39.0 4.8190 −14.6660 11.7330 −2.9123
48.0 −7.0057 7.5170 −2.5001 0.1377

HH

29.0 −0.0529 −2.8521 3.1881 −0.9273
35.0 −2.0343 −0.6112 2.2958 −0.8152
41.0 0.0103 −5.5130 5.6316 −1.5354
48.0 2.1492 −11.0850 9.5888 −2.4097
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Table 3.2. Remapped IWRAP GMF Coefficients: a1 Parameters

Radar Pol. Incidence
Angle (◦) c1 c2 c3

C-band

VV

29.0 7.6260 · 10−3 4.9330 · 10−3 −3.1680 · 10−5

34.0 −4.2310 · 10−3 7.6040 · 10−3 −5.7510 · 10−5

40.0 −1.0300 · 10−1 1.2600 · 10−2 −1.2520 · 10−4

50.0 −3.9680 · 10−1 2.1360 · 10−2 −2.2440 · 10−4

HH

31.0 7.0380 · 10−2 3.5170 · 10−3 −2.5170 · 10−5

36.0 −4.6340 · 10−2 1.1460 · 10−2 −1.1180 · 10−4

42.0 9.4450 · 10−2 3.7730 · 10−3 −3.3660 · 10−5

49.0 −1.8120 · 10−2 9.1030 · 10−3 −1.0720 · 10−4

Ku-band

VV

29.0 2.0050 · 10−3 3.2440 · 10−4 4.1830 · 10−5

34.0 1.6810 · 10−1 −7.8220 · 10−3 1.2430 · 10−4

39.0 4.4690 · 10−2 −9.7860 · 10−4 3.5080 · 10−5

48.0 −5.6340 · 10−2 4.6660 · 10−3 −3.2150 · 10−5

HH

29.0 1.4590 · 10−1 −6.1500 · 10−3 9.6960 · 10−5

35.0 2.0460 · 10−1 −8.2260 · 10−3 1.2180 · 10−4

41.0 1.2190 · 10−1 −4.7380 · 10−3 8.0160 · 10−5

48.0 1.1540 · 10−2 1.0410 · 10−3 2.4830 · 10−5

Table 3.3. Remapped IWRAP GMF Coefficients: a2 Parameters

Radar Pol. Incidence
Angle (◦) d1 d2 d3 d3

C-band

VV

29.0 −1.7960 · 10−1 3.9680 · 10−2 −3.7520 · 10−2 3.00 · 101

34.0 −7.7830 · 10−2 5.9610 · 10−2 −5.7680 · 10−2 2.00 · 101

40.0 1.1890 · 10−1 3.5170 · 10−2 −3.6610 · 10−2 1.80 · 101

50.0 5.9390 · 10−2 4.1520 · 10−2 −4.1980 · 10−2 1.90 · 101

HH

31.0 −1.0340 · 10−1 2.9500 · 10−2 −2.8490 · 10−2 3.00 · 101

36.0 −2.2980 · 10−1 7.4780 · 10−2 −7.0600 · 10−2 2.00 · 101

42.0 1.8210 · 10−1 1.6900 · 10−2 −1.9890 · 10−2 1.80 · 101

49.0 7.4150 · 10−2 4.0130 · 10−2 −4.0950 · 10−2 1.90 · 101

Ku-band

VV

29.0 −6.8130 · 10−1 1.1670 · 10−1 −1.0470 · 10−1 2.30 · 101

34.0 −6.3290 · 10−1 1.5330 · 10−1 −1.3960 · 10−1 2.00 · 101

39.0 −1.5200 · 10−1 3.1910 · 10−1 −3.1460 · 10−1 1.20 · 101

48.0 1.8650 · 10−1 3.6570 · 10−1 −3.6190 · 10−1 1.10 · 101

HH

29.0 −4.0770 · 10−1 9.5000 · 10−2 −8.5990 · 10−2 2.30 · 101

35.0 −5.1330 · 10−1 1.0640 · 10−1 −9.5910 · 10−2 2.00 · 101

41.0 −5.0670 · 10−2 2.5930 · 10−1 −2.5590 · 10−1 1.20 · 101

48.0 −1.0630 · 10−1 3.3980 · 10−1 −3.3530 · 10−1 1.10 · 101
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Figure 3.2. Illustration of the change in IWRAP GMF due to a change in the SFMR
GMF. The upper curves are the old (dashed) and remapped (solid) C-band VV-
polarization GMF at 50◦. The lower curves are the old (dash-dotted) and remapped
(solid) C-band HH-polarization GMF at 49◦. An underestimation of SFMR wind
speeds above approximately 58 m s−1 results in an expected lower observed NRCS.
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Figure 3.3. Mean IWRAP NRCS (A0) vs. SFMR Wind Speed for four flights in
the 2014 hurricane season, illustrating variability both within a flight and between
flights. These data are from the outer incidence angle (47.4◦) of the C-band radar
at VV-polarization. The points are A0 estimates from individual wind vector cells of
alongtrack distance 0.5 km. The data are binned into 2.5 m s−1-wide wind speed bins.
The solid lines are the interquartile means and the error bars are the interquartile
standard deviations.

uncertainty, and sampling uncertainty. Here each potential source is described and

the offsets observed in the IWRAP data are explained.

3.3.1 Statistical Variability

Statistical variability is an apparent change in the observed scene due to motion

of the scatterers relative to the antenna. For every measurement of the ocean surface

made by a scatterometer, a spot on the surface containing multiple scatterers is

illuminated. The echo measured by the radar is a vector sum of these scatterers. The
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phase of the vector component of the total is related to the distance of the radar

from each scatterer. Any change in antenna position relative to the illuminated area

results in a different coherent average, even from the same scatterers. This phenomena

is called fading, and it is the primary contributor to statistical variability.

The fading process is expected to be a zero-mean random process. Given many

independent realizations of the surface NRCS, the uncertainty of the mean should be

small. The effect of fading on mean NRCS should not vary much from one season

to the next, or even between flights provided that there are sufficient samples in the

average.

3.3.2 Geophysical Variability

Geophysical variability is a change in the observed scene due to a geophysical

phenomenon other than wind speed and wind-relative antenna direction. The observed

scene can either refer to the backscattered power seen by IWRAP or the brightness

temperature attributed to the ocean surface wind speed by the SFMR. A change that

is not accounted for in either NRCS or surface wind speed will contribute to this

variability.

The ocean surface is a complex target with many features contributing to backscat-

tered power. The widely-accepted theoretical model for scattering at C- and Ku-bands

at low to moderate wind speeds is the Composite Surface Model or Composite Bragg.

In this model, Bragg scatterers riding on top of waves with longer wavelengths res-

onate with the wavelength of the radar. However, there are other sea-surface features

that could account for scattering but are not accounted for in the theoretical or

most empirical models. Those features include are sea spray, plumes, sloshes or hy-

draulic shocks, pools of surface roughness associate with breaking waves, and wedge-

or pyramid-shaped structures [40]. Sea ice is frequently observed during the winter

flight experiments, but these areas are easily eliminated from consideration (in the
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absence of visual confirmation of the surface, SFMR retrievals over ice are sporadic,

often reporting extreme, unrealistic wind speeds). Downdrafts associated with precip-

itation, precipitation splash effect, and attenuation and scattering due to precipitation

are accounted for in the rain-free NRCS observations. Some other variables that are

neglected include:

Atmospheric stratification Air-sea temperature differences result in a different

mapping between surface stress and 10 m equivalent neutral wind speed. Since

scatterometers respond to wind stress, the sampled NRCS will not reflect the

true wind speed at 10 m height if there is a large air-sea temperature gradient.

The SFMR, however, retrieves true wind speed at 10 m [27]. This difference is

estimated to be on the order of ±0.5 m s−1 in wind speed or 0.3 dB to 0.6 dB

in NRCS at low wind speeds [41]. It is not significant at high wind speeds,

compared to other sources of variability. Not only does the NRCS approach

saturation—so any offset in wind speed translates to smaller NRCS—but the

ratio between U10N and U10 goes to unity as U10 increases [2].

Ocean surface currents There is some evidence that scatterometers are affected

by ocean surface currents [42]. This makes sense considering that the definition

of wind stress is “the vector difference between wind and current” [41]. This

effect is estimated to be less than 1 m s−1 in wind speed or 0.5 dB to 1 dB in

NRCS at low wind speeds. The surface current component of the stress vector

becomes less significant at high wind speeds compared to the wind vector, so

the error due to surface current is expected to decrease as wind speed increases.

Sea state Some scatterometer observations show a dependence of NRCS on signifi-

cant wave height and significant wave steepness [7], [43]. Mouche et al. [7] note

an effect on polarization ratio ( σ
0
V V

σ0
HH

) of about 1 dB over each of the ranges of

wave height and steepness. Zhang et al. [43] find comparable effects within the
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same wind speed range from other instruments, with perhaps a slightly larger

dependence on significant wave height. Fetch and duration are typically ne-

glected when analyzing scatterometer data, due to the size of the footprint of

the scatterometer [44]. These phenomena, however, may be more significant at

the scales observed by IWRAP and the SFMR. Powell et al. [45] show a vari-

ation of ±2 m s−1 in SFMR-retrieved winds with respect to GPS dropsondes,

depending on location of SFMR retrieval within a tropical cyclone (TC). This

amount of wind speed error can cause up to 2 dB of error in mean NRCS. They

attribute the variation to swell effects on wave breaking. When the swell and

wind are moving in the same direction, fewer waves break and produce less

foam; the opposite effect happens when swell and wind oppose each other.

Sea surface temperature and salinity The SFMR retrieval is dependent to a

small degree on SST and salinity. Occasionally, the high-latitude winter flight

experiments will cross steep SST gradients. At wind speeds above 20 m s−1,

wind speed errors are less than ±2 m s−1 (less than 0.6 dB in NRCS) for SST

errors of ±3 ◦C, and salinity errors are relatively insignificant [28]. These errors

are smaller than the RMS error of the SFMR compared to GPS dropsondes

(2.5 m s−1), which is the wind speed bin size chosen for averaging.

Each of these could vary with season, flight, or even location in the flight pattern. The

most significant geophysical variability in IWRAP observations, especially between

flights, is expected to come from that of the sea state.

3.3.3 Sampling Uncertainty

The sampling uncertainty is the variability in the sampled transmit pulse peak

power Pt,s or the peak surface echo power due to the sampling frequency. Prior to

the 2013 hurricane season the IWRAP digital receiver sampled at 80 MHz; since then

it has sampled at 100 MHz. In both cases the receiver samples an IF signal centered
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at 30 MHz with a maximum bandwidth of 4 MHz. After sampling, the data samples

are decimated by a factor of 16, resulting in an output bandwidth of 4 MHz. Both

the 200 ns pulse and the 10 µs chirp (at 4 MHz bandwidth) are undersampled at this

rate. The bandwidth of the DR must be twice the bandwidth of the signal in order to

prevent aliasing. Additionally, the DR samples at a slightly different time every time it

is restarted, causing some slight apparent transmit power changes to occur. A change

in Pt in (3.10) results in a change to the measured NRCS. If these apparent changes

are a function of the sampling bandwidth in the digital receiver, and do not reflect

a change in real transmit power, then they cause additional spread in the NRCS.

Figure 3.4 shows an example of A0 as a function of wind speed for a flight during

which the measured Pt,s changed significantly. The actual Pt,s likely did not change

by the same amount, resulting in a vertical offset of the A0 data. This channel was

not able to be calibrated for this flight, so it was omitted from analysis. Figure 3.5

shows the pulse-compressed channel from the same radar and the same flight. It does

not appear to have the same issues as the pulsed channel, so it was included in the

analysis.

3.3.4 Calibration Offset

The calibration offset of an IWRAP radar (C-band or Ku-band) is the difference

of the mean NRCS sample with respect to the true NRCS at any given wind speed,

when all other geophysical variables are considered. This can be accounted for in

two variables: the PA output power at the input to the antenna (Pt) and the over-

all receiver gain (Grec). The transmit power is used to calculate the NRCS as seen

immediately above the antenna:

σ0 = (4π)3 R4 Pr
PtG2 λ2 Aill

, (3.10)

43



15 20 25 30

−6

−4

−2

0

uc2/20140128/l2a/ VV

15 20 25 30
Wind Speed (m/s)

−6

−4

−2

0

A
0 (

dB
)

IWRAP 29.0°
Mean

Figure 3.4. Mean NRCS (A0) estimates, shown as empty circles, for the inner angle
of the C-band radar at VV-polarization for the flight experiment on January 21, 2014.
A0 samples are grouped into wind speed bins of 2.5 m s−1 and averaged. The mean
A0 values for each bin are plotted as filled circles and the standard deviations are the
error bars. The IWRAP GMF, which is only valid above 25 m s−1, is shown as a blue
solid line. Note the vertically displaced cloud of NRCS measurements, which skews
the mean in at least 3 wind speed bins.
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Figure 3.5. Mean NRCS (A0) estimates, shown as empty circles, for the outer angle
of the C-band radar at VV-polarization for the flight experiment on January 21, 2014.
A0 samples are grouped into wind speed bins of 2.5 m s−1 and averaged. The mean
A0 values for each bin are plotted as filled circles and the standard deviations are the
error bars. The IWRAP GMF, which is only valid above 25 m s−1, is shown as a blue
solid line. These NRCS measurements are consistent over the flight.
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whereR is the slant range to the surface, Pr is the received power, Pt is the transmitted

power, G is the antenna gain, λ is the wavelength, and Aill is the illuminated area.

The measured receiver gain is required in order to map voltages sampled by the digital

receiver to input voltages at the antenna. If either Pt or Grec is measured improperly,

the measured NRCS will be affected in the same way. A calibration error will appear

as a systematic bias in the NRCS when compared with another radar measuring the

same quantity.

Due to the fixed sampling rate, R is known to within 30 m. Aill is a function of

altitude, instantaneous incidence angle (which is a function of azimuth and aircraft

attitude), and antenna beamwidths, which are all known quantities. And while an-

tenna gain G is not precisely known at all frequencies, it can at least be reasonably

assumed to be unchanging over time. Therefore, any change in measured NRCS over

time should not be due to changing antenna gain, range uncertainty, or uncertainty

about the illuminated area.

Grec is the amount of gain from the input of the LNA to the output of the digital

receiver. So to calculate Pr in (3.10), Grec and the losses up to the LNA input from

the digital receiver samples need to be removed. As shown in figures 2.2 and 2.3, the

calibration loop allows for measurement of changes in PA output. In both calculations,

it is assumed that Lcal, Lrx, Ltx, Lcable, and Lant are static and known quantities. The

sample of the transmit pulse in the measured profile combines any change in either of

the two quantities Pt and Grec. In other words, a change in amplitude of the sampled

transmit power peak, Pt,s, cannot be attributed to a change in PA output without

assuming Grec is known. While Grec is estimated twice each season from external

measurements performed on the ground, changes to the system of unknown quantity

may occur when disconnecting and reconnecting components. So Grec is estimated for

each profile from the sampled noise power and the computed noise power (kTBF ) of

the system.
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The calibration loop loss, Lcal, is estimated twice each season during ground cal-

ibration of IWRAP. The transmit power is measured by a peak power meter at the

same time as the digital receiver records the pulse through the calibration loop. The

transmit power at the output of the PA is calculated by adding any intervening loss

to the power meter measurement. The receiver gain is also estimated by injecting a

signal of known power into the receiver while the digital receiver records the level. The

power at the input to the LNA is estimated by subtracting the measured receiver gain

from the digital-receiver-sampled peak transmit power. From this measurement and

the output of the PA, Lcal is estimated for the season. This procedure is performed

to take into account changes in the calibration loop that naturally occur when unin-

stalling and reinstalling the system. This is another potential source of error from

season to season, as it affects Pt,s, though it is small. However, like antenna gain, it

can be considered to be a constant offset for each season.

