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Abstract. This paper aims to develop a rapid and practical

procedure that can locate the slip surface for a slope with the

minimum reliability index for limit equilibrium analysis at

the minimum expense of time. The comparative study on the

reliability indices from different sample numbers using the

Monte Carlo simulation method has demonstrated that the re-

sults from a large enough sample number are related to those

from a small sample number with high correlation indices.

This observation has been tested for many homogeneous and

heterogeneous slopes under various conditions in parametric

studies. Based on this observation, the reliability index for a

potential slip surface can be calculated with a small sample

number, and the search for the minimum reliability index and

the slip surface can be determined by a heuristic optimization

algorithm. Based on the comparisons between the critical de-

terministic and probabilistic slip surfaces for many different

cases, the use of the proposed fast method in locating the crit-

ical probabilistic slip surface is found to perform well, which

is suitable for normal routine analysis and design works.

1 Introduction

It is widely accepted that slopes with safety factors greater

than unity are not necessarily safe because of the underlying

geotechnical variability and uncertainty, as well as the sim-

plifications assumed when using predictive methods. Hong

Kong is well known for slope failures, with an average of

approximately 300 such failures per year. Billions of dol-

lars are spent on slope analysis and stabilization each year

in Hong Kong. It has been noted by the Hong Kong Gov-

ernment that approximately 5 % of the stabilized slopes in

Hong Kong have eventually failed, and that many slopes with

safety factors greater than 1.0 still ultimately fail (Hong Kong

SAR Government, 2000). The assessment of slope stability

and the reliability of the assessment have become an impor-

tant topic in Hong Kong, China, Taiwan and many developed

cities elsewhere where collapse of slopes may have disas-

trous effects on human lives and properties.

Although the use of a deterministic approach for calculat-

ing the minimum safety factor is useful for design and sta-

bilization purposes, the reliability of the results is also an

important issue for many practical problems. A probabilis-

tic or reliability approach that can deal with the uncertainty

and variability in the problem will be complementary to the

classical safety factor evaluation. One of the reasons that the

reliability has not commonly been determined in the past is

the long computation time required in the analysis.

The conventional deterministic approach is based on min-

imizing the safety factor (FS for “factor of safety”) over a

range of potential slip surfaces, and the critical solution is

called the critical deterministic slip surface (cdss) (Arai and

Tagyo, 1985; Baker, 1980; Greco, 1996; Goh, 1999; Cheng,

2003; Bolton et al., 2003; Zolfaghari et al., 2005; Li et al.,

2010, 2011; Cheng and Li, 2007; Cheng et al., 2008a, b).

Based on the cdss, the failure probability and reliability index

can be evaluated approximately, which is a relatively sim-

ple operation favoured by many engineers (Liu et al., 2015).

There have been many attempts in recent years to use a prob-

abilistic approach for analysing the safety of slopes. One

common approach to determine the reliability of a slope is

to assume it to be equal to the reliability index of the criti-

cal deterministic slip surface. Attempts to use this approach

include Chowdhury et al. (1987), Honjo and Kuroda (1991),
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Christian et al., (1994) and many others. Another approach

is to search for the slip surface with the minimum reliability

index; this surface is known as the critical probabilistic slip

surface (cpss) approach (e.g. Li and Lumb, 1987; Hassan and

Wolf, 1999; Bhattacharya et al., 2003; Xue and Gavin, 2007).

Several researchers have applied finite-element methods and

random field theory to the probabilistic analysis of slopes.

These methods considered the spatial variability that is in-

herent even in “homogeneous” slopes (Griffiths and Feton,

2004; Griffiths et al., 2009, 2011; Xu and Low, 2006). As

mentioned by Cheng et al. (2007b), the use of finite-element

methods is time-consuming in analysis with practical limita-

tions in certain special cases. Finite-element analysis of slope

stability is therefore still not favored by engineers for routine

design work.

