31 research outputs found

    Estudio de la movilidad en redes de siguiente generaciĂłn

    Get PDF
    El continuo avance de las redes de telecomunicaciones nos proporciona cada vez mås facilidades en todos los åmbitos de nuestra vida. En este caso, nos hemos centrado en el estudio de la movilidad en Redes de Siguiente Generación. Una parte del presente proyecto se ha realizado en colaboración con Deutsche Telekom AG, durante una estancia de seis meses trabajando como colaboradora en sus laboratorios con emplazamiento en Berlín. El principal objetivo de este proyecto ha sido realizar un estudio sobre los diferentes eståndares y tecnologías que facilitan la movilidad en Redes de Siguiente Generación. Por ello, en la primera parte se han estudiado los diferentes grupos de trabajo centrados en este aspecto, así como se ha recabado información sobre productos y soluciones disponibles en el mercado, para obtener una visión global de la situación actual. Como se puede comprobar mås adelante, esta primera parte es la mås extensa de todo el documento. Esto se debe a que es, probablemente, la parte mås importante del trabajo, ya que contiene el estudio de los mecanismos que mås tarde nos servirån para dar una solución teórica a los distintos escenarios que se plantean. En la segunda parte del proyecto, nos hemos centrado en desarrollar varios escenarios de interés en sistemas de Redes de Siguiente Generación y aportar, de forma posterior, posibles soluciones teóricas. Para finalizar, se han expuesto las conclusiones extraídas como resultado del trabajo y los aspectos que se podrån tratar sobre el mismo en un futuro próximo.Ingeniería de Telecomunicació

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme

    Distributed mobility management for a flat architecture in 5G mobile networks: solutions, analysis and experimental validation

    Get PDF
    In the last years, the commercial deployment of data services in mobile networks has been evolving quickly, providing enhanced radio access technologies and more efficient network architectures. Nowadays, mobile users enjoy broadband and ubiquitous wireless access through their portable devices, like smartphones and tablets, exploiting the connectivity offered by the modern 4G network. Nevertheless, the technological evolution keeps moving towards the development of next generation networks, or 5G, aiming at further improving the current system in order to cope with the huge data traffic growth foreseen in the future years. One of the possible research guidelines aims at innovating the mobile networks architecture by designing a flat system. Indeed, current systems are built upon a centralized and hierarchical structure, where multiple access networks are connected to a central core hosting crucial network functions, e.g., charging, control and maintenance, as well as mobility management, which is the main topic of this thesis. In such a central mobility management system, users’ traffic is aggregated at some key nodes in the core, called mobility anchors. Thus, an anchor can easily handle user’s mobility by redirecting traffic flows to his/her location, but i) it poses scalability issues, ii) it represents a single point of failure, and iii) the routing path is in general suboptimal. These problems can be overcome moving to a flat architecture, adopting a Distributed Mobility Management (DMM) system, where the centralized anchor is removed. This thesis develops within the DMM framework, presenting the design, analysis, implementation and experimental validation of several DMM protocols. In this work we describe original protocols for client-based and network-based mobility management, as well as a hybrid solution. We study analytically our solutions to evaluate their signaling cost, the packet delivery cost, and the latency