To remove the uncertainty primarily due to unknown antenna gain G, insertion

loss of the antenna, and Lcal, an adjustment is made to the NRCS so that the mean

A0 taken over many samples within a wind speed range matches the existing IWRAP

GMF. If this method truly removes the calibration bias, the measured A0 should be

comparable to the existing IWRAP GMF. This adjustment is applied to individual

seasons under the assumption that once the radar is installed, the gain and insertion

loss of the antennas remain consistent. The wind speed range chosen for removing

calibration bias is one that is reliable in both the SFMR and the IWRAP systems,

and one that is valid for both GMFs: 25 m s−1 to 27 m s−1. All NRCS A0 estimates

for rain-free wind vector cells measured at level flight within this SFMR wind speed

range for each available incidence angle, frequency band, polarization, and flight are

collected for the calibration procedure to be performed on each combination. For

each combination of polarization and frequency (and, thus, incidence angle), this

adjustment should be clustered around a central offset for each season. The scatter
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is attributed to statistical and geophysical variation, and the offset can be attributed

to calibration bias. However, all of this discussion relies on consistent samples of

Pt and Pr. If either of these variables are inconsistently sampled—for example, if

the sample timing of the transmit power changes unexpectedly—then the calibration

offset cannot be determined.

3.4 Methodology for Developing a New Rain-Free Geophys-

ical Model Function
3.4.1 SFMR Reprocessing

Though surface wind speed and rain rate are retrieved in real-time, SFMR Tbs

are reprocessed using quality-controlled aircraft data (e.g., radar altitude and ambient

temperature) and modeled ocean SSTs and salinities. This is done in order to remove

errors due to the retrieval algorithm implemented in SFMR and mismatched real-

time data from the aircraft. Errors in the SFMR retrievals due to SST and salinity

are minimized by using models (NOAA/NCDC AVHRR Daily-OI-V2 and HYCOM

GLBa0.08, respectively) for the time and location nearest to each point in a flight

experiment.

SFMR reprocessing starts with a 5 s boxcar average performed on each Tb chan-

nel. Bias with respect to the GMF is then removed from the Tbs by the following

algorithm:

1. Perform retrieval, retaining the difference (εi = Tb,measured,i−Tb,modeled,i) for each

retrieval;

2. Obtain mean εi (ε̄i) for each Tb channel, after removing outliers that are more

than two standard deviations away from the mean;

3. Subtract the mean of ε̄i from all Tb channels (i.e., one value is obtained from

all ε̄i).
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Any retrievals within 10 km of land are eliminated using a landmask generated by

GMT (Generic Mapping Tools) version 4.5.9 and the GSHHG (A Global Self-consistent,

Hierarchical, High-resolution Geography) database.

3.4.2 IWRAP Data Processing

To develop a new rain-free geophysical model function, IWRAP measurements

and SFMR surface wind speed retrievals are collocated. NRCS measurements from

IWRAP are averaged into alongtrack cells of 2.5 km length. Each cell is divided into

64 track-relative azimuth bins, resulting in an average over 5.625◦ per bin. All radar

beams for each polarization resulting in a surface echo within an alongtrack cell are

averaged within these azimuth bins. Figure 3.6 illustrates the along-track averaging

scheme. SFMR and some location data are associated with an alongtrack cell only

when the aircraft is over the cell. Only data taken when the aircraft is level is used,

in order to limit the effects of non-uniform incidence angle. Level flight is considered

to be when the instantaneous incidence angle of the radar beam is within ±2◦ of

nominal. This threshold was chosen in order to keep the number of profiles discarded

solely due to incidence angle below 10 %. The percentage of profiles discarded within a

wind speed bin due to incidence angle do not depend on wind speed; that is, there are

not significantly more profiles discarded at high wind speeds (e.g., during hurricane

eyewall penetrations). The small threshold on incidence angle also limits the effects

of polarization mixing (i.e., sampling NRCS at a polarization that is not purely V-

or H-polarization) due to aircraft attitude.

Before averaging, any incidence angle dependence is removed from NRCS measure-

ments by referencing an existing GMF. Given the SFMR wind speed and flight-level

wind direction, the theoretical NRCS is computed via the GMF at the nominal inci-

dence angle and the instantaneous incidence angle. The ratio of these calculations is

multiplied with the NRCS (in linear units). The GMF used at C-band is the CMOD5.n
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0.5 km

Figure 3.6. Schematic diagram of the binning scheme for one wind vector cell. Air-
craft motion is upwards and illumination of the surface is shown as solid circles. An
NRCS sample is included in the average if the center of the beam falls between the
solid lines. Azimuthal averaging is not depicted.

GMF [35] (the polarization ratio from Vachon and Wolfe [6] is then applied for HH-

pol). At Ku-band, the NSCAT2 GMF is used, which is a dual-polarization function

of incidence angle.

Any NRCS values affected by rain, whether that is by attenuation and scattering

or by surface modification, are discarded. Rain between the aircraft and surface is

tested by way of the normalized spectral width, and values below 0.30 are flagged

as rain-contaminated. Additionally, any wind vector cell with an SFMR wind speed

below 15 m s−1 or rain rate above 5 mm h−1 is discarded; these are the minimum values

reliably retrievable from the SFMR [28].

Some along-track cells will not have data at some azimuth angles due to aircraft

attitude, the presence of rain, or other circumstances. In order to ensure a reasonable

amount of confidence in the A0 estimates, a threshold is placed on coverage in azimuth.

For each 2.5 km wind vector cell, the percentage of data points missing in the azimuth

dimension is calculated and cells that are missing more than 25 % of their samples in

azimuth are discarded.
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For each remaining along-track cell, there will be a set of NRCS values that fall

into the cell, the number of which depends on the ground speed of the aircraft and

the actual rotation rate of the antenna. Once collected into a cell, the NRCS samples

are grouped into 64 azimuth bins (5.625◦ per bin). The sample standard deviation

of the NRCS data for each cell is also calculated per azimuth bin. The SFMR sam-

ples from the time the aircraft was over the cell are averaged together, since it is a

nadir-pointing instrument. Any SFMR samples from incidence angles exceeding 3◦

are discarded. Since this is a nadir-pointing instrument mounted at −2◦ pitch, this

is largely determined by the roll of the aircraft; the WP-3D usually flies at 1.5◦ to

2.5◦ pitch. This is different than the limit placed on NRCS samples, however, since

instantaneous incidence angle in the case of IWRAP is also determined by antenna

azimuth. NRCS data from each cell are fit to

σ0 = A0 + A1 cosχ+B1 sinχ+ A2 cos 2χ+B2 sin 2χ (3.11)

to determine the surface wind direction, taken to be the maximum of the fit. The

median of the wind direction over 5 cells (12.5 km) of continuous flight time is used

as the true surface upwind direction for each cell.

At extreme wind speeds, the difference between upwind and downwind is some-

times masked by noise. By using the peak NRCS as upwind, over many averages this

can cause a false peak at the apparent upwind and a flat section in the apparent

downwind direction. This is not a geophysical response; it is a result of accumulating

more peak values for the 360◦ scan around 0◦. To help alleviate this problem, one

of two numerical ocean surface wind vector models is used. If the model wind direc-

tion for a cell is more than 90◦ (or 16 azimuth bins) away from the NRCS-estimated

direction, the estimated direction is adjusted by 180◦.

These cells are grouped by SFMR wind speed in 2.5 m s−1 bins beginning at

15 m s−1. 2.5 m s−1 was chosen to account for the uncertainty of the SFMR retrievals
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with respect to GPS dropsondes [28]. The data are shifted so upwind is at 0◦ azimuth

and are averaged within azimuth bins, resulting in 64 points per wind speed bin.

These points are fit to the model described by (3.1). For each frequency, polar-

ization, and incidence angle, one term from (3.1) is selected for fitting. This term is

estimated for each 2.5 m s−1-wide bin via a least squares fit of (3.1). Parameters of

the selected term are derived using separate least squares fits to these estimates, with

the independent vector chosen to be the center wind speeds of each bin. Except for

d3 and γ2, all parameters are allowed to vary as required to minimize the χ2 error.

This process is repeated for each term.

As mentioned in section 3.2, in the development of the original d3 parameter

in (3.8) for the IWRAP GMF was taken from Donnelly et al. [39]. This parameter,

along with d2, determines the wind speed at which a2 reaches a maximum. By setting

d3 to a constant, (3.8) becomes a linear equation but does not drastically impact the

shape of the resulting fit. So for development of this GMF, the d3 values given in

Donnelly et al. [39] are used.

The results of (3.9) are in decibel units, which is a logarithmic expression of power.

The dependent variable of (3.9) is a logarithm, so the equation is cubic in log-log

space. In Fernandez et al. [30], the cubic term (with parameter γ2) was added to the

Ku-band A0 parameterization in order to better model the fast decrease in A0 at the

highest wind speeds. It has also been included here, but since the same extreme wind

speeds are not observed any changes to the Ku-band model should be minimized. To

accomplish this, a least-squares fit to the data is performed, fixing γ2 at the value from

the IWRAP GMF at the closest incidence angle. After this fit is complete another fit

is performed, allowing γ2 to vary while fixing the other parameters. As C-band did

not require this parameter, it remains fixed at 0.
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3.5 Results of the New Rain-Free Geophysical Model Func-

tion
Here the results of carrying out the methodology described in the previous section

for IWRAP data from selected flights between 2011 and 2014 are reported. During

these seasons, the frequencies used to generate the particular incidence angles on the

IWRAP instrument were kept consistent—approximately 22◦ and 48◦ for both C-

and Ku-band radars. The exact incidence angle for a given frequency was determined

by minimizing the difference between the estimated incidence angle (the arc cosine of

the altitude divided by the slant-range distance to the peak in surface echo power)

and the computed incidence angle (based on an initial angle estimate and aircraft

attitude) over many samples. The flights selected represent a variety of rain-free ocean

conditions, including those of high-latitude winter storms and Category 3 hurricanes.

Multiple aspects of the NRCS GMF are highlighted. The azimuthal response to

the ocean surface wind vector is illustrated first to provide context for the rest of the

chapter. The GMF is then separated into the mean and higher order components in

order to derive functions of wind speed.

3.5.1 NRCS Response to Azimuth and Wind Speed

Figures 3.7 to 3.10 show NRCS as a function of azimuth for C-band at both

VV and HH polarizations from 15 m s−1 to 45 m s−1. Along with the data, shown

as black circles, and uncertainties of the mean, some GMFs and the fit to (3.1) are

shown. The GMFs are CMOD5.n [35], CMOD5.h [36], IWRAP [30], and C-2013 (per-

sonal communication with L. Ricciardulli, Remote Sensing Systems). As these are all

VV-polarization GMFs, with the exception of the IWRAP GMF, the polarization

ratio from [6] is applied to the GMFs when comparing with HH-polarized data. The

IWRAP GMF was developed at four incidence angles, so the model function at the

closest incidence angle to the data is shown. Interpolation of parameters between
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Figure 3.7. C-band NRCS vs. azimuth for VV-polarization at 21.7◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.

incidence angles to obtain a function at the exact incidence angle of the data is not

performed. The remaining GMFs have a form that is a continuous function of inci-

dence angle, so they can be compared directly. However, since the instrument that was

used to develop these GMFs (ASCAT) does not sample NRCS below 25◦ incidence,

an exact match at the lower incidence angle is not expected.

Figures 3.11 to 3.14 show NRCS as a function of azimuth for Ku-band at both VV

and HH polarizations from 15 m s−1 to 45 m s−1. The GMFs shown are the NSCAT2,

Ku-2011 [37], and IWRAP GMFs. Ku-2011 was developed from QuikSCAT data for
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Figure 3.8. C-band NRCS vs. azimuth for HH-polarization at 22.4◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.
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Figure 3.9. C-band NRCS vs. azimuth for VV-polarization at 47.4◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.

56



0 45 90 135 180 225 270 315 360

−20

−18

−16

−14

−12

−10

15.0−17.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

IWRAP 49.0°
CMOD5.n
CMOD5.h
C−2013
Fit

17.5−20.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

20.0−22.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

22.5−25.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

25.0−27.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

27.5−30.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

30.0−32.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

32.5−35.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

35.0−37.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

37.5−40.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

40.0−42.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

42.5−45.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−20

−18

−16

−14

−12

−10

N
R

C
S

 (
σ0 ) 

(d
B

)

NRCS vs. Azimuth (C−band 47.8° HH)

Figure 3.10. C-band NRCS vs. azimuth for HH-polarization at 47.8◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.
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Figure 3.11. Ku-band NRCS vs. azimuth for VV-polarization at 21.7◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.

one incidence angle at VV (53◦) and HH polarizations (46◦), so the GMF for the

appropriate polarization is shown at the larger incidence angles. The data are shown

as circles with the uncertainty of the mean plotted as the error bars.

3.5.2 Mean NRCS Response to Wind Speed

Figure 3.15 shows the C-band A0 estimates from the previous plots, GMFs, and

the least-squares fits to the estimates. The parameters to the fits are given in table 3.4.

The upper panels are labeled with a vertical offset that is applied to both the IWRAP
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Figure 3.12. Ku-band NRCS vs. azimuth for HH-polarization at 22.2◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.
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NRCS vs. Azimuth (Ku−band 45.6° VV)

Figure 3.13. Ku-band NRCS vs. azimuth for VV-polarization at 45.6◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.
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NRCS vs. Azimuth (Ku−band 46.7° HH)

Figure 3.14. Ku-band NRCS vs. azimuth for HH-polarization at 46.7◦ incidence for
wind speed bins from 15 m s−1 to 45 m s−1. Each wind speed bin is 2.5 m s−1 wide.
Several GMFs are shown alongside the fit to the data, which is shown as a purple
line. The IWRAP GMF was not designed to be used below 25 m s−1, so it is not shown
in this region.
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Figure 3.15. C-band mean NRCS vs. wind speed (A0 term) for 21.7◦ and 22.4◦ in-
cidence (upper panels) and 47.4◦ and 47.8◦ incidence (lower panels), VV-polarization
(left panels) and HH-polarization (right panels). A0 data are shown as filled circles
with the standard deviation of A0 estimates from all wind vector cells shown as the
error bars. GMFs shown where valid are IWRAP (dashed), CMOD5.n (dash-dotted),
CMOD5.h (long dashes), and C-2013 (dotted). The new IWRAP GMF is shown as a
solid line.
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GMF and the data. As described in section 3.3.4, A0 estimates within a small wind

speed range from each season are aligned vertically to match an existing IWRAP

GMF in an attempt to remove calibration errors. The closest GMFs to the data at

22◦ is the 29◦ (VV) and 31◦ (HH) IWRAP models. While this procedure makes the

calibration offset of each flight experiment the same, it does not necessarily remove

the offsets. In this case these GMFs may not represent the mean NRCS at 22◦, so

some residual calibration error remains. Here it is assumed that the CMOD5.n GMF

more closely approaches the true A0 value in the 25 m s−1 to 27.5 m s−1 wind speed

range, so the data and IWRAP GMFs in this range are aligned to CMOD5.n. At HH-

polarization, the alignment includes the polarization ratio from Vachon and Wolfe

[6].

