58,594 research outputs found

    Design of the Artificial: lessons from the biological roots of general intelligence

    Full text link
    Our desire and fascination with intelligent machines dates back to the antiquity's mythical automaton Talos, Aristotle's mode of mechanical thought (syllogism) and Heron of Alexandria's mechanical machines and automata. However, the quest for Artificial General Intelligence (AGI) is troubled with repeated failures of strategies and approaches throughout the history. This decade has seen a shift in interest towards bio-inspired software and hardware, with the assumption that such mimicry entails intelligence. Though these steps are fruitful in certain directions and have advanced automation, their singular design focus renders them highly inefficient in achieving AGI. Which set of requirements have to be met in the design of AGI? What are the limits in the design of the artificial? Here, a careful examination of computation in biological systems hints that evolutionary tinkering of contextual processing of information enabled by a hierarchical architecture is the key to build AGI.Comment: Theoretical perspective on AGI (Artificial General Intelligence

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    PRESENCE: A human-inspired architecture for speech-based human-machine interaction

    No full text
    Recent years have seen steady improvements in the quality and performance of speech-based human-machine interaction driven by a significant convergence in the methods and techniques employed. However, the quantity of training data required to improve state-of-the-art systems seems to be growing exponentially and performance appears to be asymptotic to a level that may be inadequate for many real-world applications. This suggests that there may be a fundamental flaw in the underlying architecture of contemporary systems, as well as a failure to capitalize on the combinatorial properties of human spoken language. This paper addresses these issues and presents a novel architecture for speech-based human-machine interaction inspired by recent findings in the neurobiology of living systems. Called PRESENCE-"PREdictive SENsorimotor Control and Emulation" - this new architecture blurs the distinction between the core components of a traditional spoken language dialogue system and instead focuses on a recursive hierarchical feedback control structure. Cooperative and communicative behavior emerges as a by-product of an architecture that is founded on a model of interaction in which the system has in mind the needs and intentions of a user and a user has in mind the needs and intentions of the system

    Artificial Intelligence in the Context of Human Consciousness

    Get PDF
    Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator
    • …
    corecore