There are a number of approaches for probabilistic slope

stability analysis that have differing assumptions, limita-

tions and capabilities for handling problems with various

levels of mathematical complexity. The approaches gener-

ally fall into one of two categories: (1) approximate meth-

ods – such as the first-order and second-order reliability

method (FOSM, SORM) method, the improved point esti-

mate method and the surrogate model methods – and (2) the

Monte Carlo simulation method (MCSM). The former ap-

proach (approximate method) includes the works by Hasofer

and Lind (1974), Li and Lumb (1987), Low et al. (1998),

Low and Tang (2007), Oka and Wu (1990), Chowdhury and

Xu (1995), Duncan (2000), El-Ramly et al. (2002), Hong and

Roh (2008), Xue and Gavin (2007) and others. The surro-

gate method that includes the response surface method and

kriging model (Yi et al., 2015; Zhang et al., 2013) can also

provide a good estimation of the system reliability at re-

duced computation. The latter approach (MCSM) includes

the works by Au and Beck (2001, 2003), Au et al. (2007,

2010), Ching et al. (2009) and others. The use of the MCSM

can produce good results, although it can be computationally

intensive, especially if the probability of failure is small. The

FOSM and SOFM methods usually require the partial deriva-

tives of the safety factor to be determinate, which may be not

available for some slip surfaces. The widely used mean-value

first-order second-moment method (MFOSM; Hassan and

Wolff, 1999; Xue and Gavin, 2007) uses a finite-difference

technique to form the gradient of the function. However, as

discussed by Cheng et al. (2008c), because failure to con-

verge during safety factor determination is common for slope

stability analysis and is equivalent to the presence of discon-

tinuities in the safety factor function, both finite-difference

techniques and explicit partial derivatives in the first-order

second-moment method encountered problems during use.

Besides the above methods, there are also many other ap-

proximate methods to determine the system reliability of a

slope (Zhang et al., 2011).

The classical assessment approach using a probabilistic

slope analysis is usually computationally intensive, and there

is a growing need for a more rapid assessment of the crit-

ical probabilistic slip surface. This requirement is particu-

larly important for many highway projects in which there are

hundreds of sections to be considered. It is generally recog-

nized that the search for the critical probabilistic slip surface

is similar in principle to that for the minimum FS surface in

the deterministic approach. Hassan and Wolff (1999) have

proposed a method to search for the critical slip surface as-

sociated with the minimum reliability index obtained by the

MFOSM. To reduce the amount of computation, Cho (2009)

has adopted the Monte Carlo simulation method with ap-

proximated limit state functions based on the ANN (Arti-

ficial Neural Network) model, with results comparable to

those based on FORM or SORM, while Kang et al. (2015)

have adopted the Gaussian process regression with Latin hy-

percube sampling method. The method was developed based

on their observation that the critical probabilistic slip surface

generally coincides with that obtained by setting one domi-

nant parameter (random variable) to a low value. When the

cohesion of soil, the friction angle and the location of wa-

ter table are important variables in the problem, this empiri-

cal approach is cumbersome and tedious to manipulate. This

paper aims to provide a fast and simple approach to finding

the critical probabilistic slip surface based on MCSM results.

The proposed method only requires two calculations of the

safety factors within each iterative search step. Although the

authors cannot establish the theoretical basis for the proposed

approach, the authors have experimented with thousands of

cases and find that this approach can be effective and highly

efficient such that risk analysis can be simple and practical

for engineers.

1.1 Limit state function

The traditional definition of the limit state function or perfor-

mance function as described in Eq. (1) is adopted this study:

G(X)= FS(X)− 1, (1)

where the vector X is input variables for the geotechnical

properties (such as unit weight, internal friction angle, and

cohesion). For the sake of simplicity, the safety factor FS

is calculated using the simplified Bishop method for circu-

lar slip surfaces and the load factor method (using a special

interslice force function f (x) that is commonly adopted in

China, and x is a normalized horizontal distance in the range

of 0 to 1.0) for non-circular slip surfaces (Cheng and Zhu,

2004). It should be noted that the proposed rapid assess-

ment method is applicable to any specific stability analysis

method.

1.2 System reliability index with floating surfaces

As mentioned above, the reliability index can be calculated

either by the approximate methods or the MCSM. Griffiths

and Fenton (2004) and Griffiths et al. (2009) have imple-

mented the MCSM with a random field model for spatial
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distribution of shear strengths. The MCSM is adopted in the

present study, due to its simplicity of use. The slope may fail

along any potential slip surface; therefore, it is important to

consider the slope stability problem in terms of a system of

multiple potential slip surfaces. The procedure for using the

MCSM to calculate the system reliability index (or, more di-

rectly, the probability of system failure) is straightforward.

Let Z denote all of the uncertain variables in the slope under

consideration. Without loss of generality, it can be assumed

that all the components of Z are independent variables. In

the case that a portion of the components of Z are depen-

dent variables, proper transformations as given by Ang and

Tang (1984) can be applied to convert the problem into an

independent input space. In this paper, Z denotes the uncer-

tain variables, while z denotes either the sample values or a

certain fixed value of Z . The MCSM includes the following

steps:

1. A counter denoted by Js is initially set to 0.

2. Generate Z samples (zi ; i = 1, . . ., Ns) from the as-

sumed probability density function (PDF). For a prob-

abilistic slope analysis, normal distribution and log-

normal distributions are commonly assumed for the in-

put variables in slope stability analysis, and Ns is total

number of samples.