Backscatter from the ocean surface by near-nadir-looking radars have been mod-

eled well with quasi-specular scattering models. As the incidence angle draws closer

to nadir, increasing roughness (e.g., due to the wind speed increasing) results in less

power being scattered back to the radar. Somewhere between 0◦ and 10◦ to 20◦,

backscatter from the ocean surface is produced by a mixture of specular and tilted

Bragg resonance diffraction processes [46]. At about 20◦, the transition between the

geometric optics (or facet-scattering) and Composite Bragg regimes occurs. In these

two regimes there is a wind speed that, depending on the incidence angle, is the upper

limit for increase in NRCS [30], [46]. The inner incidence angles show this saturation

at low wind speeds, relative to the other incidence angles shown, with a continuing

decrease in mean NRCS as wind speed increases.

The new data do not match the existing IWRAP GMF at the low incidence

angles, as there is a significant difference in incidence angle between the GMF and

observation angle. CMOD5.n slightly overestimates the mean NRCS, but the GMF

was not developed with data for incidence angles less than 25◦.
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Figure 3.16. Ku-band mean NRCS vs. wind speed (A0 term) for 21.7◦ and 22.2◦ in-
cidence (upper panels) and 45.6◦ and 46.7◦ incidence (lower panels), VV-polarization
(left panels) and HH-polarization (right panels). A0 data are shown as filled circles
with the standard deviation of A0 estimates from all wind vector cells shown as the
error bars. GMFs shown where valid are IWRAP (dashed), NSCAT2 (dash-dotted),
and Ku-2011 (dotted). The new IWRAP GMF is shown as a solid line.

The polarization ratio applied to obtain HH-polarized C-band model functions is a

simple one that is only dependent on incidence angle and not wind speed. As a result,

it will not have an effect on the shape of the GMF as shown here; it is only a vertical

shift. The difference in backscattered power between the two co-polarized signals is

small at low incidence angles. The model used here predicts approximately 0.3 dB at

22◦ incidence. As the incidence angle decreases, VV- and HH-polarized NRCS should

increase in similarity as there are fewer differences between the orientation of the

fields with respect to the ocean surface. The observations indicate that saturation

wind speeds at both polarizations are similar at approximately 30 m s−1. Beyond the

saturation wind speed, HH-polarization shows a marked decrease in A0 while VV-

polarization shows a slight decrease.
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Figure 3.16 shows the Ku-band A0 estimates, Ku-band GMFs, and fits to the

estimates. As above, the Ku-2011 GMF is shown for the outer incidence angles even

though they are not the same as what was measured by IWRAP. They are all close

enough for comparison at the outer incidence angle HH-polarization. The NSCAT2

algorithm is shown as a dash-dotted line and is used as the final calibration offset,

like CMOD5.n is used above.

The saturation effect is less obvious at Ku-band. Unlike at C-band, Ku-band HH-

polarized data better match the nearest IWRAP GMFs despite the large difference in

incidence angle. Though this is not the expected geophysical behavior, the Ku-band

HH-pol IWRAP GMF has a flatter response than does the VV-pol GMF. Both GMFs

saturate at the same wind speed, but the VV-pol GMF is steeper than HH-pol both

below and above the saturation speed. It is known that as the incidence angle draws

closer to nadir, the slope of the A0 response to wind speed becomes negative, which

results in higher NRCS at lower wind speeds. Near 20◦ incidence, this effect may begin

to manifest itself as a lower saturation wind speed and a low slope in A0 with wind

speed. As a result, for low incidence angle measurements at Ku-band the IWRAP

HH-pol GMF will be closer to the data than the VV-pol GMF. This is primarily due

to the relatively low slope of the IWRAP HH-pol A0 GMF. More data is needed to

verify the results at the highest wind speeds observed.

As at C-band, the outer incidence angles closely follow the high-incidence-angle

IWRAPGMFs above 25 m s−1. The VV-polarization data may start saturating around

40 m s−1, which is not predicted by any of the models shown (though IWRAP 48◦ is

close). On the low end of the data, the fit to the means has a steeper slope than

either Ku-2011 or NSCAT2. This is unexpected since GMFs developed from space-

borne scatterometers typically have good skill at wind speeds below 25 m s−1. While

this may be due to the use of SFMR winds at these speeds, as the brightness temper-
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ature dependence on wind speed is relatively weak in this region, the close correlation

with satellite-based GMFs at C-band seem to refute this explanation.

3.5.3 Response of Higher-Order Coefficients to Wind Speed

Figure 3.17 shows C-band a1 estimates, a fit to these estimates, and the IWRAP

GMF a1 function. The fit uses the parameterization of (3.7) and the parameters to the

fits are given in table 3.5. A1 is first normalized by A0 (i.e. a1 = A1
A0
) by convention.

With either A1 or a1 the effect of wind speed on the upwind/downwind anisotropy

can be observed.

CMOD5.n uses a slightly different model for NRCS with respect to the wind-

relative azimuth, χ:

σ0 (χ) =
( 2∑
i=0

BiZ cos (i χ)
)1.6

≈ B1.6
0Z

(
1 + 1.6H + 0.48H2

)
,

(3.12)

where H = b1Z
cos (χ) + b2Z

cos (2χ) [11]. The subscript Z indicates the coefficient is

in “z-space” as opposed to NRCS-space of the traditional formulation. Reducing the

terms to single harmonics, they obtain an NRCS equation with five harmonics, the

highest four of which are

b1 = 1.6b1Z
+ 0.48b1Z

b2Z
(3.13)

b2 = 1.6b2Z
+ 0.24b2

1Z
(3.14)

b3 = 0.48b1Z
b2Z

(3.15)

b4 = 0.24b2
2Z
. (3.16)

The fourth and fifth harmonics are small, so they are neglected in the upwind/downwind

and upwind/crosswind analyses. Note that these curves are the same as what they
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would be for CMOD5.h, since both GMFs have identical b1 and b2 behavior. As these

lower angles are beyond the designed incidence angle range of CMOD5.n, it is not ex-

pected to be an excellent physical description. It is close enough, however, to provide

a confirmation of the validity of the derived models.

The a1 term for the inner incidence angles are almost 0 for all wind speeds ob-

served. This can be seen in the nearly equal peaks of figures 3.7 and 3.8. The Ku-band

response in figure 3.18 is about the same. The outer angles show a general downward

trend with increasing wind speed. The upwind and downwind peaks are expected to

get closer with increasing wind speed, which would result in an a1 term approaching 0.

The methodology used in this dissertation prevents a1 from going negative, since the

peak NRCS in a wind vector cell is assumed to be the upwind direction. As a result,

a geophysical change in the response with wind speed of the first harmonic may be

masked. Any negative a1 presented here can be attributed to statistical variation.

In both figures 3.19 and 3.20, there is a trend downward towards 0 with wind

speed after an initial peak within 15 m s−1 to 22.5 m s−1. Fits to the data are also

shown as a solid line, the parameters for which are listed in table 3.6. Since the a2

coefficient affects the resulting NRCS most when combined with a1, these results are

examined more closely as the normalized upwind/crosswind difference. This measure

is calculated from a combination of a1 and a2, in figures 3.21 and 3.22. This is also

performed with the existing GMFs when possible.

In figure 3.21, the slope of the VV curves of the fits to the data at C-band are

similar to those of CMOD5.n across the wind speed range. However, the IWRAP GMF

is predicting different behavior in all polarization and incidence angle configurations.

Both CMOD5.n and the recent data show a consistent decrease in upwind/crosswind

sensitivity after approximately 27.5 m s−1, while the IWRAP GMF shows a slight

increase. At the higher incidence angles, the decrease in this difference begins at a

higher wind speed in HH-polarization relative to VV. However, once the upwind and
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Figure 3.17. C-band a1 term (A1
A0
) of the NRCS vs. wind speed for 21.7◦ and 22.4◦ in-

cidence (upper panels) and 47.4◦ and 47.8◦ incidence (lower panels), VV-polarization
(left panels) and HH-polarization (right panels). a1 data are shown as filled circles with
the standard deviation of a1 estimates from all wind vector cells shown as the error
bars. GMFs shown where valid are IWRAP (dashed) and CMOD5.n (dash-dotted).
Note that CMOD5.h has the same a1 response as CMOD5.n. The new IWRAP GMF
is shown as a solid line.
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Figure 3.18. Ku-band a1 term (A1
A0
) of the NRCS vs. wind speed for 21.7◦ and

22.2◦ incidence (upper panels) and 45.6◦ and 46.7◦ incidence (lower panels), VV-
polarization (left panels) and HH-polarization (right panels). a1 data are shown as
filled circles with the standard deviation of a1 estimates from all wind vector cells
shown as the error bars. GMFs shown where valid are IWRAP (dashed) and Ku-2011
(dash-dotted). The new IWRAP GMF is shown as a solid line.
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Figure 3.19. C-band a2 term (A2
A0
) of the NRCS vs. wind speed for 21.7◦ and 22.4◦ in-

cidence (upper panels) and 47.4◦ and 47.8◦ incidence (lower panels), VV-polarization
(left panels) and HH-polarization (right panels). a2 data are shown as filled circles with
the standard deviation of a2 estimates from all wind vector cells shown as the error
bars. GMFs shown where valid are IWRAP (dashed) and CMOD5.n (dash-dotted).
Note that CMOD5.h has the same a1 response as CMOD5.n. The new IWRAP GMF
is shown as a solid line.
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Figure 3.20. Ku-band a2 term (A2
A0
) of the NRCS vs. wind speed for 21.7◦ and

22.2◦ incidence (upper panels) and 45.6◦ and 46.7◦ incidence (lower panels), VV-
polarization (left panels) and HH-polarization (right panels). a2 data are shown as
filled circles with the standard deviation of a2 estimates from all wind vector cells
shown as the error bars. GMFs shown where valid are IWRAP (dashed) and Ku-2011
(dash-dotted). The new IWRAP GMF is shown as a solid line.
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Figure 3.21. C-band upwind NRCS less crosswind NRCS vs. wind speed, calculated
according to (3.5). σ0 is divided by A0 (in linear units) for ease of display. The new
IWRAP GMFs are shown as a solid line. The existing IWRAP GMFs are shown as
a dashed line and CMOD5.n is shown as a dash-dotted line. The trend of the new
IWRAP GMFs matches better with CMOD5.n than with the existing IWRAP GMFs.
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Figure 3.22. Ku-band upwind NRCS less crosswind NRCS vs. wind speed, calculated
according to (3.5). σ0 is divided by A0 (in linear units) for ease of display. The new
IWRAP GMFs are shown as a solid line. The existing IWRAP GMFs are shown as
a dashed line and Ku-2011 is shown as a dash-dotted line. The trend of the new
IWRAP GMFs matches better with Ku-2011 than with the existing IWRAP GMFs.
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crosswind peaks start to converge (towards a difference of 0), they do so at about the

same rates for each polarization. The inner incidence angles show nearly the same

response, with the exception of a slight increase with wind speed under 22.5 m s−1.

At Ku-band, there are no suitable GMFs at low incidence angles with which the

data and existing IWRAP GMF can be compared. At the outer incidence angles, the

parameters of the Ku-2011 GMF are available though they are not an exact incidence

angle match. With the possible exception of the inner angle HH-polarization behavior,

the IWRAP GMF indicates that upwind and crosswind are only beginning to diverge

at the highest wind speeds observed here. These data, however, indicate that the

opposite is happening (the upswing at the tail end of the 22.2◦ HH-polarization and

outer incidence angle curves are probably anomalous and due to the small a2 values in

the denominator of (3.5)). As at C-band, the peaks of the revised Ku-band GMF at the

inner incidence angles diverge as wind speed increases up to approximately 30 m s−1,

at which point they start converging. The outer incidence angles are converging as

expected at high wind speeds. Though the incidence angles do not match, the new

GMF is nearly on top of the Ku-2011 VV-polarization model. HH-polarization is a

little further from the trend of Ku-2011, even though the incidence angles are closer.

This is probably due to the more pronounced errors in a2 at HH-polarization compared

with VV. Overall, combined with figures 3.17 and 3.18 these figures show that the

new GMFs are flattening appropriately in azimuth as wind speed increases.

3.6 Conclusion
The sources of variability in NRCS were discussed and of them, the three sources

that likely have the largest effect are sea state, calibration offset, and sample timing.

All IWRAP data with apparent NRCS or SFMR discrepancies have been discarded.

Calibration offset has been addressed by adjusting the mean NRCS within a wind

speed bin of each flight to a fixed point. Sea state remains a variable unaccounted for.
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Table 3.4. IWRAP-2014 GMF Coefficients: A0 Parameters

Radar Pol. Incidence
Angle (◦) β γ0 γ1 γ2

C-band
VV 21.7 −4.3615 5.6893 −1.8614 0.0000

47.4 −5.8167 5.4379 −1.4637 0.0000

HH 22.4 −4.2825 5.5676 −1.8549 0.0000
47.8 −3.1785 1.3264 −0.0516 0.0000

Ku-band
VV 21.7 14.7260 −34.8520 26.8530 −6.7277

45.6 7.1943 −23.0350 19.2220 −4.9728

HH 22.2 −3.5759 4.9144 −1.8948 0.1736
46.7 −33.1650 59.6370 −37.5150 8.0182

Table 3.5. IWRAP-2014 GMF Coefficients: a1 Parameters

Radar Pol. Incidence
Angle (◦) c1 c2 c3

C-band
VV 21.7 −2.6469 · 10−2 2.6808 · 10−3 −4.1653 · 10−5

47.4 2.2374 · 10−1 −8.7238 · 10−3 8.6215 · 10−5

HH 22.4 1.6379 · 10−2 2.7388 · 10−4 −1.1686 · 10−5

47.8 5.7984 · 10−1 −2.3559 · 10−2 2.6196 · 10−4

Ku-band
VV 21.7 −1.3531 · 10−2 9.9988 · 10−3 −2.0911 · 10−4

45.6 9.6345 · 10−2 −3.5504 · 10−3 5.1868 · 10−5

HH 22.2 −2.7357 · 10−1 2.5252 · 10−2 −4.0074 · 10−4

46.7 1.7809 · 10−2 1.2974 · 10−2 −2.9164 · 10−4

Table 3.6. IWRAP-2014 GMF Coefficients: a2 Parameters

Radar Pol. Incidence
Angle (◦) d1 d2 d3 d3

C-band
VV 21.7 −6.1008 · 10−2 3.7422 · 10−2 −4.8253 · 10−2 5.00 · 101

47.4 3.3084 · 10−1 5.4715 · 10−2 −6.1795 · 10−2 1.90 · 101

HH 22.4 −3.0359 · 10−1 5.7838 · 10−2 −7.0479 · 10−2 5.00 · 101

47.8 1.4737 · 100 −1.4053 · 10−1 1.0970 · 10−1 1.90 · 101

Ku-band
VV 21.7 −6.6809 · 10−1 1.2550 · 10−1 −1.1700 · 10−1 2.60 · 101

45.6 7.3953 · 10−1 −4.8272 · 10−2 3.1864 · 10−2 1.10 · 101

HH 22.2 −6.5264 · 10−1 1.2300 · 10−1 −1.1506 · 10−1 2.60 · 101

46.7 1.0235 · 100 −1.8434 · 10−1 1.6037 · 10−1 1.10 · 101
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A change in the wind speed retrieval algorithm of the SFMR and how this affected

the development of the original IWRAP GMF was also described. At wind speeds

below about 58 m s−1, the existing IWRAP GMF overestimates the wind speed and

above 58 m s−1 it underestimates the wind speed. The coefficients were then remapped

using the new SFMR wind-speed dependent excess emissivity model to correct this

behavior.