introduced to handle a handover event. Finally, we assess the validity of some of our protocols with experiments run over a network prototype built in our lab implementing such solutions.El despliegue comercial de los servicios de datos en las redes mĂłviles ha evolucionado rĂĄpidamente en los Ășltimos años, proporcionando tecnologĂ­as de acceso radio mĂĄs avanzadas y arquitecturas de red mĂĄs eficientes. Los usuarios ya pueden disfrutar de los servicios de banda ancha desde sus dispositivos mĂłviles, como smartphones y tablets, aprovechando la conectividad de las modernas redes 4G. Sin embargo, la evoluciĂłn tecnolĂłgica sigue trazando su camino hasta el desarrollo de las redes de prĂłxima generaciĂłn, o 5G, en previsiĂłn del enorme aumento del trĂĄfico de los años futuros. Una de las innovaciones bajo estudio aborda la arquitectura de las redes mĂłviles, con el objetivo de diseñar un sistema plano. Efectivamente, el sistema actual se basa en una estructura centralizada y jerĂĄrquica, en la cual mĂșltiples redes de acceso se conectan al nĂșcleo central, dĂłnde residen funciones cruciales para el control de la red y facturaciĂłn, asĂ­ como la gestiĂłn de la movilidad, que es el tema central de esta tesis. En un sistema con gestiĂłn centralizada de la movilidad, se agregan los flujos de trĂĄfico en algunos nodos claves situados en el nĂșcleo de la red, llamados anclas de movilidad. De este modo, un ancla puede fĂĄcilmente redirigir los flujos al lugar donde se halla el usuario, pero i) supone problemas de escalabilidad, ii) representa un punto Ășnico de fallo, y iii) el encaminamiento es en general sub-Ăłptimo. Estos problemas se pueden resolver pasando a una arquitectura plana, cambiĂĄndose a un sistema de gestiĂłn distribuida de la movilidad (Distributed Mobility Management – DMM), donde no hay anclas centralizadas. Esta tesis se desarrolla dentro el marco propuesto por DMM, presentando el diseño, el anĂĄlisis, la implementaciĂłn y la validaciĂłn experimental de varios protocolos de movilidad distribuida. Se describen soluciones basadas en el cliente y en la red, asĂ­ como una soluciĂłn hĂ­brida. El funcionamiento de las soluciones ha sido estudiado analĂ­ticamente, para evaluar los costes de señalizaciĂłn, el coste del transporte de los paquetes y la latencia para gestionar el traspaso de los usuarios de una red a otra. Finalmente, la validez de los protocolos ha sido demostrada con experimentos sobre un prototipo donde se implementan algunas de las soluciones utilizando el equipamiento de nuestro laboratorio.Programa Oficial de Doctorado en IngenierĂ­a TelemĂĄticaPresidente: Arturo Azcorra Saloña.- Secretario: RamĂłn AgĂŒero Calvo.- Vocal: Jouni Korhone

    Support des applications multimédia dans les réseaux de prochaine génération

    Get PDF
    RÉSUMÉ Les applications multimĂ©dia sont devenues tellement populaires que certaines d’entre elles sont utilisĂ©es quotidiennement par les usagers. Cette popularitĂ© peut ĂȘtre attribuĂ©e Ă  plusieurs facteurs, tels que la diversiïŹcation du contenu et des services oïŹ€erts, l’accĂšs en tout temps grĂące Ă  la mobilitĂ© et Ă  la nomadicitĂ©, ainsi qu’aux avancĂ©es au niveau des architectures et des protocoles utilisĂ©s, aïŹn de supporter les requis plus exigeants de ces applications. Par exemple, ce qui Ă©tait jadis un simple appel tĂ©lĂ©phonique, se transforme dĂ©sormais en une vidĂ©oconfĂ©rence, permettant Ă  un nombre dynamique d’usagers d’y participer. Un autre exemple d’application multimĂ©dia, qui connait Ă©galement un essor fulgurant, est IP TeleVision (IPTV), soit la technologie permettant la transmission de la tĂ©lĂ©vision, en direct et sur demande, sur des rĂ©seaux IP. On retrouve Ă©galement sa version mobile, soit Mobile IP TeleVision (MobileTV). Du cĂŽtĂ© des opĂ©rateurs, le focus est mis sur le dĂ©ploiement