4,185 research outputs found

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    Statistical physics of neural systems with non-additive dendritic coupling

    Full text link
    How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such non-additive dendritic processing on single neuron responses and the performance of associative memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    The Relativistic Hopfield network: rigorous results

    Full text link
    The relativistic Hopfield model constitutes a generalization of the standard Hopfield model that is derived by the formal analogy between the statistical-mechanic framework embedding neural networks and the Lagrangian mechanics describing a fictitious single-particle motion in the space of the tuneable parameters of the network itself. In this analogy the cost-function of the Hopfield model plays as the standard kinetic-energy term and its related Mattis overlap (naturally bounded by one) plays as the velocity. The Hamiltonian of the relativisitc model, once Taylor-expanded, results in a P-spin series with alternate signs: the attractive contributions enhance the information-storage capabilities of the network, while the repulsive contributions allow for an easier unlearning of spurious states, conferring overall more robustness to the system as a whole. Here we do not deepen the information processing skills of this generalized Hopfield network, rather we focus on its statistical mechanical foundation. In particular, relying on Guerra's interpolation techniques, we prove the existence of the infinite volume limit for the model free-energy and we give its explicit expression in terms of the Mattis overlaps. By extremizing the free energy over the latter we get the generalized self-consistent equations for these overlaps, as well as a picture of criticality that is further corroborated by a fluctuation analysis. These findings are in full agreement with the available previous results.Comment: 11 pages, 1 figur
    corecore