Existing scatterometer geophysical model functions at C- and Ku-band do not

cover incidence angles below 25◦. Spaceborne, near-nadir meteorological radars, such

as the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM),

have observed NRCS from nadir up to about 20◦. Scattering from the ocean in the

incidence angle region between 20◦ and 25◦ has not been studied extensively. The

IWRAP GMF has been extended down to 22◦ for both C- and Ku-band and VV- and

HH-polarizations, bringing to light some interesting scattering effects. The geometric

optics model may help to explain relatively early onset of saturation and subsequent

reduction in C-band NRCS at 22◦, compared to the higher incidence angles. The same

effect is not obvious at these angles for the Ku-band radar, but saturation still occurs

between 30 m s−1 and 40 m s−1.

The A0 term of the existing IWRAP GMF at approximately 50◦ generally matches

the more recent data up to 45 m s−1, within the uncertainty of the measurements.

However, the new a1 and a2 terms at these incidence angles disagree with the existing

IWRAPmodel. The new data are more similar to the a1 and a2 terms of the CMOD5.n

and Ku-2011 GMFs, models developed using data from spaceborne instruments. The

methodology limits a1 to a positive number, but this is likely a valid assumption for

these incidence angles and wind speeds. Close agreement of the new upwind/crosswind

difference to these satellite-based GMFs was also observed, and this difference also

disagrees with the existing IWRAP GMF. Overall, evidence presented here supports

76



maintaining the A0 IWRAP model and revising the a1 and a2 models at the incidence

angles close to 50◦ at both C- and Ku-band.
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CHAPTER 4

PRECIPITATION SPLASH EFFECTS ON HIGH-SPEED
OCEAN-SURFACE WIND VECTOR MEASUREMENTS

4.1 Introduction
Backscattered electromagnetic power from the ocean surface is, in the most basic

sense, a measure of roughness at a specific wavelength. At incidence angles between

approximately 20◦ and 70◦, a smooth surface scatters most of the power forward,

away from the transmitter, while rougher surfaces scatter an increasing amount of

power back towards the source. Scatterometers operate within these incidence angles

so they can reliably measure the rough ocean surface. The surface roughness also

depends on the wavelength of the electromagnetic wave being used to observe the

ocean. At these incidence angles primarily used by scatterometers, the main source

of scattering is the small-scale waves on the order of half of the wavelength of the

transmitted wave (1.875 cm to 3.75 cm at C-band and 0.9375 cm to 1.25 cm at Ku-

band). This is called the Composite Surface Model or Composite Bragg Model. In

this model, the scatterers on top of the larger waves, which increase with wind speed,

resonate with the radar wave and scatter power back to the radar.

In the absence of precipitation, surface wind is one of the main drivers of ocean

roughness observed by radar scatterometers, with surface currents and other ocean

features (e.g., wave height) providing a secondary effect. Precipitation corrupts scat-

terometer measurements by (1) attenuating the signal both to and from the surface;

(2) scattering the signal both to and from the surface; and (3) making the surface

appear rougher than if it were a result of wind forcing alone (i.e., the splash effect).
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As a result, a variety of methods have been developed to exclude precipitation from

measurements made by spaceborne scatterometers so the ocean surface wind vector

can be retrieved in a predictable manner [4]. The effect of precipitation on the ocean

surface is complicated, with additional features such as ring waves and stalks be-

ing created as a result of the impact [47], [48]. These features modify the roughness

that was once largely due to wind speed, but the degree to which these modifica-

tions impact wind vector retrieval, especially at high wind speeds, are still uncertain.

A recent summary article on the effects of precipitation on satellite sensors of ocean

winds states that “there is a significant need for improved wind speed and wind stress

calculations, along with more accurate rain-flagging techniques [4].”

Radar scatterometers that operate in the Ku-band can provide spatially sensitive

ocean-surface observations compared to C-band instruments. However, electromag-

netic waves at Ku-band wavelengths are more sensitive to attenuation and scattering

by rain than are those at C-band. Recent studies of Ku-band scatterometers have

shown that at low wind speeds, the impact of precipitation on the surface increases

the observed normalized radar cross-section (NRCS) and the influence is greater as

the incidence angle increases [47], [49]. They also show that rain effects are isotropic

and tend to increase the error in wind direction retrieval. However, the effect on wind

speed is not necessarily of the same magnitude. At higher wind speeds, the mod-

ulation of NRCS in azimuth is small enough that any disturbance will impact the

direction retrieval, but the effect on the mean NRCS in azimuth may not be signifi-

cantly different. Weissman and Bourassa [50] have investigated the impact of rainfall

in high winds on ocean-surface NRCS observed by satellite, and they see a limit to

the roughening effect due to precipitation splash. They also note an apparent splash

effect on HH-polarized NRCS up to wind speeds in the 30 m s−1 to 35 m s−1 range,

but no apparent effect on VV-polarized NRCS.
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There are varied results in the literature for C-band scatterometers. A preliminary

study of data from the Imaging Wind and Rain Airborne Profiler (IWRAP) concluded

that C-band HH-polarized NRCS is not significantly affected by the splash of rain on

the ocean surface [51]. A recent study using data from ASCAT show a degradation of

quality in satellite-retrieved winds for rain rates above 6 mm h−1. They do not rule out

splash effects, but suggest that this could also be due to “rain-induced wind-related

effects, such as downbursts and/or convergence [3].”

Even at C-band, where attenuation by precipitation is generally neglected, the

splash effect on backscattered power in high winds is not well understood. In high

winds, where the modification of the ocean-surface roughness by precipitation can

probably be neglected, the attenuation and scattering of the Ku-band signal both to

and from the surface are significant. To overcome the known limitations of Ku-band

scatterometers while retaining the benefits, future scatterometer designs (e.g., the

Dual-Frequency Scatterometer (DFS) [52] and proposed Extended Ocean Vector Wind

Mission (XOVWM) solutions [53]) will likely incorporate both C- and Ku-band into

the system design. The hypothesis in this chapter is that there is a limit on wind

speed, above which the effect of splash due to precipitation on the ocean surface

NRCS is negligible.

4.2 Remote Sensing of Precipitation
4.2.1 Volume Scattering

Sampling a volume of scatterers is slightly different than surface scattering. As-

suming that the receiver bandwidth is at least an order of magnitude larger than

τ , each sample taken by a radar after transmitting a rectangular pulse will contain

echoes from only those objects within a range of cτ2 . However, there is now a volume of

contributors to the echo power bounded in elevation and azimuth by the beamwidths
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of the antenna. In order to normalize this value, a backscattering cross-section per

unit volume, or reflectivity, is defined as

η(r) =
∫ ∞

0
σ(D)N(D, r) dD, (4.1)

where σ(D) is the expected RCS for a hydrometeor of diameter D and N(D, r) is the

drop size distribution at a range r. The mean signal power from the volume is

P̄ (r0) =
∫ r2

0

∫ π

0

∫ 2π

0
η(r)I(r0, r)r2 dr sin θ dθ dφ, (4.2)

where I(r0, r) is the range-weighting function or pulse shape. When the range to the

volume is large compared to cτ
2 , the antenna beam is a two-dimensional Gaussian, and

it is assumed that the reflectivity and attenuation due to hydrometeors is constant,

(4.2) can be simplified to

¯P (r0) ≈ PtG
2λ2 η(r0) πθeφa

(4π)3r2
0 l(r0)2 (8 ln 2) (4.3)

where l is the one-way loss due to attenuation and scattering and θe and φa are the

elevation and azimuthal beamwidths, respectively. The 8 ln 2 factor in the denomina-

tor is a factor to normalize the antenna gain across the Gaussian-shaped beam, so

this only applies for pencil-beam radars.

When the diameter of a hydrometeor of diameter D is small compared to the

wavelength λ, the Rayleigh approximation can be made for the RCS of the drop [54]:

σ(D) ≈ π5

λ4 |K
2
m|D6, (4.4)

where Km = m2−1
m2+2 and m = n− jnκ, the complex refractive index of water. n is the

refractive index of water and κ is the attenuation index. Substituting (4.4) into (4.1),

η(r) = π5

λ4 |K
2
m|Ze, (4.5)
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where Ze is called the “equivalent reflectivity factor.” Because the Rayleigh approx-

imation may not apply at the wavelengths used in the IWRAP systems, the term

“equivalent” (and subscript e) is used. Ze is the meteorological parameter of interest,

though η could just as easily be chosen. Equations (4.3) and (4.5) are used to express

Ze in terms of the measured average power of a volume in range:

Ze(r0) =
¯P (r0) l(r0)2 r2

0
Pt

λ2210 ln 2
G2θeφacτ |Kw|2π3 . (4.6)

Note that most of (4.6) is only dependent on the radar and not the observed scene.

This is sometimes referred to as the “radar constant” in discussions of measured

reflectivity factors.

4.2.2 Dual-Frequency Attenuation Estimation

In section 4.1, it was noted that precipitation modifies scatterometer measure-

ments in three ways: attenuation of the round-trip signal, scattering of the same, and

the splash effect. Also worth repeating is that Ku-band frequencies are more sensi-

tive to the former two effects and C-band scatterometers are relatively unaffected.

So in order to evaluate the effect of precipitation impact on sea-surface NRCS, any

attenuation of the backscattered power from the surface echo at Ku-band must be

corrected. To do so, the mean attenuation rate per unit range (K̄s) of the intervening

volume must be known. While it is possible to accomplish this with just the Ku-band

radar (c.f. Fujita and Satake [55]), some parameters in the Z–R and Ks–R relation-

ships must be assumed. Since the parameters in Z–R relationships are dependent on

precipitation type and local climate, this would likely introduce some error into the

analysis. However, K̄s can be derived from two collocated radars without assuming

any other parameters. The two radars must measure a similar volume within a short

amount of time of each other, and one of them must be non-attenuating [56]. Here

both the C- and Ku-band radars on IWRAP are used to evaluate the rain rate re-
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trievals of Stepped Frequency Microwave Radiometer (SFMR). Doing so, K̄s models

can also be evaluated as functions of SFMR rain rate. Hail is assumed to be absent

so that all scatterers can be assumed to be in the Rayleigh regime. As a result of this

Rayleigh assumption, the equivalent reflectivity factors at both C- and Ku-band are

assumed to be equal in the absence of attenuation. That is, the l component of (4.6)

is neglected.

The attenuation factor A in the backscattered power observed by the radar over

the range r0 to r1 (= r0 + s) is

A = 10
(
−0.2

∫ r1
r0

Ks(r) dr
)
, (4.7)

where Ks is the one-way specific attenuation in dB per unit range, the units of which

are taken to be km. The attenuation observed at each range gate is a function of

the media through which the radar is observing; if there is a varying amount of

precipitation in the region s, then Ks will not be constant. The average, or effective,

amount of attenuation observed will be sufficient for the analysis here since the goal

is to understand how the precipitation is measured by SFMR.

The mean backscattered powers PC and PKu from an illuminated volume at a

range r1 (km) are given by

PC(r1) = CC

r2 Z(r1) (4.8)

PKu(r1) = CKu

r2 Z(r1) · 10
(
−0.2

∫ r1
r0

Ks(r) dr
)
, (4.9)

where CC and CKu are the radar constants including any attenuation up to r0, the

observed volume is contained in the range r0 and r1, Z is the (non-attenuated) equiv-

alent reflectivity factor, and Ks is the one-way specific attenuation, assumed to be

applicable only at Ku-band.
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The logarithm of the ratio of (4.8) to (4.9) yields an expression for K̄s over the

volume sampled from range r0 to r1,

10 log

(
PC(r1)
CC

)
(
PKu(r1)
CKu

)
 = 2

∫ r1

r0
Ks(r) dr, (4.10)

but the constants CC and CKu still remain. These constants are difficult to determine,

even with precise calibration. At a more distant range (r2 = r1 + s′), the specific

attenuation can be written as the sum of two integrals,

2
∫ r1

r0
Ks(r) dr + 2

∫ r2

r1
K ′s(r) dr = 10 log


(
PC(r2)
CC

)
(
PKu(r2)
CKu

)
 , (4.11)

where K ′s is the incremental attenuation rate from r1 to r2, and PC(r2) and PKu(r2)

are the mean backscattered powers measured at range r2. Note that the equation still

represents the attenuation from r0, so PC(r2) and PKu(r2) are still divided by the

same constants CC and CKu, respectively.

By subtracting (4.10) from (4.11), the mean incremental specific attenuation K̄ ′s
can be extracted while eliminating the radar constants (and, thus, any effect of at-

tenuation up to r0):

2
∫ r2

r1
K ′s(r) dr = 10 log


(
PC(r2)
CC

)
(
PKu(r2)
CKu

)
− 10 log


(
PC(r1)
CC

)
(
PKu(r1)
CKu

)


= 10 log

(
PC(r2)
CC

)
(
PKu(r2)
CKu

) ·
(
PKu(r1)
CKu

)
(
PC(r1)
CC

)


= 10 log
(
PC(r2)
PC(r1) ·

PKu(r1)
PKu(r2)

)

= 2K̄ ′ss′.