3. For each sample zi , conduct a deterministic slope stabil-

ity analysis to find the most critical slip surface among

all the trial surfaces. If the safety factor for the most crit-

ical slip surface is less than 1, the entire slope is consid-

ered to fail for that zi sample, and Js = Js+ 1.

4. Repeat step 3 for i = 1, . . ., Ns.

A simple estimate of the system failure probability of the

slope can be defined as the ratio of Js to Ns, and the rela-

tion between the failure probability and the reliability index

is given by Duncan (2000). The MCSM procedure can be

summarized mathematically by Eq. (2):

Pf ≈
1

Ns

Ns∑
i=1

I
[
min
ω

FSω (zi) < 1
]
= PMCSM

f , (2)

where Pf is failure probability of the slope as a system; ω

is trial surface; Fsω is the safety factor for that trial slip sur-

face; min
ω
Fsω (zi) is the safety factor for the critical slip sur-

face; and I [×] is an indicator function. If min
ω
Fsω (zi) < 1,

I
[
min
ω
Fsω (zi) < 1

]
= 1; otherwise, it is equal to zero. The

reliability index β of a slope may be determined based on

the assumed distribution function of the safety factor. The

floating surfaces imply that the slip surfaces used to assess

the performance of the slope for each sample zi are not iden-

tical, meaning that the reliability index β is not available for

a specific slip surface but belongs to the whole slope. How-

ever, based on the critical slip surface from a classical deter-

ministic slope analysis, the reliability index for a given slip

surface, as described below, may be applicable.

2 Reliability index for specific slip surfaces

Calculating the reliability index for a given slip surface by

the MCSM may follow the following three steps:

1. Generate a trial slip surface (Cheng, 2003; Cheng and

Li, 2007; Cheng et al., 2007b; Cheng et al., 2008a, b)

that can be either circular or non-circular. Generate Z

samples (zi ; i = 1, . . ., Ns) from the assumed PDF

where Ns is the total number of samples. For a proba-

bilistic analysis of slope, a normal distribution or a log-

normal distribution is often assumed for the input vari-

ables.

2. For each sample zi , a safety factor Fs i is obtained.

3. Repeat step 2 for i = 1, . . ., Ns.

Thus, Ns safety factors Fsi (i = 1, 2, . . ., Ns) are obtained

together with Ns performance function values G1, G2, . . .,

GNs. The failure probability of this given trial slip surface

and its corresponding reliability index β can be calculated

by Eqs. (3), (4) and (5):

Pf =

Ns∑
i=1

I [Gi < 0]

Ns
, (3)

β =

√
Ns− 1 ·

Ns∑
i=1

Gi

Ns

√√√√√√ Ns∑
i=1

Gi −
Ns∑
i=1

Gi

Ns


2
(for normal distribution),

(4)


β =

λ1

λ2

λ2 =

√√√√ln

[
1+

(
µFS

σFS

)2
]
λ1 = ln(µFS)− 0.5(λ2)

2

(for log-normal distribution)

,

(5)

where σ andµ are mean and standard deviation, respectively.

It should be noted that, even though the soil parameters may

be governed by the normal or log-normal distribution, the

factor of safety may not be truly governed by the normal or

log-normal distribution. Nevertheless, based on thousand of

tests in homogeneous and non-homogeneous slopes, the dis-

tribution of the factor of safety is found to be nicely described
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by the normal or log-normal distribution in most of the test

cases. There are three main considerations in the application

of the MCSM. The first consideration is to generate samples

of the soil parameters that coincide with the assumed PDF,

which may either be normally or log-normally distributed.

The Monte Carlo sampling approach (or random sampling)

is the common sampling approach, and uniformly distributed

random variables are first generated and later transformed

into a normal distribution or log-normal distribution (Chen,

2003); the transformations are given in Eqs. (8) and (10).

The second consideration is the determination of the value

of Ns. It is widely accepted that the output of the MCSM is

sensitive to the number of samples Ns. When Ns is large, the

random samples generated for each input variable are also

large, and the match between the CDF (cumulative density

function) created by sampling and the original input CDF is

better. Hence, the level of noise in the simulation diminishes

and the output becomes more stable at the price of increas-

ing computational time. The optimum number of iterations

depends on the sizes of the uncertainties in the input param-

eters (case-dependent problem) and the correlations between

the input variables and the output parameter being estimated.