des rĂ©seaux de prochaine gĂ©nĂ©ration. Les opĂ©rateurs sans-ïŹl se tournent vers les technologies cellulaires de quatriĂšme gĂ©nĂ©ration, telles que 3GPP Long Term Evolution (LTE), alors que ceux qui oïŹ€rent les services ïŹlaires regardent plutĂŽt vers les rĂ©seaux basĂ©s sur la ïŹbre optique, tels que Fiber to the Home (FTTH). Ces rĂ©seaux promettent d’augmenter le dĂ©bit oïŹ€ert, ainsi que de rĂ©duire la latence, soit deux critĂšres importants pour le dĂ©ploiement des applications multimĂ©dia Ă  grande Ă©chelle. MalgrĂ© ces avancĂ©es technologiques, il existe encore plusieurs obstacles au bon fonctionnement des applications multimĂ©dia. Dans cette optique, cette thĂšse se penche sur trois problĂ©matiques importantes dans les rĂ©seaux de prochaine gĂ©nĂ©ration, chacune faisant l’objet d’un article scientiïŹque. Les deux premiers volets s’attardent sur la convergence des rĂ©seaux ïŹxes et mobiles, ou Fixed-Mobile Convergence (FMC). Cette convergence vient brouiller la distinction entre les rĂ©seaux mobiles et les rĂ©seaux ïŹxes. Entre autre, elle permet Ă  un usager d’avoir accĂšs Ă  ses services, autant sur le rĂ©seau cellulaire (LTE, par exemple) que sur un rĂ©seau local (Wireless Fidelity (WiFi), par exemple). Pour s’y faire, l’usager est gĂ©nĂ©ralement muni d’un terminal pouvant se connecter sur les deux rĂ©seaux. La premiĂšre problĂ©matique soulevĂ©e dans cette thĂšse est au niveau de la prise de dĂ©cision de la relĂšve. En eïŹ€et, les deux protocoles de mobilitĂ© les plus populaires, soit Mobile IP (MIP) et Proxy Mobile IP (PMIP), adoptent deux approches diamĂ©tralement opposĂ©es. Avec le premier protocole, ce sont l’usager et son terminal qui prennent entiĂšrement en charge la relĂšve. MĂȘme si cette approche permet la FMC, les opĂ©rateurs prĂ©fĂšrent plutĂŽt garder le contrĂŽle sur la prise de dĂ©cision, aïŹn de pouvoir optimiser leur rĂ©seau. En eïŹ€et, avec MIP, beaucoup de messages de signalisation sont envoyĂ©s, ce qui gaspille des ressources rĂ©seaux, surtout au niveau de l’accĂšs radio, la partie la plus prĂ©cieuse du rĂ©seau. De plus, en ne sollicitant pas le rĂ©seau, le terminal ne prend pas nĂ©cessairement les meilleures dĂ©cisions. Il peut donc basculer vers un rĂ©seau qui est plus chargĂ© et qui ne garantit pas nĂ©cessairement ses exigences au niveau de la qualitĂ© de service. De ce fait, le protocole PMIP a Ă©tĂ© proposĂ©. Son approche est exactement Ă  l’opposĂ© de celle de MIP, soit la mobilitĂ© qui est entiĂšrement gĂ©rĂ©e par le rĂ©seau. De ce fait, la mobilitĂ© est masquĂ©e au niveau du terminal, qui pense toujours se trouver dans son rĂ©seau mĂšre. GrĂące Ă  l’ajout de nouveaux nƓuds dans le rĂ©seau, qui gĂšrent la mobilitĂ© Ă  la place du terminal, on Ă©limine la signalisation sur l’accĂšs radio. De plus, les informations supplĂ©mentaires que le rĂ©seau dĂ©tient lui permettront de prendre une meilleure dĂ©cision. Par contre, le problĂšme avec ce protocole est que, sans l’intervention du terminal, il lui est impossible de dĂ©tecter toutes les situations de relĂšves. Dans plusieurs cas, le rĂ©seau ïŹxe de l’opĂ©rateur est masquĂ© par un rĂ©seau interne, par exemple un rĂ©seau WiFi, et la dĂ©tection de ce rĂ©seau n’est possible que grĂące Ă  l’intervention du terminal. Ainsi, PMIP n’est pas un protocole qui se prĂȘte bien au dĂ©ploiement de FMC. Le premier article, qui s’intitule « Client-Based Network-Assisted Mobile IPv6 », s’attaque donc Ă  ce problĂšme, en proposant un nouveau protocole, basĂ© sur Mobile IP v6 (MIPv6), et qui introduit l’implication du rĂ©seau. Le rĂ©sultat obtenu est un protocole hybride qui combine les avantages de MIPv6 et de Proxy Mobile IP v6 (PMIPv6). Pour s’y faire, deux Ă©tapes ont Ă©tĂ© nĂ©cessaires. La premiĂšre consiste en une refonte du protocole MIPv6 qui, dans son Ă©tat actuel, Ă©tait diïŹƒcile Ă  modiïŹer, Ă  