634 research outputs found

    Recent tendencies in the use of optimization techniques in geotechnics:a review

    Get PDF
    The use of optimization methods in geotechnics dates back to the 1950s. They were used in slope stability analysis (Bishop) and evolved to a wide range of applications in ground engineering. We present here a non-exhaustive review of recent publications that relate to the use of different optimization techniques in geotechnical engineering. Metaheuristic methods are present in almost all the problems in geotechnics that deal with optimization. In a number of cases, they are used as single techniques, in others in combination with other approaches, and in a number of situations as hybrids. Different results are discussed showing the advantages and issues of the techniques used. Computational time is one of the issues, as well as the assumptions those methods are based on. The article can be read as an update regarding the recent tendencies in the use of optimization techniques in geotechnics

    Seismic Analysis of Earth Slope Using a Novel Sequential Hybrid Optimization Algorithm

    Get PDF
    One of the most important topics in geotechnical engineering is seismic analysis of the earth slope. In this study, a pseudo-static limit equilibrium approach is applied for the slope stability evaluation under earthquake loading based on the Morgenstern–Price method for the general shape of the slip surface. In this approach, the minimum factor of safety corresponding to the critical failure surface should be investigated and it is a complex optimization problem. This paper proposed an effective sequential hybrid optimization algorithm based on the tunicate swarm algorithm (TSA) and pattern search (PS) for seismic slope stability analysis. The proposed method employs the global search ability of TSA and the local search ability of PS. The performance of the new CTSA-PS algorithm is investigated using a set of benchmark test functions and the results are compared with the standard TSA and some other methods from the literature. In addition, two case studies from the literature are considered to evaluate the efficiency of the proposed CTSA-PS for seismic slope stability analysis. The numerical investigations show that the new approach may provide better optimal solutions and outperform previous methods

    Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems

    Full text link
    [EN] Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly outperforms the other algorithms. To strengthen GTA's value, various sensitivity analyses are performed to verify the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-based applications.Meirelles, G.; Brentan, B.; Izquierdo Sebastián, J.; Luvizotto, EJ. (2020). Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems. Processes. 8(8):1-19. https://doi.org/10.3390/pr8080980S11988Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501-1529. doi:10.1007/s13042-019-01053-xMirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. doi:10.1016/j.advengsoft.2016.01.008Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research, 33(3), 859-871. doi:10.1016/j.cor.2004.08.012Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278. doi:10.1016/j.tcs.2005.05.020Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-xGandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-yKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Wu, Z. Y., & Simpson, A. R. (2002). A self-adaptive boundary search genetic algorithm and its application to water distribution systems. Journal of Hydraulic Research, 40(2), 191-203. doi:10.1080/00221680209499862Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325. doi:10.1016/s0020-0190(02)00447-7Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management, 144(9), 04018055. doi:10.1061/(asce)wr.1943-5452.0000974Freire, R. Z., Oliveira, G. H. C., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and Buildings, 40(7), 1353-1365. doi:10.1016/j.enbuild.2007.12.007Bollinger, L. A., & Evins, R. (2015). Facilitating Model Reuse and Integration in an Urban Energy Simulation Platform. Procedia Computer Science, 51, 2127-2136. doi:10.1016/j.procs.2015.05.484Yang, Y., & Chui, T. F. M. (2019). Developing a Flexible Simulation-Optimization Framework to Facilitate Sustainable Urban Drainage Systems Designs Through Software Reuse. Reuse in the Big Data Era, 94-99. doi:10.1007/978-3-030-22888-0_7Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1-17. doi:10.1016/j.swevo.2016.12.005Hybinette, M., & Fujimoto, R. M. (2001). Cloning parallel simulations. ACM Transactions on Modeling and Computer Simulation, 11(4), 378-407. doi:10.1145/508366.508370Proceedings of the 2004 Winter Simulation Conference (IEEE Cat. No.04CH37614C). (2004). Proceedings of the 2004 Winter Simulation Conference, 2004. doi:10.1109/wsc.2004.1371294Li, Z., Wang, W., Yan, Y., & Li, Z. (2015). PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Systems with Applications, 42(22), 8881-8895. doi:10.1016/j.eswa.2015.07.043Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Heuristic Optimization. (s. f.). Advances in Computational Management Science, 38-76. doi:10.1007/0-387-25853-1_2Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Blocken, B., van Druenen, T., Toparlar, Y., Malizia, F., Mannion, P., Andrianne, T., … Diepens, J. (2018). Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 179, 319-337. doi:10.1016/j.jweia.2018.06.011Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. doi:10.1109/4235.985692GAMS World, GLOBAL Libraryhttp://www.gamsworld.org/global/globallib.htmlCUTEr, A Constrained and Un-Constrained Testing Environment, Revisitedhttp://cuter.rl.ac.uk/cuter-www/problems.htmlGO Test Problemshttp://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htmJamil, M., & Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150. doi:10.1504/ijmmno.2013.055204Sharma, G. (2012). The Human Genome Project and its promise. Journal of Indian College of Cardiology, 2(1), 1-3. doi:10.1016/s1561-8811(12)80002-2Li, W. (2011). On parameters of the human genome. Journal of Theoretical Biology, 288, 92-104. doi:10.1016/j.jtbi.2011.07.021Hughes, M., Goerigk, M., & Wright, M. (2019). A largest empty hypersphere metaheuristic for robust optimisation with implementation uncertainty. Computers & Operations Research, 103, 64-80. doi:10.1016/j.cor.2018.10.013Zaeimi, M., & Ghoddosian, A. (2020). Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Computing, 24(16), 12027-12066. doi:10.1007/s00500-019-04646-4Singh, G. P., & Singh, A. (2014). Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal and Multimodal Optimization. International Journal of Intelligent Systems and Applications in Engineering, 2(3), 26. doi:10.18201/ijisae.31981Taheri, S. M., & Hesamian, G. (2012). A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers, 54(2), 457-470. doi:10.1007/s00362-012-0443-