A practical way to optimize the simulation process is to re-

peat the simulation using the same seed value with an in-

creasing number of iterations. A plot of the number of itera-

tionsm against the probability of unsatisfactory performance

can indicate the minimum number of iterations at which the

probability value will stabilize.

The third consideration is the equivalent computational ef-

fort for the following two approaches. Assume Nm total trial

slip surfaces for the deterministic critical search (Nm safety

factors or Nm equivalent trial slip surfaces). In one approach,

Nm×Ns safety factors are required to determine the system

reliability index. In the other approach, for one trial slip sur-

face, Ns safety factors are calculated to determine one reli-

ability index, and Nm trial slip surfaces are required to find

the critical probabilistic slip surface. The computation times

required for the two approaches are thus approximately iden-

tical, and it appears that either approach can be accepted for

the analysis.

It is noted that the evaluation of the system reliability in-

dex can be notably time-consuming because Nm×Ns eval-

uations are required, and both Nm and Ns are generally large

numbers (of the order of thousands), if a high level of ac-

curacy is required. A typical representation of the failure in-

tensity against the number of simulations during the Monte

Carlo simulation is shown in Fig. 1. It is noticed that, unless

the number of trials is large enough (which is actually case-

dependent), the failure intensity will be a fluctuating func-

tion depending on the number of trials. In the initial study

of the present problem, a computational time of 2 to several

days was commonly required for a complete analysis using

a fast computer (Intel i5 as the CPU); such computational

time is excessive for routine engineering design work. Fur-

thermore, for many highway projects, there may be hundreds
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Figure 1. Typical relation between failure intensity and number of

simulations in typical Monte Carlo simulation modelling.

of slopes to be considered. There is thus a need to develop a

rapid search method for the critical probabilistic slip surface

similar to the critical deterministic slip surface.

3 Search for the critical probabilistic slip surface

The critical deterministic slip surface for a slope is located

by systematically generating a series of trial surfaces and

analysing each slip surface with a set of soil parameters

(Cheng, 2003; Cheng and Li, 2007; Cheng et al., 2007b,

2008a, b). In most of these algorithms, the location of the

critical deterministic surface associated with the minimum

safety factor, Fsmin
, is formulated as an optimization prob-

lem, as follows:

Fsmin
=minFS(p,xy), (6)

where p is the set of input geotechnical parameters (c′, ϕ′,

etc.); xy is the set of co-ordinates defining the shape and lo-

cation of the slip surface. The search for the critical prob-

abilistic surface is similar to the determination of the criti-

cal deterministic surface. (Li and Lumb, 1987). The critical

probabilistic surface associated with the minimum reliability

index βmin is given by

βmin =minβ (p,xy), (7)

where β is the reliability index for a given set of geotech-

nical parameters (including the statistical properties) and a

given geometry of the slip surface as defined by the coordi-

nate parameters. An approach based on the MCSM is used

to calculate the reliability index for trial slip surfaces in the

critical probabilistic search. It has been noticed that the mini-

mum reliability index βmin may not necessarily coincide with

the critical deterministic slip surface, as will be demonstrated

below. It has been assumed by many geotechnical engineers

that locating the critical probabilistic slip surface may require

considerable computational effort; this is true if a classical

method is used to carry out the critical probabilistic search.
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Since the difference between βFS (the reliability index of the

critical deterministic slip surface) and βmin may be substan-

tial, we generally cannot assume the critical deterministic

slip surface to be the critical probabilistic slip surface. In

view of this problem, the authors have carried out many stud-

ies with the MCSM, and based on many observations on the

results, a fast approach is proposed for the evaluation of the

reliability index. For normal problems, the fast approach has

notably short computation times, and the accuracy of the re-

sult is sufficient for normal engineering use. In the case of a

very critical section, the classical time-consuming approach

is recommended because it will provide better accuracy al-

beit at the expense of time.

The actual procedures to search for the critical proba-

bilistic slip surface using the harmony search method (other

methods are also possible) are the following:

1. Generate a potential slip surface using the procedures

given by Cheng (2003), Cheng and Li (2007), and

Cheng et al. (2007b).

2. Calculate the reliability index for the potential slip sur-

face by Eqs. (4) or (5).

3. Repeat steps 1 and 2 until several potential slip surfaces

(M in this study) are obtained, and these M potential

slip surfaces are placed into harmony memory in the

harmony search algorithm.

4. Initiate the parameters in the harmony search algorithm

such as HR (harmony memory consideration rate), PR

(pitch-adjusting rate), and the maximum iteration num-

ber Nt as the parameters for the harmony search algo-

rithm.