cause de ses spĂ©ciïŹcations qui sont lourdes. Le rĂ©sultat de cette Ă©tape est un protocole beaucoup plus lĂ©ger et oïŹ€rant uniquement les fonctionnalitĂ©s de base. Les autres fonctionnalitĂ©s, telles que les mĂ©canismes de sĂ©curitĂ©, ont Ă©tĂ© sĂ©parĂ©es dans des modules. En deuxiĂšme lieu, un nouveau module a Ă©tĂ© proposĂ©, qui introduit un nouveau nƓud dans le rĂ©seau, capable de gĂ©rer la mobilitĂ© du terminal. Ainsi, la collaboration entre le terminal et ce nƓud permet de rĂ©duire les messages de signalisation et d’optimiser les dĂ©cisions au niveau des relĂšves, tout en oïŹ€rant le support pour FMC. La deuxiĂšme problĂ©matique, sur laquelle la thĂšse porte, se trouve au niveau de la transparence de la relĂšve entre les deux rĂ©seaux. On parle d’une relĂšve qui est transparente si cette derniĂšre n’engendre aucune interruption des services de l’usager. Par exemple, un appel en cours, qui est dĂ©marrĂ© sur le rĂ©seau cellulaire, ne doit pas ĂȘtre interrompu lorsque la connexion bascule sur le rĂ©seau local, et vice-versa. Les applications visĂ©es, par notre travail, sont les applications multimĂ©dia en temps rĂ©Ă©l, notamment IPTV et MobileTV (en mode tĂ©lĂ©vision en direct). Ces applications emploient des protocoles de multidiïŹ€usion permettant l’envoi optimisĂ© de donnĂ©es Ă  partir d’une ou de plusieurs sources vers plusieurs destinataires, avec un nombre minimal de paquets. Le problĂšme avec ces applications est que, lorsqu’une relĂšve verticale survient (dans le cadre de FMC par exemple), la connexion est rompue et doit ĂȘtre rĂ©Ă©tablie. Ceci est dĂ» au fait que le terminal change son adresse IP, ce qui le force Ă  rejoindre ses services Ă  partir de la nouvelle adresse. Cette dĂ©connexion rĂ©sulte en une perte de paquets, se traduisant par une interruption de l’application de l’usager. Le second article, qui s’intitule « Seamless handover for multicast Mobile IPv6 traïŹƒc », propose une solution Ă  ce problĂšme. Cette solution consiste en l’ajout d’un nouveau nƓud, dans le rĂ©seau, dont le rĂŽle est de mettre en tampon les paquets perdus, lors de la relĂšve du terminal. Ainsi, lorsque ce dernier recouvre sa connectivitĂ©, il est en mesure de rĂ©cupĂ©rer ces paquets auprĂšs de ce nƓud. L’application de l’usager se dĂ©roule alors sans interruption. La troisiĂšme problĂ©matique abordĂ©e dans cette thĂšse porte sur la planiïŹcation des rĂ©seaux d’accĂšs, aïŹn de supporter les requis des applications multimĂ©dia au niveau du dĂ©bit. Pour que la FMC soit rĂ©ussie, il faut que le rĂ©seau local puisse supporter les dĂ©bits nĂ©cessaires de l’application. Le rĂ©seau WiFi interne n’étant gĂ©nĂ©ralement pas un problĂšme, la limitation se trouve plutĂŽt au niveau de l’accĂšs ïŹlaire. AïŹn d’augmenter les dĂ©bits oïŹ€erts, les opĂ©rateurs ont introduit la ïŹbre optique dans leurs rĂ©seaux, complĂ©mentant ainsi les mĂ©thodes traditionnelles, tels les paires de cuivre torsadĂ©es et le cĂąble coaxial. Ainsi, de nouvelles technologies optiques hybrides ont Ă©tĂ© proposĂ©es. Dans un contexte o`u une infrastructure est dĂ©jĂ  existante, le choix d’une technologie hybride est trĂšs attrayant, car l’opĂ©rateur peut rentabiliser son investissement prĂ©cĂ©dent, minimisant ainsi le coĂ»t de la mise Ă  jour. Par contre, dans un environnement vierge, il n’existe pas d’infrastructure Ă  rĂ©utiliser. Le consensus, dans un tel scĂ©nario, est que la meilleure technologie Ă  dĂ©ployer est celle qui n’emploie que des liens en ïŹbre optique, car elle oïŹ€re les meilleurs dĂ©bits ainsi que la plus grande ïŹ‚exibilitĂ© au niveau de l’évolutivitĂ©. La diïŹ€Ă©rence, au niveau du coĂ»t, devient moins grande et n’est plus nĂ©cessairement le critĂšre principal au niveau du choix de la technologie Ă  dĂ©ployer. Une des diïŹƒcultĂ©s, qui compliquent la planiïŹcation, est que ces rĂ©seaux sont