(4.12)

To obtain the one-way mean specific attenuation K̄s at Ku-band in dB km−1 through

the volume sampled between ranges r1 and r2, the results of (4.12) are used:
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K̄s = 1
2s′ 10 log

(
PC(r2)
PC(r1) ·

PKu(r1)
PKu(r2)

) (
dB km−1

)
. (4.13)

In the IWRAP data, profiles of the attenuated equivalent reflectivity factor, Ze,

are sometimes more readily available than those of the backscattered power. In this

case, equations (4.8) and (4.9) can be rewritten in terms of Ze as

Ze,C(r1) = Z(r1) (4.14)

Ze,Ku(r1) = Z(r1) · 10
(
−0.2

∫ r1
r0

Ks(r) dr
)
. (4.15)

Doing so, any P
C
term in the previous equations can be replaced by the corresponding

Ze. (4.13) can be rewritten as

K̄s = 1
2s′ 10 log

(
Ze,C(r2)
Ze,C(r1) ·

Ze,Ku(r1)
Ze,Ku(r2)

) (
dB km−1

)
(4.16)

4.2.3 Reducing the Uncertainty of the K̄s Measurement

Using only two samples in range from each radar beam to compute (4.16) results

in a noisy measurement of K̄s. Multiple samples can be averaged in range and in

volume to improve measurement accuracy [56]; however, this decreases the spatial

resolution. The number of range-averages performed can be increased by making the

region s′ small (but no smaller than the pulse width τ—independent samples in range

are required).

Consider a measurement of K̄s calculated over a region s from independent samples

of Ze,C and Ze,Ku at ranges r1 and r2 each. An independent measurement of K̄s, K̄ ′s,

is performed at (r′1 = r1 + cτ
2 ) and (r′2 = r2 + cτ

2 ). This region has the same length

as, and may even overlap with, the previous one, but because the samples of Ze,C

and Ze,Ku used to compute K̄ ′s are independent of K̄s, the result is an independent

estimate of mean specific attenuation for the given profile.
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4.3 Experiment Methodology
4.3.1 Path-averaged Specific Attenuation-SFMR Rain Rate Model

In evaluating path-averaged specific attenuation models and their performance as

a function of SFMR rain rate, the rainy profiles observed by IWRAP must be isolated

from the rain-free profiles. In order to have confidence that the ocean surface is being

rained upon when rain is observed by the SFMR, observations are limited to incidence

angles below 30◦. For a typical altitude of 2.5 km, this keeps the azimuthal distance

from the radar under 0.75 km even when considering the maximum pitch and roll of

the aircraft allowed for this data set. SFMR retrieves rain rate within its beamwidth

below the aircraft over all azimuths. Occasionally the aircraft flies near enough to

a rain cell so that SFMR retrieves a non-zero rain rate, but IWRAP beams do not

intersect with much of the cell. These collocations should be removed since the two

instruments are not measuring the same event, so rain-flagged IWRAP samples are

required in at least 75 % of each full scan.

The presence of rain in a particular profile is determined by way of a threshold

on the range-averaged normalized Doppler spectrum width, σ̂vn [21], [54]. This is

calculated by

σ̂vn = 1
(R2 −R1 + 1)π

√
2

R2∑
i=R1

√
− ln ρ[i], (4.17)

where R1 and R2 are the range gates closest to the aircraft and closest to the sur-

face, respectively, and ρ[i] is the pulse-pair correlation coefficient at range gate i.

The threshold on σ̂vn used for this analysis is 0.30, below which the radar beam is

considered to be observing precipitation.

In aggregating the data, a correction to the NRCS is performed first based on

instantaneous incidence angle. Chapter 5 shows the dependence of mean NRCS on

incidence angle. Any small pitch or roll difference from horizontal results in an az-

imuthal modulation that is not a function of wind direction. In order to remove this

modulation, the difference in modeled NRCS between the nominal incidence angle
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and the instantaneous incidence angle is calculated. This difference is then added to

the measured NRCS. At this point data is removed that is taken when the instan-

taneous incidence angle is more than ±2◦ off of the nominal incidence angle. This

results in removal of less than 10 % of the available profiles.

The data is then organized into 360◦ scans to be paired between the C-band and

Ku-band radars. Scans are only ever used once and are paired based on the minimum

time and distance between observations. Once scans are paired based on minimum

time and distance, the pairs are filtered based on time and distance between each

observation. Since both antennas scan independently, only pairs that observe approx-

imately the same scene are retained. The ideal scan period of either antenna is 1 s and

the maximum ground speed (vg) of the WP-3D is no greater than 200 m s−1. So the

range of scan periods allowed is 50 RPM to 70 RPM (1.2 s to 0.86 s per scan). If both

antennas are pointing at opposite azimuth angles and spinning at the slowest scan

period allowed, they will cover a similar volume within 0.6 s and 120 m of each other.

If one antenna is spinning at 50 RPM and the other at 70 RPM, the slower antenna

covers about 80 m more ground distance than the faster antenna. Therefore, scans

between radars are considered to be collocated only if the mean time between obser-

vations is at most 0.6 s and both the minimum and maximum along-track distances

between scans is at most 0.8 km. Figure 4.1 illustrates these requirements.

Finally, the data is grouped into 64 azimuth bins. Within each azimuth bin within

each scan Ze and σvn, among other aircraft variables and SFMR retrievals, are av-

eraged together to form the analysis data set. Here the decision is made to keep or

discard the scan, based on the fraction of precipitation observed by the radars in

azimuth. If the scan contains at least 75 % of rainy profiles for both radars (using the

threshold above), it is kept. An example of a rainy scan is shown in figure 4.2. It is

a significant challenge to require the rain to be uniform, so the 75 % criteria is an
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d1

d2

d3

Figure 4.1. Schematic diagram of the limits placed on collocated C-band and Ku-
band 360◦ scans. The C-band scans have the smaller scan radius with crosshatched
circles representing the ocean surface illumination. The filled circles represent the
surface illumination at Ku-band. The X symbol is the mean position of the aircraft
during the C-band scan and the + symbol is the same for the Ku-band scan. The
two scans shown here are offset in time by 0.5 s, illustrating a scenario in which the
positions of the two antennas are not synchronized. For the two scans shown here,
d1 and d2 must be at most 0.8 km each. This keeps the volumes of each scan close
at typical altitudes (between 2 km and 3.4 km) and incidence angles of this dataset.
Additionally, the time taken to traverse d3 (e.g., t = vg · d3) must be less than 0.6 s.
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Figure 4.2. A rainy scan, having significant precipitation in at least 75 % of the
scan. The left panel shows the equivalent reflectivity (Ze) of the C-band radar, and
the right panel shows the same for the Ku-band radar. The top of the plot is the
range bin of the aircraft and the high-reflectivity horizontal stripe between 2 km to
2.5 km is the surface echo.

attempt to ensure the aircraft is in a rain cell. In this example, most of the scan has

moderate precipitation between 1 km and 1.5 km.

Any reflectivity profiles that are not flagged as containing rain in this scan are

removed. The remainder of the data are discarded; figure 4.3 shows an example of a

discarded pair of scans. There is some rain in the profiles, but not heavy enough in

the 90◦ to 270◦ range to be able to classify the scan as observing precipitation. The

vertical stripes in range in the C-band scan is likely noise due to the lower fuselage

radar operating on the WP-3D aircraft, which is also a C-band radar.

After collocating equivalent reflectivity profiles from the C- and Ku-band radars,

the algorithm described in sections 4.2.2 and 4.2.3 is applied for entire scans. K̄s
′ is

averaged in range for about 0.7 km from the aircraft to obtain one value of K̄s per

azimuth bin. Then these K̄s values are averaged over entire scans in azimuth to obtain

the dataset used for matching with SFMR rain rates.
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Figure 4.3. A discarded scan due to the presence of precipitation, but not in 75 %
of the scan. The left panel shows the equivalent reflectivity (Ze) of the C-band radar,
and the right panel shows the same for the Ku-band radar. The top of the plot is the
range bin of the aircraft and the high-reflectivity horizontal stripe between 2 km to
2.5 km is the surface echo.

4.3.2 Splash Effect

In order to analyze the effect of precipitation impact on NRCS, an approach is

used similar to that in chapter 3. For the inner incidence angles of both IWRAP

radars, collocated SFMR retrievals and IWRAP NRCS measurements are averaged

into alongtrack cells of 2.5 km length. Each cell is divided into 64 track-relative az-

imuth bins, resulting in an average over 5.625◦ per bin. SFMR and some location

data is associated with an alongtrack cell only when the aircraft is over the cell. Only

radar data taken when the aircraft is level (incidence angle is within ±2◦ of nominal)

is used. Before averaging NRCS samples, any incidence angle dependence is removed

by referencing an existing geophysical model function (GMF).

In addition to collecting rain-free data, rainy data is also collected along with

the SFMR-retrieved rain rate. Any data with a surface-echo SNR less than 5 dB

is discarded to eliminate situations in which precipitation completely attenuates the

signal. Only alongtrack cells with at least 75 % valid NRCS measurements are kept, so

a good wind direction estimate can be obtained. These are then averaged and stored

according to azimuth, SFMR wind speed, and SFMR rain rate. The wind speed and
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rain rate bins into which data are stored are very fine: 0.5 m s−1 for wind speed and

1 mm h−1 for rain rate. This is done in order to make the datasets manageable while

keeping specific information about the conditions with the NRCS. The bins can be

(and are) averaged together into coarser bins later. The rain rate information is useful

when correcting for attenuation due to precipitation.

Attenuation and scattering experienced by the electromagnetic waves in precipi-

tation must first be removed in order to approach the splash effect. All NRCS mea-

sured in precipitation—that is, where the mean SFMR rain rate for a scan is at least

5 mm h−1—is corrected for attenuation. The correction is based on attenuation mod-

els: for Ku-band, the model is the Atlas λ = 1.778 cm 10 ◦C model [57] shown in

section 4.4; for C-band the model is the Recommendation ITU-R P.838-3 model [58]

at the appropriate frequency and polarization. Since both of these models are one-way

predictors of Ks, which has units of dB km−1, the mean slant range to the surface is

retained for each alongtrack cell used. After first computing the model using the rain

rate bin of the sample, the mean range to the surface is multiplied to the output and is

then doubled. This is then added to the fine-binned NRCS to obtain the attenuation-

corrected NRCS measurements. These corrected NRCS measurements are then be

averaged into wider wind speed and rain rate bins.

For analysis, rain retrievals are grouped into three categories: rain-free (SFMR

rain rate ≤ 5 mm h−1), light rain (5 mm h−1 < SFMR rain rate < 10 mm h−1), and

heavy rain (SFMR rain rate ≥ 10 mm h−1). The attenuation-corrected NRCS are

partitioned after correction so the adjustment is based on the SFMR-retrieved rain

rate and not these coarse partitions. The Fourier coefficients of (3.1) are estimated

again using the corrected NRCS.
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4.4 Analysis of Observed NRCS with Respect to Reference

NRCS
In this section the effect of precipitation impact with the ocean surface on NRCS is

evaluated by comparing IWRAP observations, corrected for attenuation, with GMFs

developed in chapter 3 using SFMR retrievals as the ground truth. The ocean surface

roughness is modified as a function of rain rate and wind speed [47]. However, the

effect of ocean splash at higher wind speeds is not well understood. When observing

the ocean surface through precipitation, the rain attenuates, scatters, and absorbs

the electromagnetic waves twice: once before they impinge on the surface and once

during the return trip to the radar. The amount of attenuation experienced by the

radar can be modeled as a power law function of rain rate,

Ks = aRb, (4.18)

where R is the intervening rain rate and a and b are constants. To determine Ks in

different levels of rain, four models of specific attenuation as a function of rain rate,

or Ks–R models, are evaluated using the dual-frequency technique described in sec-

tions 4.2.2 and 4.2.3. Once SFMR is established as a reliable method for determining

rain rate, data from the flight experiments of chapter 3 are used to evaluate IWRAP

observations at C- and Ku-band for a splash effect.

4.4.1 Ks–R Models vs. SFMR Rain Rate

Here data from one flight experiment, flown on August 31, 2008 through Hurricane

Gustav, is used to evaluate the performance of SFMR with respect to some Ks–R

models. This flight was chosen because it contains a wide range of wind speeds and

rain rates (it was a Category 3 hurricane at the time), the sensitivity of both radars is

high enough to observe differences in rain rates down to 10 mm h−1, and the reflectivity

of both radars is consistent throughout the flight. After applying the methodology
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described in section 4.3.1, the dataset contains 8838 scans. 75.5 % of the scans are

rain-free (less than 5 mm h−1 SFMR rain rate), 14.6 % of the scans are rainy (greater

than 10 mm h−1), and the remainder are discarded.

Figure 4.4 shows the IWRAP-measured path-averaged Ku-band attenuation (K̄s)

data from Gustav as a function of SFMR rain rate. To obtain this plot, K̄s samples

are grouped into 2.5 mm h−1-wide rain rate bins and averaged together, starting at

10 mm h−1. The averaging is performed with the variable in units of dB km−1. A least-

squares fit is performed to the mean K̄s values for a function of the form K̄s = aRb,

where R is the rain rate. This fit is shown as a solid line and closely matches the

λ = 1.778 cm (f = 16.87 GHz) model from Atlas and Ulbrich [57]. SFMR retrievals

are estimates of the mean conditions observed within its columnar beamwidth over

a fixed flight time. In the next section, the Atlas λ = 1.778 cm model and SFMR

rain rate will be used to correct for round-trip attenuation of the NRCS at Ku-band.

Any attenuation at C-band should be small, but it is still corrected using the ITU-R

P.838-3 model [58] at the frequency of the inner incidence angle channel (5.42 GHz).

4.4.2 Effect of Precipitation on NRCS

For this investigation, the wind speed and rain rate observed by the SFMR is

assumed to be representative of that which is observed by all IWRAP beams at all

azimuth angles. As stated in section 4.3.2, NRCS measurements are available in 5.625◦

azimuth bins and 2.5 km alongtrack cells. For each cell, there is an associated SFMR

wind speed and rain rate. The alongtrack cells containing NRCS measurements are

used to estimate the wind direction. If the direction is more than ±90◦ different than

the direction indicated by a surface wind vector model, the NRCS-estimated direction

is adjusted by 180◦. The NRCS is shifted azimuthally so that upwind is at 0◦ and

is grouped into wind speed and rain rate bins. The wind speed bins are 2.5 m s−1

wide and are determined according to SFMR. The rain rate bins, also determined
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Figure 4.4. Path-averaged attenuation (K̄s) at Ku-band vs. SFMR rain rate for the
flight experiment through Hurricane Gustav on August 31, 2008. Each rain rate bin is
1 mm h−1 wide. The error bars show one standard deviation of the data on either side
of the mean. Several GMFs are shown alongside the fit to the data, which is shown
as a purple line. The model derived from IWRAP and SFMR data in 2006 is shown
as a dashed line. Two models at wavelengths near Ku-band from Atlas and Ulbrich
[57] are shown as long-dashed and dash-dotted lines. The ITU-R P.838-3 model [58]
at Ku-band is shown as a dotted line.
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by SFMR, separate precipitation into categories: rain-free, light rain, and heavy rain.

In each wind speed and rain rate bin, the NRCS measurements are averaged within

azimuth bins and a curve is fit to the data in the form of (3.1). From this curve, the

coefficients of (3.1) are estimated.