5. Sort the M potential slip surfaces in harmony memory

by descending order of reliability index.

6. Generate a new potential slip surface using HR and PR,

calculate its reliability index, and compare it with that

from the prior position in the harmony memory. If this

surface is better than that from the prior position, re-

place the prior slip surface with the new potential slip

surface, and the iteration number is increased by 1.

7. Repeat step 5 and 6 until the maximum iteration number

Nt is reached.

8. Output the first-order potential slip surface in the har-

mony memory as the optimum slip surface together with

its reliability index as the minimum reliability index of

the slope

Geem (2001) and Lee and Geem (2005) developed a har-

mony search meta-heuristic algorithm that was conceptual-

ized using the musical process of searching for a perfect state

of harmony. Musical performances seek to find pleasing har-

mony (a perfect state) as determined by an aesthetic standard,

just as the optimization process seeks to find a global solution

determined by an objective function. The harmony in mu-

sic is analogous to the optimization solution vector, and the

musician’s improvisations are analogous to local and global

search schemes in the optimization process. The SHM (Sim-

ple Harmony Method) uses a stochastic random search that

is based on the harmony memory considering HR and PR,

and it is a population-based search method. This method is

chosen by the authors, as Cheng et al. (2007b, 2008a) have

demonstrated that this method is highly efficient for continu-

ous global optimization problems and have implemented this

procedure into commercial slope stability programs.

Procedure for the MCSM

The Monte Carlo sampling technique includes the following

steps (Ang and Tang 1984):

1. For each random variable, generate Ns random numbers

δ1, δ2, . . ., δNs, varying uniformly from 0 to 1. For each

pair of random numbers δi and δi+1 from the list of ran-

dom variables δ1, δ2, . . ., δNs, use Eq. (8) (Ang and Tang,

1984; Chen, 2003) to transform the random numbers δ1

and δ2 to normally distributed random numbers λi and

λi+1.

2. Next, generate random numbers ηi and ηi+1 with nor-

mal distribution and independency using Eq. (9). ηi, i =

1,2, . . .Ns.

λi = (−2lnδi)
0.5 cos(2πδi+1) ,

λi+1 = (−2lnδi)
0.5 sin(2πδi+1) ,

(8)

ηi = λiσi +µi,

ηi+1 = λi+1σi +µi,
(9)

where σi is the standard deviation of the random vari-

able and µi is the mean value of the random variable.

3. The procedures will then continue from i = 1 to Ns, and

the original random number list δ1, δ2, . . ., δNs will be

transformed into a list of normally distributed random

variables ηi , i = 1, 2, . . .Ns for which each variable is

independent of the other variable. The random variables

ηi as given by Eq. (9) will be independent of each other

and will follow the normal distribution, even though the

original variable δi is randomly generated.

4. For variables δi following a log-normal distribution,

let y be the variables following a normal distribution;

then yi = ln(δi) or δi = e
y . The mean value σy and the

standard deviation µy of variable y are then given by

Eq. (10) as

σy =

√
ln(1+V 2

δ ),

µy = ln

 µδ√
(1+V 2

δ )

 ,where Vδ =
σδ

µδ
.

(10)
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Figure 2. Sampling values of two independent variables with nor-

mal distribution.

δi can then be transformed into a normal distribution

through variable y, and Eqs. (8) and (9) can be applied

thereafter.

5. Take the unit weight γ for example γi = λiσγ +µγ ,

γi+1 = λi+1σγ +µγ , i = 1, 2, . . .Ns− 1. For each ran-

dom variable, the procedures described above can be

adopted, and the Ns sampling values for each random

variable can be obtained as shown in Table 1.

4 Observations on the MCSM for two cases

The authors have carried out many internal studies and have

observed some interesting features which form the basis for

the proposed rapid procedure. Before the discussion of the

proposed rapid procedures, the observations will be illus-

trated by two examples. Based on the observations from these

examples and many other examples not shown in the paper,

it can be observed that a full MCSM may not be necessary

for normal cases.

4.1 Example 1

The first problem example uses the work by Bhattacharya et

al. (2003). The cross section of the slope is shown in Fig. 3,

and the statistical geotechnical parameters are given in Ta-

ble 2. In this example, four random variables are considered:

the unit weight of soil (γ , kN m−3); the internal friction an-

gle (ϕ, ◦); the cohesion (c, kPa); and the pore–water pres-

sure coefficient ru, which is defined as the ratio of pore–water

pressure to the unit weight per length. The independent ran-

dom variables are assumed to be either normally distributed

or log-normally distributed.