souvent dĂ©ployĂ©s par les opĂ©rateurs, en phases. La planiïŹcation doit ĂȘtre alors dynamique et prendre en considĂ©ration la nature Ă©volutive de la demande des clients. Le troisiĂšme article, qui s’intitule « Dynamic GreenïŹeld Fiber to the Home Planning », propose donc une modĂ©lisation dynamique du problĂšme de planiïŹcation des rĂ©seaux d’accĂšs en ïŹbre optique. Le rĂ©sultat est un modĂšle mathĂ©matique linĂ©aire, en nombres entiers, qui prend en entrĂ©e des paramĂštres, tels que les demandes des clients, et qui produit la planiïŹcation minimisant le coĂ»t total du rĂ©seau et ce, sur plusieurs phases. Les rĂ©sultats numĂ©riques obtenus en simulant notre modĂšle montrent sa supĂ©rioritĂ© par rapport aux mĂ©thodes sĂ©quentielles existantes.--------- ABSTRACT Multimedia applications have been gaining momentum and are ïŹnding their way into everyday life. Their popularity can be attributed to several factors, such as the diversiïŹcation of content and services, ubiquitous access thanks to the mobility and nomadicity, as well as advances in architectures and protocols used to support their most demanding requirements. For example, what was once a simple phone call has morphed nowadays into a videoconference, allowing a dynamic number of users to participate. Another example of a multimedia application that gained popularity is IP TeleVision (IPTV), which is the technology that allows the transmission of live and on demand television, on IP networks. There also exists a mobile version, called Mobile IP TeleVision (MobileTV). From the operators’ point of view, the focus is put on the deployment of next generation networks. Wireless operators are therefore deploying fourth generation cellular technologies, such as 3GPP Long Term Evolution (LTE), while those oïŹ€ering wired connectivity are looking into ïŹber optical based networks, such as Fiber to the Home (FTTH). These new networks increase the rate oïŹ€ered, as well as reduce latency, which are two important criteria for the deployment of large-scale multimedia applications. However, despite these advances, there still exist several obstacles hindering the proper operation of multimedia applications. This thesis therefore focuses on three important issues in next generation networks, each of these subjects leading to a scientiïŹc article. The ïŹrst two works deal with the issues of the Fixed-Mobile Convergence (FMC). This convergence is blurring the distinction between mobile and ïŹxed networks. Among other things, it allows a user to have access to its services, both on the cellular network (LTE, for example) as well as on a local network (Wireless Fidelity (WiFi), for example). This is usually accomplished by equipping the user with a device with that can connect to both networks. The ïŹrst issue raised in this thesis is about the decision of when to execute a handover. The two most popular mobility protocols, Mobile IP (MIP) and Proxy Mobile IP (PMIP), approach this problem with diametrically opposed views. With the ïŹrst protocol, the decision is made by the user and his device. Although this approach allows for FMC, operators would much rather have complete control over the decision-making, in order to optimize their network. Indeed, with MIP, many signaling messages are sent, wasting valuable network resources, especially at the radio access, which is the most precious part of the network. Furthermore, by not involving the network, the decision taken by the device will not be necessarily optimal. It might request to switch to a more overloaded network, that cannot meet its demands of Quality of Service (QoS). For these reasons, the PMIP protocol was proposed. Its approach is the opposite of that of MIP, the mobility being managed entirely by the network. By doing so, the device is actually shielded from any