Figure 4.4 points out some potential ambiguity in theKs–Rmodel used to estimate

Ks, which is used to correct the NRCS for attenuation. Neglecting the model at

λ = 3.22 cm (f = 9.32 GHz) due to frequency, the models shown in figure 4.4 all

have similar shapes. The specific attenuation models could plausibly be off by a small

amount in the vertical direction. This analysis allows for this by assuming that there

is no splash effect in the light rain scenario for wind speeds above 15 m s−1. For each

flight experiment season, a fit to the A0 estimates in light rain is performed in the

same way as it was for the rain-free data in chapter 3. The data for each season are

adjusted such that the A0 fit for that season matches the new IWRAP GMF in the

25.0 m s−1 to 27.5 m s−1 bin. Since this is applied to each season, an exact match of

the fit to the aggregated data in this bin is not necessarily expected. This adjustment,

which is independent of wind speed and rain rate, is then applied to all rainy data

after correcting for attenuation. Figure 4.5 shows the A0 data both in light rain and in

rain-free conditions before correcting for attenuation and Ks–R model inaccuracies.

Figure 4.6 shows the data after both corrections have been applied. Combined, this

rain-rate-independent adjustment and the correction for Ks can be considered the

whole attenuation correction. At both C- and Ku-band the data from light rain is

nearly on top of the rain-free data, indicating that the assumption of no splash effect

at these rain rates is reasonable.

4.4.2.1 Effect of Precipitation on Fourier Coefficients

Figure 4.7 shows the mean NRCS, or A0 term of the NRCS GMF, for the C- and

Ku-band VV- and HH-polarization 22◦ incidence angles as a function of wind speed.
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Figure 4.5. Mean NRCS vs. wind speed (A0 term), uncorrected, for 21.7◦ and 22.4◦
incidence at C-band (upper panels) and 21.7◦ and 22.2◦ incidence at Ku-band (lower
panels). VV-polarization responses to wind speed are in the left panels and those for
HH-polarization are in the right panels. Rain-free A0 data are shown as filled circles
with the standard deviation of A0 estimates from all rain-free wind vector cells shown
as the error bars. A0 data from light rain are shown as empty circles with a fit to the
data shown as a dashed line. The new IWRAP GMF from chapter 3 is shown as a
solid line.
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Figure 4.6. Mean NRCS vs. wind speed (A0 term), corrected for attenuation, for
21.7◦ and 22.4◦ incidence at C-band (upper panels) and 21.7◦ and 22.2◦ incidence
at Ku-band (lower panels). VV-polarization responses to wind speed are in the left
panels and those for HH-polarization are in the right panels. Rain-free A0 data are
shown as filled circles with the standard deviation of A0 estimates from all rain-free
wind vector cells shown as the error bars. A0 data from light rain are shown as empty
circles with a fit to the data shown as a dashed line. The new IWRAP GMF from
chapter 3 is shown as a solid line.
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Figure 4.7. Mean NRCS vs. wind speed (A0 term), uncorrected, for 21.7◦ and 22.4◦
incidence at C-band (upper panels) and 21.7◦ and 22.2◦ incidence at Ku-band (lower
panels). VV-polarization responses to wind speed are in the left panels and those for
HH-polarization are in the right panels. Rain-free A0 data are shown as filled circles
with the standard deviation of A0 estimates from all rain-free wind vector cells shown
as the error bars. A0 data from all rainy cells are shown as empty diamonds with a fit
to the data shown as a dashed line. The new IWRAP GMF from chapter 3 is shown
as a solid line.
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Figure 4.8. Mean NRCS vs. wind speed (A0 term), corrected for attenuation, for
21.7◦ and 22.4◦ incidence at C-band (upper panels) and 21.7◦ and 22.2◦ incidence
at Ku-band (lower panels). VV-polarization responses to wind speed are in the left
panels and those for HH-polarization are in the right panels. Rain-free A0 data are
shown as filled circles with the standard deviation of A0 estimates from all rain-free
wind vector cells shown as the error bars. A0 data from all rainy cells are shown as
empty diamonds with a fit to the data shown as a dashed line. The new IWRAP
GMF from chapter 3 is shown as a solid line.

Along with the rain-free data, all rainy data (SFMR rain rate at least 5 mm h−1)

are also shown. The new IWRAP GMF developed in chapter 3 is shown as a solid

line. The mean of the fits to the azimuthally-varying NRCS in each wind speed bin

are shown as filled circles (for the rain-free cells) or empty diamonds (for the rainy

cells). The error bars are the standard deviation of A0 estimates from all alongtrack

cells. The general shape of the C-band A0 curves with respect to wind speed is about

the same in rainy conditions as well as rain-free, but there is some modification of

the signal occurring. As expected, the mean Ku-band NRCS is severely affected by

precipitation in both scatter about the mean and response to wind speed.
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Figure 4.8 shows the mean NRCS as a function of wind speed after correcting for

attenuation. There is little change in the C-band plots. The rainy data are shifted up

slightly, but not by a significant amount. At Ku-band, the flattened NRCS observed

in figure 4.8 is removed. Additionally, the means of the corrected A0 are now nearly

on top of the rain-free data and the fit is almost the same as the new IWRAP GMF.

Figure 4.9 shows the a1 term of the NRCS, after the attenuation correction has

been applied, as a function of wind speed. In order to obtain the corrected a1 term,

attenuation correction is applied to the azimuth-binned NRCS before the fit is per-

formed. As expected, there is no noticeable change in a1 after correcting for attenu-

ation, except that the variance becomes smaller. As a result, the uncorrected data is

not shown.

Section 3.4.2 explains that A1 controls the upwind/downwind anisotropy of the

NRCS azimuthal signature; the difference between upwind and downwind peaks in

linear units is 2A1 = A0 · 2a1. The normalized a1 is the amplitude difference between

the two peaks with the change in A0 removed. In other words, it is the difference

between NRCS observed upwind and NRCS observed downwind without the ampli-

tude change caused by A0. Normalization is most necessary when analyzing trends

with wind speed, since the additional effect of A0 will mask the a1 signal. Figure 4.9

indicates that the upwind/downwind difference may still change with wind speed, but

it is independent of a1 and can be completely represented by A0.

Figure 4.10 shows the a2 term of the NRCS, after the attenuation correction

has been applied, as a function of wind speed. In order to obtain the corrected a2

term, attenuation correction is applied to the azimuth-binned NRCS before the fit is

performed. In general all curves follow the same trend, but the magnitude of a2 is

smaller when in precipitation.

A decrease in the ability of the scatterometer to retrieve direction is expected.

Portabella et al. [3], among others, point out that for low winds in precipitation,
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Figure 4.9. Normalized NRCSA1 term (a1) vs. wind speed, corrected for attenuation,
for 21.7◦ and 22.4◦ incidence at C-band (upper panels) and 21.7◦ and 22.2◦ incidence
at Ku-band (lower panels). VV-polarization responses to wind speed are in the left
panels and those for HH-polarization are in the right panels. Rain-free a1 data are
shown as filled circles with the standard deviation of a1 estimates from all rain-free
wind vector cells shown as the error bars. a1 data from all rainy cells are shown as
empty diamonds with a fit to the data shown as a dashed line. The new IWRAP
GMF from chapter 3 is shown as a solid line.
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the wind direction retrieval from ASCAT data tends to produce direction estimates

perpendicular to the actual wind direction. While the azimuthal signature does not

become this corrupted at the lower wind speeds observed here, there is additional noise

in the azimuthal signature. This could be sufficient to introduce more ambiguities in

the direction retrieval.

Since a1 is not affected by precipitation, a splash effect appears to manifest itself

in the a2 term. Figure 4.11, which shows the difference between upwind and cross-

wind NRCS, makes clearer how precipitation impacts wind direction retrievals. This

difference is subdued at all wind speeds in precipitation. When the difference be-

tween upwind and crosswind becomes smaller, the overall modulation of NRCS with

azimuth is diminished. Using measurements from ERS scatterometer, Nie and Long

[59] show that the backscatter tends to become more isotropic in precipitation. This

is supported at high winds by the observed decrease in a2 and the upwind/crosswind

signature.

Section 3.4.2 also describes the effect of A2 and a2 on the overall NRCS azimuthal

signature. a2 can be combined with a1 to describe the normalized upwind/crosswind

asymmetry. However, when a1 is relatively constant over the wind speeds observed,

as it is at these incidence angles, the a2 behavior will dominate this effect. There

is some decrease in the amplitude of a2 in precipitation, though the general shape

remains the same. As with a1, since this term is normalized to A0, the amplitude

is theoretically independent of the effect of precipitation on the mean NRCS. Based

on figure 4.10, there should be some flattening of the NRCS in precipitation; the a2

behavior shows that the upwind peak and crosswind trough are closer to each other

than in the rain-free conditions. This can be observed more clearly in section 4.4.2.2.

102



15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0

0.0

0.2

0.4

0.6

0.8

C−band 21.7° VV

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
SFMR Wind Speed (m/s)

0.0

0.2

0.4

0.6

0.8

a 2
 =

 A
2 /

 A
0

Rain−free
> 5 mm hr−1 (corrected)
New IWRAP GMF (21.7°)

C−band 22.4° HH

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
SFMR Wind Speed (m/s)

0.0

0.2

0.4

0.6

0.8

a 2
 =

 A
2 /

 A
0

Ku−band 21.7° VV

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
SFMR Wind Speed (m/s)

0.0

0.2

0.4

0.6

0.8

a 2
 =

 A
2 /

 A
0

Ku−band 22.2° HH

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
SFMR Wind Speed (m/s)

0.0

0.2

0.4

0.6

0.8

a 2
 =

 A
2 /

 A
0

Corrected a2 vs. Wind Speed

Figure 4.10. Normalized NRCS A2 term (a2) vs. wind speed, corrected for atten-
uation, for 21.7◦ and 22.4◦ incidence at C-band (upper panels) and 21.7◦ and 22.2◦
incidence at Ku-band (lower panels). VV-polarization responses to wind speed are
in the left panels and those for HH-polarization are in the right panels. Rain-free a2
data are shown as filled circles with the standard deviation of a2 estimates from all
rain-free wind vector cells shown as the error bars. a2 data from all rainy cells are
shown as empty diamonds with a fit to the data shown as a dashed line. The new
IWRAP GMF from chapter 3 is shown as a solid line.
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Figure 4.11. Upwind NRCS less crosswind NRCS vs. wind speed, corrected for
attenuation, for 21.7◦ and 22.4◦ incidence at C-band (upper panels) and 21.7◦ and
22.2◦ incidence at Ku-band (lower panels). VV-polarization responses to wind speed
are in the left panels and those for HH-polarization are in the right panels. NRCS is
first normalized by A0. Rain-free a2 data are shown as filled circles with the standard
deviation of a2 estimates from all rain-free wind vector cells shown as the error bars.
The normalized upwind/crosswind difference from the fits to the rainy data is shown
as a solid line. The new IWRAP GMF from chapter 3 is shown as a dashed line. At
C-band, the CMOD5.n GMF is also shown; at Ku-band, there are no GMFs near the
incidence angles analyzed.
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Corrected NRCS vs. Azimuth (C−band 21.7° VV)

Figure 4.12. C-band NRCS vs. azimuth for VV-polarization at 21.7◦ incidence in
precipitation for wind speed bins from 15 m s−1 to 45 m s−1, corrected for attenuation.
The fit to the parameters are used to compute a model function, which is shown as
solid lines. The new IWRAP GMF from chapter 3 is shown as dashed lines.

4.4.2.2 Azimuthal Behavior

Figures 4.12 to 4.15 show the response of attenuation-corrected NRCS in pre-

cipitation at different wind speeds as a function of wind-relative azimuth. The data

points are shown as empty circles with the standard deviations as error bars. The fit

to the A0, a1, and a2 parameters of figures 4.8 to 4.10 are used to create a model;

this is shown as solid lines. The new IWRAP GMF developed in chapter 3 is shown

as dashed lines.

Compared to the new IWRAP GMF, the C-band NRCS measured in precipitation

generally has more damped upwind and downwind peaks at both polarizations. There
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Corrected NRCS vs. Azimuth (C−band 22.4° HH)

Figure 4.13. C-band NRCS vs. azimuth for HH-polarization at 22.4◦ incidence in
precipitation for wind speed bins from 15 m s−1 to 45 m s−1, corrected for attenuation.
The fit to the parameters are used to compute a model function, which is shown as
solid lines. The new IWRAP GMF from chapter 3 is shown as dashed lines.
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are a few wind speed bins, notably the 22.5 m s−1 to 25.0 m s−1 bin, in which the

mean crosswind peak exceeds the upwind peak. This indicates a possible decrease

in a1 below 0, but, as can also be observed in figure 4.9, the model fit does not

reflect this. This is due to one of the assumptions made here about the geophysical

phenomena that a1 is non-negative at these wind speeds. This was necessary due to the

lack of reliable external surface wind direction information at the 2.5 km resolution in

hurricanes. In rain-free conditions it is expected that the peak NRCS is in the upwind

direction, but this may not be a valid assumption in rainy conditions. This effect may

also be due to the amount of noise in the measurements, which seems more likely

since it is significantly more than the rain-free measurements in all wind speed bins.

At Ku-band, a possible negative a1 can also be observed in some wind speed bins

(particularly the 30.0 m s−1 to 32.5 m s−1 bin at VV-polarization and the 27.5 m s−1

to 30.0 m s−1 bin at HH-polarization).

At Ku-band, the directional signature of the NRCS is dimished almost to the

point of nonexistence by 37.5 m s−1 to 40.0 m s−1. At C-band, a slight modulation

is maintained up to at least 42.5 m s−1 at both polarizations. This is a reflection of

the damping of the a2 parameter in precipitation. With a1 remaining the same in

precipitation, the change in upwind/crosswind difference is influenced only by a2.

The compressing of the NRCS extremes is apparent in precipitation.

4.5 Conclusion
The effect of precipitation impact on sea-surface NRCS at wind speeds from

15 m s−1 to 45 m s−1 was analyzed. One IWRAP flight experiment through Hurri-

cane Gustav on August 31, 2008 was used to evaluate the ability of SFMR to retrieve

rain rate. Wind speeds from 27.5 m s−1 to 50 m s−1 both with and without rain were

observed by the C-band radar at HH-polarization and the Ku-band radar at VV-

polarization. Since the C-band and Ku-band radars are not necessarily synchronized,
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Corrected NRCS vs. Azimuth (Ku−band 21.7° VV)

Figure 4.14. Ku-band NRCS vs. azimuth for VV-polarization at 21.7◦ incidence in
precipitation for wind speed bins from 15 m s−1 to 45 m s−1, corrected for attenuation.
The fit to the parameters are used to compute a model function, which is shown as
solid lines. The new IWRAP GMF from chapter 3 is shown as dashed lines.