In Table 1, µγ is the mean value of the unit weight, σγ
is the standard deviation of the unit weight, µc is the mean

value of the cohesion, σc is the standard deviation of the co-

hesion, µϕ is the mean value of the internal friction angle,

σϕ is the standard deviation of the internal friction angle, µru
is the mean value of the pore–water pressure coefficient, and

σru is the standard deviation of the pore–water pressure coef-

ficient.
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Figure 3. Cross section of the homogeneous slope in example 1.
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Figure 4. Numerical convergence of reliability index with different

values of Ns.

Malkawi et al. (2000) noted that random seeds do not af-

fect MCSM results and that sample sizes over 700 are suf-

ficient for the MCSM to converge to the reliability index. A

sample size of 700 may be adequate for some cases (case-

dependent), but this size is questionable for general condi-

tions. It is more rational to expect that the value of the sample

size (Ns in this paper) should depend on the reliability index

of the trial slip surface or the system reliability index for the

whole slope (Chen, 2003). Parametric studies are conducted

for the problem in Fig. 3 to study the variation of results from

the MCSM with various values of Ns, where the safety factor

for each sampling trial is obtained by the simplified Bishop

method. A series of values of Ns are assumed for this trial slip

surface, and the results are given in Fig. 4; they are inconsis-

tent with the general trend for normal MCSM. It is noticed

from Fig.4 that there are fluctuation in the results with the

change in Ns. When the value of Ns increases to 20 000, the

reliability index tends to converge to a stable value of 2.02.

Using a sample size of 700 slightly overestimates the relia-

bility index in this case.

The extensive computational effort required to apply the

MCSM to the determination of a critical probabilistic slip

surface is a primary reason that this approach has not been

adopted by geotechnical engineers for routine analysis and
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Table 1. Sampling details for example 1.

Sampling no. γ (kN m−3) c (kPa) ϕ (◦) ru

1 λ1σγ +µγ κ1σc +µc χ1σϕ +µϕ ξ1σru +µru
2 λ2σγ +µγ κ2σc +µc χ2σϕ +µϕ ξ2σru +µru
3 λ3σγ +µγ κ3σc +µc χ3σϕ +µϕ ξ3σru +µru
4 λ4σγ +µγ κ4σc +µc χ4σϕ +µϕ ξ4σru +µru
5 λ5σγ +µγ κ5σc +µc χ5σϕ +µϕ ξ5σru +µru
i−1 λi−1σγ +µγ κi−1σc +µc χi−1σϕ +µϕ ξi−1σru +µru
i λiσγ +µγ κiσc +µc χiσϕ +µϕ ξiσru +µru
. . . . . . . . . . . . . . .

Ns λNsσγ +µγ κNsσc +µc χNsσϕ +µϕ ξNsσru +µru

Where λi , i = 1, 2, . . .Ns, κi , i = 1, 2, . . .Ns, χi , i = 1, 2, . . .Ns and ξi , i = 1, 2, . . .Ns are generated by

Eq. (8). Considering the two random variables γ and c (variables 1 and 2 in Fig. 2), the sampling values

using the Monte Carlo sampling technique are illustrated in Fig. 2.

Table 2. Mean values and standard deviations for soil property pa-

rameters.

Layer γ (kN m−3) c (kPa) ϕ (◦) ru

µγ σγ µc σc µϕ σϕ µru σru

1 18.0 0.9 18.0 3.6 30.0 0.3 0.2 0.02

design; this effort is also a reason why reliability assessment

is not commonly performed in engineering practice. Most of

the routine designs in Hong Kong require fast analysis not

exceeding 1 to 2 h because there are too many sections to be

considered. To overcome this limitation, decreasing the value

of Ns would be an apparently simple solution. However, as

shown in Fig. 4, the reliability index can be far from the sta-

ble value (2.02) if the value Ns is too small.

For the problem shown in Fig. 3, 100 trial circular slip sur-

faces are randomly generated in the analysis, and the x and y

coordinates of the centres of the trial slip surfaces are shown

in Fig. 5. If we assume Ns to be either 50 000 or 2, the relia-

bility index calculated when Ns= 50 000 can be taken as the

“true” value, while the result calculated when Ns= 2 is re-

garded as the “pseudo” reliability index. The true and pseudo

reliability indices of the 100 randomly generated trial slip

surfaces are calculated using the MCSM, and the scatter plots

are shown in Figs. 6 and 7 (in which y relates to the pseudo

reliability indices, x relates to the true reliability indices and

r is the correlation coefficient). It is noted from Fig. 7 that,

even though the pseudo reliability indices are much larger

than the true reliability indices, the true and pseudo reliabil-

ity indices are highly correlated with a correlation coefficient

of 0.9969 for normal distribution assumption and 0.9980 for

log-normal distribution assumption. Similar results also ap-

ply to the more complicated load factor method (a China-

based slope stability method which is popular in Asia; see

Cheng and Lau, 2014) for both circular and non-circular slip

surfaces with the correlation coefficients lying between 0.98
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Figure 5. 100 centres of randomly generated trial slip surfaces.