aspect of the mobility, and is fooled into thinking that its always in its home network. This is possible by introducing new nodes in the networks that act on its behalf, which eliminates all signaling on the radio link. In addition, since the network is usually better suited to make the right decision, because of the additional information it holds, the mobility is optimized. However, the big issue that arises is that, without the intervention of the terminal, it is impossible to detect all the handover possibilities. In many cases, the operator’s ïŹxed network is hidden by an internal network, usually a WiFi network, and the detection of the network is only possible with the help of the terminal. Thus, PMIP is not a protocol that is well suited to deploy FMC. The ïŹrst article, entitled “Client-Based Network-Assisted Mobile IPv6”, therefore addresses this problem by proposing a new protocol based on Mobile IP v6 (MIPv6), in which we introduce the involvement of the network. The result is a hybrid protocol that draws upon the strength of MIPv6 and Proxy Mobile IP v6 (PMIPv6). To accomplish this, two steps were required. The ïŹrst consisted of a complete overhaul of the MIPv6 protocol, as in its current state, it was near impossible to make any modiïŹcations, because of the complexity and heaviness of its speciïŹcations. The result is a much more lightweight protocol which provides only basic functionality. Other features, such as security mechanisms, were separated into modules. In the second step, we proposed a new module, which introduces a new node in the network that can handle the terminal mobility. Thus, the collaboration of the terminal and the new node reduces the signaling messages and optimizes the decisions for handing over, while still oïŹ€ering support for FMC. The second issue that this thesis tackles is the seamlessness of a handover between two networks. A handover is deemed seamless if it does not cause any disruption to the user’s services. For example, a call that is in progress on the cellular network should not be interrupted when the connection switches to a local network, and the same goes for the other way around. The applications targeted by our work are multimedia applications operating in real-time , such as IPTV and MobileTV (in live television mode). These applications employ multicast protocols that are optimized for the transmission of data from one or more sources to multiple receivers, while using the minimum number of packets required. The problem, however, with these applications is that when a vertical handover occurs (in the case of FMC, for example), the connection is lost and must be re-established. This is because the terminal changes its IP address, which forces it to rejoin the services from the new address. This disconnection results in a packet loss, which entails an interruption of the user application. The second article, entitled “Seamless handover for multicast Mobile IPv6 traïŹƒc”, proposes a solution to this problem. This is accomplished by introducing a new node in the network, whose role is to buïŹ€er the lost packets while the handover is occurring. Thus, when the device reconnects, it is able to recover these packets. The user application is therefore able to proceed without interruption. The third issue addressed in this thesis focuses on the planning of access networks, to support the high bandwidth required by multimedia applications. For the FMC to be successful, it is necessary that the local network supports the bandwidth requirements. The internal WiFi network is generally not an issue, the limitation rather lies in the wired network. To increase the oïŹ€ered rates, operators have started introducing ïŹber optic links in their networks, complementing the traditional links, such as twisted pair copper and coaxial