108



0 45 90 135 180 225 270 315 360

−5

0

5

15.0−17.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

> 5 mm hr−1 (corrected)
Fit to data
New IWRAP GMF (22.2°)

17.5−20.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

20.0−22.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

22.5−25.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

25.0−27.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

27.5−30.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

30.0−32.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

32.5−35.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

35.0−37.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

37.5−40.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

40.0−42.5 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

42.5−45.0 m s−1

0 45 90 135 180 225 270 315 360
Wind−Relative Azimuth (degrees)

−5

0

5

N
R

C
S

 (
σ0 ) 

(d
B

)

Corrected NRCS vs. Azimuth (Ku−band 22.2° HH)

Figure 4.15. Ku-band NRCS vs. azimuth for HH-polarization at 22.2◦ incidence in
precipitation for wind speed bins from 15 m s−1 to 45 m s−1, corrected for attenuation.
The fit to the parameters are used to compute a model function, which is shown as
solid lines. The new IWRAP GMF from chapter 3 is shown as dashed lines.
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360◦ scans of each were collocated. Through the observation of similar volumes, the

attenuation experienced by the Ku-band radar between the aircraft and ocean surface

as a function of SFMR rain rate was estimated. It was determined that SFMR rain

rate retrievals are accurate above 5 mm h−1 to predict specific attenuation.

SFMR rain rate retrievals were used with specific attenuation models at C- and

Ku-band to remove attenuation and scattering due to rain. NRCS data from the

IWRAP radars at incidence angles near 22◦ and both VV- and HH-polarizations

were collected from between the 2011 and the 2014 hurricane seasons. After correcting

NRCS observed in rain for attenuation, there remained some offsets in the measured

mean NRCS (A0). It was assumed that the effect of splash at wind speeds above

15 m s−1 was negligible at rain rates below 10 m s−1, so an adjustment was calculated

using this data. This adjustment is independent of wind speed and rain rate and was

applied to all NRCS data at each frequency and polarization.

In doing this, the rain attenuation and scattering effects from NRCS measure-

ments were removed, leaving only the effects of precipitation impact in excess of the

surface wind effect. No measurable change was observed in the mean NRCS at either

frequency or polarization. There is some additional scatter around the means not ev-

ident in the rain-free measurements, which may indicate some additional geophysical

noise.

There was also no noticeable effect on the a1 term of the scatterometer GMF. It

remains almost flat across the range of wind speeds, indicating that the upwind and

crosswind peaks are almost equal and the difference is independent of wind speed.

The a2 term showed a fairly uniform dampening as a function of wind speed. This

means that in precipitation, the NRCS have a more vertically compressed profile in

azimuth. This result is also evident when explicitly calculating the upwind/downwind

difference, which is largely driven by a2.
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The NRCS azimuthal behavior clarified the effects shown in each parameter. The

modulation in azimuth flattened sooner than when free of precipitation. At C-band,

there is still a visible signature up to the 45 m s−1, but the Ku-band signal is effectively

flat above 35 m s−1 to 40 m s−1.

There appears to be no splash effect on the mean NRCS at 22◦ incidence at either

polarization. The directional signature does suffer slightly in precipitation, compress-

ing the extremes of the curve. Since these are low incidence angles, the amplitude

of the NRCS may overcome any splash effects here. As saturation is observed from

30 m s−1 to 40 m s−1 for both C- and Ku-band, the ocean surface roughness is nearing

a maximum at these wind speeds. It is anticipated that there are more significant

splash effects at larger incidence angles, but these results suggest it is only in the

azimuthal response or at the lower end of the wind speed range.
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CHAPTER 5

POLARIZATION RATIO EFFECTS OF HIGH WIND
SPEEDS AT C-BAND

5.1 Introduction
Satellite-borne observations of sea surface backscatter are routinely used to esti-

mate winds. Currently, the Advanced Scatterometer (ASCAT) aboard the European

MetOp-1 satellite measures sea surface winds using C-band vertical polarization. The

Canadian RADARSAT-2 SAR instrument also operates at C-band measuring both

V- and H-polarizations. Though primarily designed for high-resolution imaging, there

have been a number of recent efforts to infer wind speed and direction from C-band

RADARSAT SAR imagery [60], [61], most recently on the potential utility of cross-

polarized measurements [6], [43] (i.e., transmit and receive polarizations are orthog-

onal). Use of C-band is also being explored in designs for a future US scatterometer

to replace the defunct Ku-band QuikSCAT instrument. As C-band is less prone to

attenuation in precipitation, it is more robust in the presence of rain than is Ku-band.

However, since Ku-band offers finer spatial resolution for a given antenna size, future

scatterometry missions are expected to incorporate both frequencies.

During January and February 2011 a series of flight experiments were conducted

over the North Atlantic in extratropical storms to obtain observations of the sea

surface under strong wind forcing. In particular, it was desired to extend rain-free,

high-wind normalized radar cross-section (NRCS), or σ0, observations at VV- and

HH-polarizations to incidence angles near and beyond 60◦. In this chapter the radar

instrumentation, flight experiments, and the results of several circle flights are de-
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Table 5.1. C-band Radar Parameters

Parameter Chan. 1 Chan. 2
Frequency (GHz) 5.025 5.2
Nom. Incidence Angle 46.4◦(H), 46.7◦(V) 34.0◦(H), 36.0◦(V)
Pulse Rate (kHz) 15 15
Pulse width (µs) 10 (chirp) 0.8 (pulse)
Antenna Gain (dB) 21.4(H), 24.9(V) 23.9(H), 25.1(V)
Azimuthal Beamwidth 10.1◦(H), 9.9◦(V) 13.5◦(H), 12.2◦(V)
Scan Rate (rpm) 60 60

scribed, from which the incidence angle and azimuthal dependence at one C-band fre-

quency were investigated. A condensed version of this chapter was published as Sapp

et al. [62].

5.2 Experiment Description
The Imaging Wind and Rain Airborne Profiler (IWRAP), initially described

in Fernandez et al. [18], is a dual-frequency conically-scanning Doppler radar devel-

oped by MIRSL at UMass that is routinely installed on the NOAA WP-3D research

aircraft. IWRAP is primarily designed to study the signature of the ocean surface

under wind forcing. Two radars (one C-band and one Ku-band) scan at two incidence

angles each, typically between 20◦ and 50◦. Each radar is capable of implementing

up to four simultaneous beams, however, two simultaneous beams per radar is the

normal mode of operation. Both VV- and HH-polarizations are available and are

selected based upon mission requirements. The radar beam widths vary depending

upon the selected incidence angle owing to properties of the frequency-scanning an-

tenna, but are typically in the neighborhood of 10◦. For the Winter 2011 mission,

IWRAP was configured to measure VV- and HH-polarizations by toggling rapidly

between them during each azimuthal scan. Table 5.1 summarizes the C-band radar

parameters during data collection.
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Table 5.2. Summary of the Winter 2011 Flight Experiment

Date Times Circles Wind Speeds
(UTC) Executed (m s−1)

20110123 1600–2000 3 19–24
20110124 1600–2000 8 21–27
20110130 1700–2100 5 18–24
20110201 1600–1900 6 25–36
20110207 1600–1900 6 23–31

The IWRAP geophysical model function (GMF) was developed for several fixed

incidence angles between 30◦ and 50◦ at VV- and HH-polarizations [30]. The goal of

the Winter 2011 experiment was to obtain rain-free sea-surface NRCS observations

over a continuous range of incidence angles between 20◦ and 60◦ at both VV- and

HH-polarizations. The most expedient means to accomplish this is to fly the aircraft

in a circular pattern at a constant roll angle. In this way, the conically scanning

beam impinging on the sea surface traces out an ellipse with incidence angles varying

with the azimuthal scan angle. The range of incidence angles encountered is given

by the nominal (level flight) incidence angle plus or minus the roll angle. Since the

incidence angle varies with the azimuthal angle, and since the NRCS also varies

with azimuth angle (relative to the wind direction), a circle pattern ensures that all

incidence angles are observed from all directions. The instantaneous incidence angle

given this maneuver is derived in section 5.3.

Surface wind speeds were measured simultaneously with the Stepped Frequency

Microwave Radiometer (SFMR) [28] operated by AOC aboard the WP-3D aircraft.

Since the SFMR is a nadir-looking instrument, the mean wind speed from the re-

trievals before and after a roll is used as the wind speed during a roll. Several mis-

sions were flown out of Halifax, NS during January–February 2011; table 5.2 contains

a summary of the Winter 2011 flight experiment.
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5.3 Data Processing Methodology
During the Winter 2011 experiment, the IWRAP radar alternated between po-

larizations by transmitting a sequence of 126 pulses in each polarization. Raw I- and

Q-channel samples were collected and recorded. In post-processing, some of these data

were subject to pulse compression; Doppler spectrum moments were then accumu-

lated over each 126-pulse block using pulse-pair methods [54]. The resulting profiles

of backscatter and Doppler velocity are available at a rate of approximately 60 Hz per

polarization. Given the azimuthal scan rate of the antenna, there are approximately

60 radials in each 360◦ scan of the antenna (one per second). The resulting profiles are

then merged with navigation parameters (pitch, roll, drift, etc. available at a 40 Hz

rate) and simultaneous surface wind speed estimates from the SFMR (available at a

1 Hz rate).

Once merged, the data are sorted by incidence and azimuth angle. The incidence

angle is derived from navigation parameters and antenna azimuth information using

methods described in Lee et al. [63]. This is checked for consistency against a separate

radar estimate from the arc-cosine of the ratio of the slant range to the surface echo

and the aircraft altitude. Similarly, antenna azimuth is verified by a check against

the observed Doppler shift from the sea surface after appropriate transformations for

pitch, roll, and drift.

Although a range of incidence angles may be observed during the circle patterns,

there is a small source of error due to polarization mixing. That is, given the finite

roll angle, the polarization incident upon the sea surface is only truly the polarization

transmitted and received at the extreme incidence angles (when the antenna is scan-

ning to the side of the aircraft). Polarization mixing is largest when the antenna scans

forward or aft of the aircraft, at which point the rotation of the polarizations is equal

to the aircraft roll angle, and the incidence angle is equal to the nominal (level-flight)
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value. The instantaneous polarization rotation about the antenna boresight axis, γ,

is derived here.

Following Lee et al. [63], the aircraft-relative coordinate system is used with x̂a

pointing over the right wing, ŷa toward the nose, and ẑa upward through the fuselage.

The radar antenna scans conically below the aircraft, and the unit vector in the

propagation direction is

k̂ =x̂a sin θa sinφa (5.1)

+ ŷa sin θa cosφa (5.2)

+ ẑa cos θa (5.3)

where θa is the zenith angle measured from the positive za-axis and φa is the azimuth

angle measured clockwise from the ya-axis (the aircraft heading). This is converted to

a level, track-relative coordinate system by successive rotations through the aircraft

roll, pitch, and drift angles. For simplicity zero pitch and zero drift angle is assumed.

After rotation through a roll angle, R, k̂ becomes

k̂ =x̂ sin θa sinφa cosR + cos θa sinR

+ ŷ sin θa cosφa

+ ẑ (− sin θa sinφa sinR + cos θa cosR)

(5.4)

where the x̂, ŷ, and ẑ unit vectors now indicate a level, Earth-relative coordinate

system. The zenith angle of the radar beam on the sea surface is given by cos θ′ = ẑ ·k̂,

or

θ′ = cos−1(− sin θa sinφa sinR + cos θa cosR), (5.5)

which is the supplement of the incidence angle θ.
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The unit vector parallel to the H ′-polarization in aircraft coordinates is the φ̂a

unit vector given by

φ̂a = x̂a cosφa − ŷa sinφa (5.6)

which when subjected to a roll angle R is expressed in level coordinates as

φ̂ = x̂ cosφa cosR− ŷ sinφa − ẑ cosφa sinR. (5.7)

The rotation angle of this vector out of the horizontal is given by

tan γ = φz√
φ2
x + φ2

y

= − cosφa sinR√
cos2 φa cos2 R + sin2 φa

. (5.8)

Figure 5.1 illustrates this rotation at one antenna azimuth (60◦). Except for large roll

angles (greater than 30◦), this is very well approximated by

γ ≈ −R cosφa, (5.9)

where R is the roll angle and φa is the azimuth angle measured clockwise from the

aircraft heading.

To obtain the relationship between the observed (rotated) NRCS values and the

desired sea-surface NRCS values, the appropriate rotations are applied to each affected

part of the NRCS equation. The transmit power sampled by the radar’s calibration

loop, Pt, is actually representative of the transmit power in the polarization-rotated

coordinated system. In order to derive the remainder of the relationship, a measure-

ment of σ0
HH is considered here.

The transmitted power, Pt,H′ , is related to the transmitted power in the V̂ and Ĥ

directions by

Pt,H = Pt,H′ cos γ

Pt,V = Pt,H′ sin γ.
(5.10)
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Figure 5.1. Diagram illustrating the rotation angle of the vector parallel to the H ′-
polarized electric field, γ, from horizontal. The aircraft is rolling at a −20◦ angle and
0◦ pitch is assumed. The aircraft-relative unit vectors (x̂′, ŷ′, ẑ′) are shown as dark
blue dashed lines. The aircraft-relative azimuth (φa) for an incidence angle of 48◦,
shown as a red solid line, is 60◦. This vector is perpendicular to the φ̂a vector.

The total transmitted power is the vector sum of the power transmitted in each

polarization. The power scattered back to the antenna from the sea surface can be

determined by using the NRCS:

Ps,H = CH Pt,H σ
0
HH + CH Pt,V σ

0
HV

= CH Pt,H′ σ0
HH cos γ + CH Pt,H′ σ0

HV sin γ

Ps,V = CH Pt,V σ
0
V V + CH Pt,H σ

0
V H

= CH Pt,H′ σ0
V V sin γ + CH Pt,H′ σ0

V H cos γ,

(5.11)

where CH = G2
H λ2 Aill,H

(4π)3 r4 . This factor is used to convert NRCS to power; the values for

the H-pol antenna are used since the transmitted and received waves are propagated

through this antenna. The notation σ0
HV refers to the NRCS observed when trans-

mitting at H-polarization and receiving at V-polarization. The transmitted power is

illustrated in figure 5.2(a).
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Figure 5.2. Diagram illustrating the effects of polarization mixing on the transmit
(a) and receive (b) vectors.

Since the antenna is rotated, the power it receives is the sum of the projections of

the backscattered powers onto the original H ′ axis:

Pr,H′ = Ps,H cos γ + Ps,V sin γ

= CH Pt,H′ σ0
HH cos2 γ + CH Pt,H′ σ0

HV cos γ sin γ+

CH Pt,H′ σ0
V V sin2 γ + CH Pt,H′ σ0

V H cos γ sin γ.

(5.12)

These vectors are shown in figure 5.2(b). Since the cross-polarized (VH and HV)

NRCS terms make a negligible contribution to the co-polarized NRCS at the wind

speeds observed in this experiment, their effects are neglected here. The resulting

equation relates the observed (rotated) NRCS values to the desired sea-surface NRCS

values by dividing both sides of (5.12) by the transmitted power Pt,H′ and the coeffi-

cient CH .

Extrapolating the results of (5.12) to the V ′V ′ basis,

σ0
V ′V ′ = σ0

V V cos2 γ + σ0
HH sin2 γ

σ0
H′H′ = σ0

HH cos2 γ + σ0
V V sin2 γ

(5.13)
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is obtained, where primes denote the rotated polarization basis. These may be inverted

to obtain

σ0
V V = σ0

V ′V ′ + σ0
H′H′

2 + σ0
V ′V ′ − σ0

H′H′

2 cos 2γ

σ0
HH = σ0

V ′V ′ + σ0
H′H′

2 − σ0
V ′V ′ − σ0

H′H′

2 cos 2γ .