to nearly 1.0, as are shown in Table 3. The authors have tested

several thousand cases, and virtually all the test cases have

high correlation coefficients, except for several cases where

the geometry is highly irregular with highly contrasting soil

parameters that are typically not observed in real cases. The

load factor method is considered in this paper, as this is a

very popular method in Asia, and many slopes are designed

according to this method. The method proposed in this paper

is developed for fast practical application, and there are many

actual applications of the present method in Asia.

4.2 Example 2

The observations as discussed above are subsequently tested

for the case of heterogeneous slopes. Consider a second ex-

ample that consists of a stratified clay slope bounded by a

hard stratum below and parallel to the ground surface (shown

in Fig. 8). The statistical geotechnical properties of the soils

are given in Table 4. One hundred non-circular slip surfaces

are randomly generated, with 14 slip surfaces being kinemat-

ically unacceptable; therefore, 86 total trial slip surfaces are

adopted in this example.
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Table 3. Relations between pseudo reliability indices and true reliability indices.

Relation between Correlation

x and y coefficient

r

100 trial circular, normal distri-

bution, Bishop method

y = 2.8041x1.6123 0.9969

100 trial circular, log-normal

distribution, Bishop method

y = 3.0141x1.4649 0.9980

100 trial circular, normal

distribution, load distribution

method

y = 3.1066x1.53

y = 11.164x–17.492

0.9966

0.9915

100 trial circular, log-normal

distribution, load distribution

method

y = 3.3492x1.3967

y = 10.811x–20.784

0.9967

0.9947

100 trial non-circular, normal

distribution, load distribution

method

y = 2.6768x0.866

y = 2.6575x–0.1962

0.986

0.982

100 trial non-circular, log-

normal distribution, load

distribution method

y = 2.5819x1.016

y = 2.827x–1.2396

0.9945

0.9911

Table 4. Mean values and standard deviations for soil property pa-

rameters (soil number from top to bottom).

Layers c (kPa) ϕ (◦)

µc σc µϕ σϕ

1 38.31 7.662 0.0 0.0

2 23.94 4.788 12.0 1.20
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Figure 6. Relations between pseudo reliability indices and true reli-

ability indices of 100 trial circular slip surfaces (normal distribution

+ Bishop method).

The load factor method is used to calculate the safety

factors for the 86 non-circular slip surfaces, and the rela-

tions between the true reliability indices and the pseudo re-
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Figure 7. Relations between pseudo reliability indices and true re-

liability indices of 100 trial circular slip surfaces (log-normal distri-

bution + Bishop method)

liability indices are given in Figs. 9 and 10 for the normal

and log-normal distributions, respectively. Though the cor-

relation coefficient for the normal distribution is lower than

that for the homogeneous slope, the value is still 0.948. The

observations about the correlation coefficients are therefore

similar to those for the homogeneous slopes. The authors

have also tested many other cases; in general, high correla-

tion coefficients are obtained for many heterogeneous slopes,

even though there is no theoretical background (at present) to

model or describe this phenomenon.
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Table 5. Summary of reliability indices for the problem in Fig. 10.

Shape of slip surface

and distribution type

Circular slip surface Non-circular slip surface

(load factor method)

cdss cpss cdss cpss Bhattacharya Bhattacharya

(cdss) (cpss)

Load Bishop Load Bishop

factor factor

Normal distribution 2.00 2.013 1.985 1.997 1.932 1.910 2.033 2.051

Log-normal distribu-

tion

2.25 2.261 2.233 2.240 2.147 2.120 2.303 2.311

Note: cdss – critical deterministic slip surface; cpss – critical probabilistic slip surface.
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Figure 8. Cross section of the heterogeneous slope in example 2.
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Figure 9. Relationship between pseudo reliability indices and true

reliability indices of 86 non-circular trial slip surfaces (normal dis-

tribution + load factor method).

