168,639 research outputs found

    An Efficient QBIR System Using Adaptive Segmentation and Multiple Features

    Get PDF
    AbstractQuery by Image Content Retrieval abbreviated as QBIR, has become new thirst now a days. By using this systems, user can retrieve the similar images of an already existed image (or) a rough sketch (or) a symbolic representation. To make more efficient and user friendly QBIR multiple features areemployed. This paper proposes a novel approach for image retrieval using adaptive k-means clustering and shape, texture features. The experimental results portraystheperformance of the proposed retrieval system in terms of better precision. To evaluate the proposed method COIL and MPEG-7 shape 1 datasets are used

    Document image retrieval based on density distribution feature and key block feature

    Full text link
    Document image retrieval is an important part of many document image processing systems such as paperless office systems, digital libraries and so on. Its task is to help users find out the most similar document images from a document image database. For developing a System of document image retrieval among different resolutions, different formats document images with hybrid characters of multiple languages,. a new retrieval method based on document image density distribution features and key block features is proposed in this paper. Firstly, the density distribution and key block features of a document image are defined and extracted based on documents' print-core. Secondly, the candidate document images are attained based on the density distribution features. Thirdly, to improve reliability of the retrieval results, a confirmation procedure using key block features is applied to those candidates. Experimental results on a large scale document image database, which contains 10385 document images, show that the proposed method is efficient and robust to retrieve different kinds of document images in real time.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000232022600204&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Artificial IntelligenceComputer Science, Information SystemsCPCI-S(ISTP)

    A Compact Representation of Histopathology Images using Digital Stain Separation & Frequency-Based Encoded Local Projections

    Full text link
    In recent years, histopathology images have been increasingly used as a diagnostic tool in the medical field. The process of accurately diagnosing a biopsy sample requires significant expertise in the field, and as such can be time-consuming and is prone to uncertainty and error. With the advent of digital pathology, using image recognition systems to highlight problem areas or locate similar images can aid pathologists in making quick and accurate diagnoses. In this paper, we specifically consider the encoded local projections (ELP) algorithm, which has previously shown some success as a tool for classification and recognition of histopathology images. We build on the success of the ELP algorithm as a means for image classification and recognition by proposing a modified algorithm which captures the local frequency information of the image. The proposed algorithm estimates local frequencies by quantifying the changes in multiple projections in local windows of greyscale images. By doing so we remove the need to store the full projections, thus significantly reducing the histogram size, and decreasing computation time for image retrieval and classification tasks. Furthermore, we investigate the effectiveness of applying our method to histopathology images which have been digitally separated into their hematoxylin and eosin stain components. The proposed algorithm is tested on the publicly available invasive ductal carcinoma (IDC) data set. The histograms are used to train an SVM to classify the data. The experiments showed that the proposed method outperforms the original ELP algorithm in image retrieval tasks. On classification tasks, the results are found to be comparable to state-of-the-art deep learning methods and better than many handcrafted features from the literature.Comment: Accepted for publication in the International Conference on Image Analysis and Recognition (ICIAR 2019

    Content Based Image Retrieval by Preprocessing Image Database

    Get PDF
    Increase in communication bandwidth, information content and the size of the multimedia databases have given rise to the concept of Content Based Image Retrieval (CBIR). Content based image retrieval is a technique that enables a user to extract similar images based on a query, from a database containing a large amount of images. A basic issue in designing a content based image retrieval system is to select the image features that best represent image content in a database. Current research in this area focuses on improving image retrieval accuracy. In this work, we have presented an ecient system for content based image retrieval. The system exploits the multiple features such as color, edge density, boolean edge density and histogram information features. The existing methods are concentrating on the relevance feedback techniques to improve the count of similar images related to a query from the raw image database. In this thesis, we propose a dierent strategy called preprocessing image database using k means clustering and genetic algorithm so that it will further helps to improve image retrieval accuracy. This can be achieved by taking multiple feature set, clustering algorithm and tness function for the genetic algorithms. Preprocessing image database is to cluster the similar images as homogeneous as possible and separate the dissimilar images as heterogeneous as possible. The main aim of this work is to nd the images that are most similar to the query image and new method is proposed for preprocessing image database via genetic algorithm for improved content based image retrieval system. The accuracy of our approach is presented by using performance metrics called confusion matrix, precison graph and F-measures. The clustering purity in more than half of the clusters has been above 90 percent purity

    Aplikasi Image Retrieval Dengan Histogram Warna Dan Multi-Scale Glcm

    Get PDF
    Content-based image retrieval is an image search techniques from large image database by analyzing features of the image. Image feature can be color, texture, shape, and others. This study uses color and texture features when searching image. Color histogram is used to extract color features with quantization approach to HSV. Texture features in image obtained from the calculation of Gray-Level Co-occurrence Matrix (GLCM) and multi-scale GLCM. Multi-scale GLCM using Gaussian smoothing to reduce noise in the image and considering multiple scale from an image. Image search results obtained from the comparison of the features of color and texture in database using Euclidean distance. The results show an image search on Wang database using color histogram and multi-scale GLCM obtain higher precision value than just taking one of the method or combinations of color histogram and GLC

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness
    corecore