(5.14)

Note the second term becomes singular when γ = 45◦ (at which point both V ′ and

H ′ are 45◦ slant polarizations), so the roll angle should be limited. The maximum roll

angle was 20◦ and was more typically 10◦–15◦. The correction described is small, but

without it errors in polarization ratio of up to 1.5 dB may occur.

NRCS is estimated from the echo using a pulse-limited surface area given an

estimate of the transmitted power provided by an internal calibration loop. Although

126 points are averaged to obtain an NRCS estimate, the number of independent

samples is approximately 7–8. Any profile with a measurable precipitation echo in

the atmosphere between the aircraft and surface is considered to be contaminated by

rain and is discarded.

Upon averaging many estimates, residual biases are inevitably observed in the

data due to uncompensated system losses (e.g. feed lines, wet radome from previous

flight through rain, etc.). A final adjustment is applied to the NRCS observed during

a particular flight. For each circle during the flight and at each polarization, the dif-

ference between the observed mean NRCS and a known GMF at a known incidence

angle and wind speed is computed. The mean adjustment is then applied to all cir-

cles in the flight. The wind speed used for each calculation is the mean wind speed

observed within its wind speed group; it is obtained from the SFMR and is assumed

to be indicative of the neutral stability wind speed at 10 m height (U10N). The model

function used is the corrected IWRAP GMF; valid for VV- and HH-polarizations but

only at specific incidence angles [30]. The incidence angle used is the largest incidence

angle available for the GMF at the corresponding polarization.
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5.4 Results
Figure 5.3 shows a summary of data collected by the C-band VV-polarization

radar during one of the circle patterns flown on January 24, 2011. The top panel shows

NRCS as a function of the computed incidence angle (but for all aircraft headings,

hence all wind directions). The individual NRCS samples collected during the circle

pattern are shown as gray dots. The mean, shown as a solid line, indicates the mean

NRCS—the A0 term in the typical scatterometer directional signature, i.e.,

σ0 = A0 + A1 cosχ+ A2 cos 2χ (5.15)

where χ is the wind-relative look direction. This and subsequent mean NRCS lines do

not necessarily match up with the IWRAP GMF at 50◦; this is a result of applying

one final adjustment per polarization to all NRCS from this flight. When the aircraft

heading is added to the track-relative azimuth, one obtains the compass direction.

The bottom panel shows the NRCS versus compass direction, revealing the scat-

terometer directional signature of (5.15). The mean NRCS over compass direction for

approximately 50◦ incidence at 22.5 m s−1 is shown as a solid line. The CMOD5.N [35]

and IWRAP VV-polarization GMFs are also shown. Since the IWRAP GMF is only

defined for a few incidence angles, its values are shown as unconnected filled circles.

Figure 5.4 shows a summary of mean NRCS over all observation directions, or the

A0 term in (5.15), as a function of incidence angle for all dates in the Winter 2011

experiment at C-band at both VV- and HH-polarizations. For a given wind speed

range, each data point is the A0 value for one circle pattern at one polarization at

one incidence angle, ±0.5◦. The mean of these points are shown as a solid line. In

addition, shown are the A0 values for the IWRAP model function at the incidence

angles for which it is defined and the CMOD5.N model function averaged over all

azimuth angles. The data in the lowest wind speed group show more scatter than

the higher wind speeds. This is influenced by the increased uncertainty in wind speed
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Figure 5.3. Summary from a circle pattern flown on January 24, 2011 for C-band
VV-polarization. The wind speed was 22.5 m s−1. The CMOD5.N and the IWRAP
VV-polarization GMF are also shown at the wind speeds for which they are defined.
(Top) VV-polarized NRCS (A0) versus incidence angle for all azimuthal directions.
Each NRCS sample collected is shown as a gray dot. The mean NRCS is shown as
a solid line. CMOD5.N is shown as a dashed line and values from the IWRAP GMF
are shown as filled circles at the incidence angles for which it is valid. (Bottom)
VV-polarized NRCS versus azimuth. Each NRCS sample is shown as a gray dot. All
samples between 48◦ and 52◦ incidence are averaged every 5◦ in azimuth and are
connected with a solid line. CMOD5.N is shown as a dashed line and the IWRAP
GMF at 50◦ incidence is shown as a dash-dotted line.
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Figure 5.4. Mean NRCS (A0) versus incidence angle for circle patterns flown on all
dates in the Winter 2011 experiment grouped by wind speed. The model functions
shown are computed with the mean wind speed in each wind speed range. Mean NRCS
samples at each incidence angle from each circle are shown as gray plus symbols (VV-
pol) and gray diamond symbols (HH-pol). The uncertainties of these means are no
greater than 0.4 dB. The mean of all samples within a wind speed bin is shown as
a solid line. CMOD5.N is shown as a dashed line. The IWRAP VV-pol and HH-pol
GMFs are shown as filled circles and squares, respectively, at the incidence angles for
which they are valid.
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Figure 5.5. Polarization ratio VV/HH versus incidence angle grouped by wind speed.
Ratios of the mean NRCS samples at each incidence angle from each circle are shown
as gray circles. The mean of these is shown as a solid line. Polarization ratio models
from [6], [43], [64] are also shown for reference.

retrieval from the SFMR below about 22 m s−1. The VV-polarization data compare

well with both the CMOD5.N and IWRAP A0 at all incidence angles shown and over

all wind speeds sampled. The IWRAP HH model function compares well with the

HH-polarized data for the larger two incidence angles shown; however, the IWRAP

HH GMF differs from the observations at the smallest incidence angle shown. The

trend in NRCS over incidence angle observed during the Winter 2011 experiment is

consistent with that of CMOD5.N.

Figure 5.5 shows the polarization ratio as a function of incidence angle for all dates

in the Winter 2011 experiment at C-band. For a given wind speed range, the gray

circles are the ratio VV/HH of the mean A0 at each incidence angle for one complete
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Table 5.3. Coefficients for the Fit of the Mean VV-polarized NRCS as a Function of
Wind-relative Azimuth Angle to A+B cos χ+ C cos 2χ in Linear Units

Wind Speed Group (m s−1) A B C
20.0–23.0 1.0168 1.8716 · 10−3 6.2065 · 10−3

23.0–26.0 1.0171 1.3911 · 10−3 5.6421 · 10−3

30.0–33.0 1.0254 1.4188 · 10−4 4.6547 · 10−3

33.0–36.0 1.0285 1.8897 · 10−4 4.6014 · 10−3

Table 5.4. Coefficients for the Fit of the Mean HH-polarized NRCS as a Function of
Wind-relative Azimuth Angle to A+B cos χ+ C cos 2χ in Linear Units

Wind Speed Group (m s−1) A B C
20.0–23.0 1.0059 1.4591 · 10−3 2.0956 · 10−3

23.0–26.0 1.0063 1.1929 · 10−3 2.1497 · 10−3

30.0–33.0 1.0109 2.0066 · 10−3 1.9351 · 10−3

33.0–36.0 1.0126 1.5882 · 10−3 1.2505 · 10−3

circle. The wind-speed-independent polarization ratio models from [6], [43], [64] are

also shown. In the lowest two wind speed groups, the ratios observed in the Winter

2011 data match reasonably well with the ratio from [6] and with Model 1 from [43]

for incidence angles greater than 40◦. As the wind speed increases, the incidence

angle dependence on polarization ratio decreases and cannot be represented by any

of the models shown. At incidence angles below 40◦, the ratio begins to flatten out

slightly. The ratio is expected to continue to trend towards unity as the incidence

angle approaches nadir. This divergence from the models may be anticipated; both

the ratios from [6] and Model 1 from [43] reach unity around 20◦ incidence.

Assuming a constant wind field over the area sampled during the circle pattern,

the NRCS directional signature can be investigated. Figure 5.6 shows NRCS versus

wind-relative azimuth angle (χ) at 50◦ incidence for the same wind speed bins and

in the same manner as figure 5.4. The scatterometer directional signature of (5.15) is

visible in all plots. As expected, with increasing wind speed the amplitude decreases,
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Figure 5.6. NRCS at an incidence angle of 50◦ versus wind-relative azimuth angle
grouped by wind speed. The model functions shown are computed with the mean wind
speed observed in each wind speed range. Mean NRCS samples at each incidence angle
from each circle are shown as gray plus symbols (VV-pol) and gray diamond symbols
(HH-pol). A function in the form of A+B cos χ+ C cos 2χ is fitted to the mean of
each polarization’s samples within a wind speed group and is shown as a solid line.
The coefficients for each fit are reported in tables 5.3 and 5.4. CMOD5.N is shown as
a dashed line and the IWRAP GMFs are shown as dash-dotted lines.
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Figure 5.7. Polarization ratios VV/HH at incidence angle 50◦ versus wind-relative
azimuth angle grouped by wind speed. Ratios of the mean NRCS sampled from each
circle flight between 48◦ and 52◦ incidence are averaged in 5◦ azimuth bins and are
shown as gray open circles. A function in the form of A+B cos χ+C cos 2χ is fitted
to the mean and is shown as a solid line. The coefficients for each fit are reported
in table 5.5. The polarization ratio from Vachon and Wolfe [6] at 50◦ is shown for
reference as a horizontal dashed line.

and wind direction is more difficult to unambiguously determine. In addition, shown

are the CMOD5.N and IWRAP GMFs at 50◦ incidence.

Figure 5.7 shows the polarization ratio as a function of wind-relative azimuth

angle at 50◦ incidence. The data points from each circle flight are shown as gray

circles. The function A + B cos χ + C cos 2χ is fitted to the mean and is shown

as a solid line; the coefficients for each fit are reported in table 5.5. For reference,

the polarization ratio from Vachon and Wolfe [6] at 50◦ incidence is shown as a

horizontal dashed line. There is a small but measurable wind-directional signature in

the polarization ratio data from the Winter 2011 experiment. This is consistent with
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Table 5.5. Coefficients for the Fit of the Mean Polarization Ratio as a Function of
Wind-relative Azimuth Angle to A+B cos χ+ C cos 2χ in Linear Units

Wind Speed Group (m s−1) A B C
20.0–23.0 1.9661 −1.6399 · 10−1 4.0108 · 10−2

23.0–26.0 1.9162 −1.3179 · 10−1 −3.5722 · 10−2

30.0–33.0 1.7628 −1.6599 · 10−1 1.399 · 10−2

33.0–36.0 1.7406 −7.9928 · 10−2 5.8588 · 10−2

earlier observations [7], [30], [43]. There was no analytical relationship for polarization

ratio as a function of azimuth angle proposed by Zhang et al. [43]. Moreover, while an

analytical relationship with azimuth angle dependence was proposed by Mouche et al.

[7], it is only valid between 10◦ and 43◦ incidence. As a result, only the observations

by Mouche et al. [7] and Zhang et al. [43] are verified that the polarization ratio

appears to have a maximum in the downwind direction for the wind speeds and

incidence angles sampled.

5.5 Summary
Observations of the dual-polarized sea surface NRCS at C-band under high winds

(20 m s−1 to 36 m s−1) are reported over a range of incidence angles (32◦ to 60◦). The

polarization ratio behavior at lower wind speeds is found to be well described by the

expression in Vachon and Wolfe [6], even when extrapolating beyond their measure-

ments. However, in all wind speed groups, the slope of the polarization ratio in decibels

appears to change more drastically than indicated by recent models. A dependence of

polarization ratio on wind speed is also observed; as wind speed increases, the slope of

the polarization ratio in decibels as a function of incidence angle decreases. Finally, a

small but measurable wind-directional signature in the polarization ratio is observed,

which is consistent with earlier observations [7], [30], [43].
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In chapter 1 the concept of remotely measured ocean surface wind vectors using

microwave radars was introduced. Chapter 2 described the IWRAP airborne scat-

terometer/profiler, from which the data used in this dissertation comes. The Stepped

Frequency Microwave Radiometer was also described, since it serves as a ground truth

sensor and thus plays a key role in this work.

Chapter 3 extended scatterometer geophysical model function to 22◦ in both C-

and Ku-bands and at both VV- and HH-polarizations. This chapter also confirmed the

behavior of the IWRAP A0 GMF at the outer incidence angles, introducing more data

and independent analysis of the existing GMF. The behavior of the higher harmonics

of the existing IWRAP GMF are questionable, considering the data presented. Since

the data shown in this chapter are supported by empirical, satellite-derived GMFs,

revision of the a1 and a2 GMFs are suggested.

Chapter 4 addressed the precipitation splash effect on sea-surface NRCS at ap-

proximately 22◦ incidence. The two IWRAP radars were used in a dual-frequency

attenuation estimation method to verify that SFMR was a viable method of mea-

suring precipitation. The IWRAP-derived mean specific attenuation as a function of

SFMR rain rate was found to match reasonably well with existing models. The same

flight experiments from chapter 3 were used in this chapter, except that rainy data

were not discarded. After applying a frequency-specific attenuation model to the data,

some offset with the new IWRAP GMF in the mean NRCS (A0) was observed. Since a

small vertical shift of the specific attenuation-rain rate models could not be ruled out,
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a small adjustment was made to all rainy data so that the mean NRCS at 25 m s−1 in

light rain matches the rain-free GMF. No measurable effect due to precipitation was

observed in the mean NRCS or normalized first harmonic (a1) at wind speeds from

15 m s−1 to 45 m s−1 at C- and Ku-band and VV- and HH-polarizations. A dampen-

ing effect on the normalized second harmonic (a2) was observed at all frequencies and

polarizations, consistent with other observations that precipitation hampers direction

retrieval.

Chapter 5 examined C-band data from the winter 2011 IWRAP and SFMR flight

experiments in which 360◦ aircraft orbits were performed in a variety of wind speeds

ranging from 20 m s−1 to 36 m s−1. The polarization ratio V V
HH

at high wind speeds was

examined as a function of incidence angle (between 32◦ and 60◦) and azimuth angle.

The polarization ratio as a function of incidence angle was observed to have a wind

speed dependence. Additionally, a small azimuthal polarization ratio was observed,

both of which are consistent with previous observations. The data taken during this

experiment were not fully utilized, since both Ku-band channels and the inner C-

band incidence angle channel were not analyzed. In the future, these could provide

additional verification of the behavior at the low incidence angle GMFs developed in

chapter 3.

Cross-polarized NRCS measurements, in which the radar transmits in one polar-

ization and receives in the other, seem to have great potential for retrieving high-

speed ocean vector winds [6], [65]. IWRAP is in a good position to investigate this

phenomena at high winds, but the cross-polarized signature needs to overcome the

low isolation of the antennas. Since IWRAP has been capable of measuring the cross-

polarization signal, there have been few flights where this is a possibility—and all

were during the hurricane season of 2014. These flights have not been thoroughly

investigated yet, but this is an area of high interest to the scatterometer community.
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