cable. Thus, new hybrid optical technologies have been proposed. In a context where an infrastructure already exists, the choice of a hybrid technology is very attractive, because the operator can leverage its previous investment and minimize the cost of the upgrade. However, in a new environment, there is no infrastructure to reuse. Therefore, the consensus in such a scenario is that the best technology to deploy is the one that only uses ïŹber optic links, as it oïŹ€ers the best rates and the greatest scalability. The cost diïŹ€erence is smaller and therefore no longer the main criterion for selecting the technology to deploy. One of the diïŹƒculties of network planning is that these networks are often deployed by operators in phases. Therefore, the planning must be dynamic and take into account the changing nature of customer demands. The third article, entitled “Dynamic GreenïŹeld Fiber to the Home Planning”, proposes a dynamic model for the network planning problem of ïŹber optic networks. The result is a linear integer mathematical model, which takes input parameters, such as customer demands, and produces a planning that minimizes the total cost of the network, over all of the phases. The numerical results obtained when simulating our solution show its superiority compared to existing sequential methods

    Optimisation of Traffic Steering for Heterogeneous Mobile Networks

    Get PDF
    Mobile networks have changed from circuit switched to IP-based mobile wireless packet switched networks. This paradigm shift led to new possibilities and challenges. The development of new capabilities based on IP-based networks is ongoing and raises new problems that have to be tackled, for example, the heterogeneity of current radio access networks and the wide range of data rates, coupled with user requirements and behaviour. A typical example of this shift is the nature of traffic, which is currently mostly data-based; further, forecasts based on market and usage trends indicate a data traffic increase of nearly 11 times between 2013 and 2018. The majority of this data traffic is predicted to be multimedia traffic, such as video streaming and live video streaming combined with voice traffic, all prone to delay, jitter, and packet loss and demanding high data rates and a high Quality of Service (QoS) to enable the provision of valuable service to the end-user. While the demands on the network are increasing, the end-user devices become more mobile and end-user demand for the capability of being always on, anytime and anywhere. The combination of end-user devices mobility, the required services, and the significant traffic loads generated by all the end-users leads to a pressing demand for adequate measures to enable the fulfilment of these requirements. The aim of this research is to propose an architecture which provides smart, intelligent and per end-user device individualised traffic steering for heterogeneous mobile networks to cope with the traffic volume and to fulfil the new requirements on QoS, mobility, and real-time capabilities. The proposed architecture provides traffic steering mechanisms based on individual context data per end-user device enabling the generation of individual commands and recommendations. In order to provide valuable services for the end-user, the commands and recommendations are distributed to the end-user devices in real-time. The proposed architecture does not require any proprietary protocols to facilitate its integration into the existing network infrastructure of a mobile network operator. The proposed architecture has been evaluated through a number of use cases. A proof-of-concept of the proposed architecture, including its core functionality, was implemented using the ns-3 network simulator. The simulation results have shown that the proposed architecture achieves improvements for traffic steering including traffic offload and handover. Further use cases have demonstrated that it is possible to achieve benefits in multiple other areas, such as for example improving the energy efficiency, improving frequency interference management, and providing additional or more accurate data to 3rd party to improve their services