    A Novel Hybrid Particle Swarm Optimization and Sine Cosine Algorithm for Seismic Optimization of Retaining Structures

    Get PDF
    This study introduces an effective hybrid optimization algorithm, namely Particle Swarm Sine Cosine Algorithm (PSSCA) for numerical function optimization and automating optimum design of retaining structures under seismic loads. The new algorithm employs the dynamic behavior of sine and cosine functions in the velocity updating operation of particle swarm optimization (PSO) to achieve faster convergence and better accuracy of final solution without getting trapped in local minima. The proposed algorithm is tested over a set of 16 benchmark functions and the results are compared with other well-known algorithms in the field of optimization. For seismic optimization of retaining structure, Mononobe-Okabe method is employed for dynamic loading condition and total construction cost of the structure is considered as the objective function. Finally, optimization of two retaining structures under static and seismic loading are considered from the literature. As results demonstrate, the PSSCA is superior and it could generate better optimal solutions compared with other competitive algorithms

    Computer Aided Slope Stability Analysis Using Optimization And Parallel Computing Techniques

    Get PDF
    Slope stability analysis is commonly performed using limit equilibrium methods (LEM). In LEM, factor of safety (FS) is calculated for different trial slip surfaces and the one with the minimum FS is reported as the critical slip surface. Since locating the critical slip surface is believed to be an NP-hard (non-deterministic polynomialtime) problem, heuristic global optimization techniques are employed. Although these techniques have usually produced good results, “No Free Lunch” (NFL) theorems seem to have made the problem of locating the critical slip surface an endless research. According to the NFL theorems, no heuristic optimization technique can perform well for all problems. On the other hand, there may exist other slip surfaces that are as important as the critical slip surface in practical analyses. A slip surface is important, if it is located far away from the critical slip surface, but gives FS close to the minimum FS or the consequences of failure along the slip surface is serious. Therefore, there is a need to constantly implement and test different optimization techniques. However, implementation of optimization techniques in slope stability analysis is often not straightforward because it requires internal links to LEM. Firstly, the present study resolves this issue by developing a decoupled algorithm that allows for easy implementation of optimization techniques. Then, to demonstrate the simplicity of this algorithm and to promote the latest research on slope stability, three state-of-the-art optimization techniques are implemented, and their effectiveness and efficiency in detecting single/multiple global and local minima is investigated on a series of test problems

    Applications of Artificial Intelligence Techniques in Optimizing Drilling

    Get PDF
    Artificial intelligence has transformed the industrial operations. One of the important applications of artificial intelligence is reducing the computational costs of optimization. Various algorithms based on their assumptions to solve problems have been presented and investigated, each of which having assumptions to solve the problems. In this chapter, firstly, the concept of optimization is fully explained. Then, an artificial bee colony (ABC) algorithm is used on a case study in the drilling industry. This algorithm optimizes the problem of study in combination with ANN modeling. At the end, various models are fully developed and discussed. The results of the algorithm show that by better understanding the drilling data, the conditions can be improved

    Optimum design of reinforced concrete cantilever retaining walls according Eurocode 2 (EC2)

    Get PDF
    This study investigates optimum design in terms of minimum cost of reinforced concrete cantilever retaining walls. For the optimization process, the evolutionary method which is a combination of genetic algorithm and local search techniques was implemented. Evolutionary method was adopted in this study because it can effectively solve highly nonlinear problems and problems that feature discontinuous functions as demonstrated by several works available in the literature. The popularity of the evolutionary method may also be attributed to its availability as one of the solving methods in Solver add-in tool of Microsoft Excel. This implies that it is freely available and no need to pay for extra license to run any optimization problem. The design variables of the problem are thickness of stem wall, thickness of base slab, width of the heel, width of the toe, area of steel reinforcement for the stem wall and base slab. The objective function was to minimise the total cost of the wall, which includes costs of concrete, steel, forming, and excavation. The constrained functions were set to satisfy provisions and requirements of Eurocode 2 (EC2). Material strength and soil characteristics are treated as design parameters where they are kept constants during solution of the problem. Various material cost ratios were considered. Consequently, optimum design charts were developed for a wide range of wall height, coefficient of friction and surcharge load. Following a comprehensive investigation of the minimum cost problems carried out for different cases, one can conclude that the total cost of the retaining wall is directly proportional to the wall height and surcharge load values, whereas, the cost is almost independent of coefficient of friction
    corecore