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    IP Mobility in Wireless Operator Networks

    Get PDF
    Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.Erilaiset langattomat verkkoyhteydet lisÀÀntyvÀt Internet-kykyisten teknologioiden muodossa. Lukuisten eri teknologioiden pÀÀllekkÀinen kÀyttö johtuu vÀhitellen ja tarpeen mukaan rakennetusta verkkoinfrastruktuurista. Useita radioteknologioita (kuten WLAN, GSM ja UMTS) sisÀltÀvien pÀÀtelaitteiden (kuten Àlypuhelimet ja kannettavat tietokoneet) viimeaikainen kaupallinen menestys edesauttaa uuden verkkoinfrastruktuurin rakentamista, sekÀ mahdollisesti johtaa verkkoteknologioiden kirjon lisÀÀntymiseen. Olemassa olevaa verkkoinfrastruktuuria ei kaupallisista syistÀ kannata korvata uudella teknologialla yhdellÀ kertaa, vaan vaiheittainen siirtymÀvaihe kestÀÀ tyypillisesti useita vuosia. Internet-kykyiset pÀÀtelaitteet voivat liikkua joko saman verkkoteknologian sisÀllÀ tai eri verkkoteknologioiden vÀlillÀ. VerkkoympÀristöstÀ riippuen liikkuvat pÀÀtelaitteet voivat liittyÀ verkkoon useiden verkkoyhteyksien kautta. NÀin ollen pÀÀtelaite voi lÀhettÀÀ ja vastaanottaa tietoliikennepaketteja yhtÀaikaisesti lukuisia verkkoja pitkin. TÀmÀ vÀitöskirja kÀsittelee Internet-teknologioiden liikkuvuutta ja nÀiden teknologioiden tuomista olemassa oleviin langattomien verkko-operaattorien verkkoinfrastruktuureihin. KÀsiteltÀviÀ verkkoinfrastruktuureita ei alun perin ole suunniteltu Internet-teknologian liikkuvuuden ja monien yhtÀaikaisten yhteyksien ehdoilla. TÀssÀ työssÀ ehdotetaan tulevaisuuden langattomien verkkojen arkkitehtuurimallia ja ratkaisuja verkkovierailujen toteuttamiseksi. Ehdotettu arkkitehtuuri voidaan toteuttaa ilman mittavia teknologisia mullistuksia. Mallin mukaisessa ehdotuksessa verkko-operaattorin roolit jaetaan selkeÀsti (i) verkko-operaattoriin, (ii) palveluoperaattoriin ja (iii) yhteys- sekÀ verkkovierailuoperaattoriin. Roolijako mahdollistaa sen, ettÀ kukin operaattorityyppi voi kehittyÀ itsenÀisesti, ja ettÀ teennÀiset verkkoteknologiasidonnaisuudet poistuvat palveluiden tuottamisessa. TyössÀ esitetÀÀn myös alustava vaatimuslista ehdotetulle mallille, esimerkiksi yhteysoperaattorien laatuvaatimukset. VÀitöskirja esittelee myös liikkuvien Internet-teknologioiden viimeisimmÀn kehityksen. TyössÀ nÀytetÀÀn lisÀksi standardointituloksia Internet-kykyisissÀ langattomissa arkkitehtuureissa

    End-to-end mobility for the internet using ILNP

    Get PDF
    This work was partially funded by the Government of Thailand through a PhD scholarship for Dr Phoomikiattisak.As the use of mobile devices and methods of wireless connectivity continue to increase, seamless mobility becomes more desirable and important. The current IETF Mobile IP standard relies on additional network entities for mobility management, can have poor performance, and has seen little deployment in real networks. We present a host-based mobility solution with a true end-to-end architecture using the Identifier-Locator Network Protocol (ILNP). We show how the TCP code in the Linux kernel can be extended allowing legacy TCP applications that use the standard C sockets API to operate over ILNP without requiring changes or recompilation. Our direct testbed performance comparison shows that ILNP provides better host mobility support than Mobile IPv6 in terms of session continuity, packet loss, and handoff delay for TCP.Publisher PDFPeer reviewe
    corecore