5 Proposal for rapid analysis

Based on the above observations concerning the MCSM re-

sults for many homogeneous and heterogeneous slopes with

different geometries, the authors propose a rapid analysis ap-

proach as follows that should be sufficient for rapid engineer-

ing use. The pseudo reliability indices are used in the search
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Figure 10. Relationship between pseudo reliability indices and true

reliability indices of 86 non-circular trial slip surfaces (log-normal

distribution + load factor method).

for the critical probabilistic slip surface; i.e. the optimiza-

tion problem can be summarized as βmin←minβps (p,xy),

where βps represents the pseudo reliability index for the sta-

tistical properties of a given slip surface defined by its loca-

tion parameters. The search for the critical probabilistic slip

surface becomes as easy as that for the critical determinis-

tic slip surface: the procedures are actually similar to that for

the critical probabilistic slip by harmony search but with the

following revisions.

1. Only two safety factors (or more but limited, as chosen

by the users) are required within each iteration step, and

the smaller reliability index is then computed.

2. Instead of factor of safety, put the reliability as the ob-

jective function in the minimization harmony search.

3. It should be noted that, at the end of the search, the true

reliability index for the critical slip surface should be

recalculated using the larger value of Ns.

An alternative approach is to obtain the true reliability in-

dex by the “correlation curve equation” if one is available.
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Figure 11. Summary of critical slip surfaces for example 1.

The present proposal can be viewed as another approximate

method for the determination of the system reliability of a

slope, which is suitable for routine design and analysis by

the engineers. Even though the present proposal is not rigor-

ous by nature, it is good enough for normal application and

can perform better than using the cdss, which is commonly

adopted for practical problems.

5.1 Illustration of the results from rapid analysis using

previous examples 1 and 2

The proposed approach is then applied to the two above-

mentioned examples, and the results are compared with those

from the literature. Consider the first example, where both

circular and non-circular slip surfaces are considered using

the simplified Bishop method and the load factor method to

determine the safety factors. The results by Bhattacharya et

al. (2003) with the critical deterministic slip surface and the

critical probabilistic slip surface are given in Fig. 11. The

results from the proposed approach and the results by Bhat-

tacharya et al. (2003) are given in Table 5. It can be noted

from Table 5 that all of the reliability indices for the critical

deterministic slip surface are greater than those for the crit-

ical probabilistic slip surface. In addition, the reliability in-

dices for the two references slip surfaces by Bhattacharya et

al. (2003) are recalculated using the MCSM, and the results

are all greater than those determined by the present study. It

is clear that the results as given by Bhattacharya et al. (2003)

are not the minimum reliability index of the critical proba-

bilistic surface.

The results for the second example are summarized in Ta-

ble 6, as the unit weight is not given by Bhattacharya et

al. (2003). In the present study, two combinations of unit

weights for the two soil layers are assumed. In the first com-

bination, a unit weight of 18.0 kN m−3 is assumed for both

of the two layers of soil. For the second combination, a unit

weight of 18.0 kN m−3 is assumed for layer 1, and a unit

weight of 48.0 kN m−3 is assumed for layer 2. The critical

deterministic slip surface and the critical probabilistic slip
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Figure 12. Summary of critical slip surfaces for example 2.
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Figure 13. Cross section of the heterogeneous slope in example 3.

surface as given by Bhattacharya et al. (2003) are shown in

Fig. 12. The reliability indices of these two slip surfaces are

recalculated using the MCSM for different combinations of

unit weights and for different distribution types. It is noted

that there are differences in the location of the slip surface

based on the reliability indices. For the critical determinis-

tic slip surface (“cdss”), the reliability index is much larger

than that for the “cpss” with the same parameters. From this

result, it is clear that the adoption of the critical determinis-

tic slip surface to determine the reliability index may not be

generally acceptable.

5.2 Illustration of the results from rapid analysis using

example 3

The third example is a three-layer slope with a cross section,

as given in Fig. 13, while the geotechnical statistical param-

eters are given in Table 7.

The critical deterministic slip surface is given in Fig. 13,

while the corresponding safety factor is 1.392 by the sim-

plified Bishop method. The reliability indices for the critical

deterministic slip surface are 3.281 and 3.802 for the normal

distribution and log-normal distribution assumptions, respec-

tively. The critical probabilistic slip surface is located only

within the first layer, and the minimum reliability indices are

1.918 and 2.264, corresponding to the normal and log-normal

distribution assumptions, respectively. The considerable dif-

ference in the location of the critical deterministic slip sur-

face and the critical probabilistic slip surface, as well as the

reliability indices, is clearly noted in this third example. Us-
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Table 6. Summary of reliability indices for the problem in Fig. 11 (soil number from top to bottom).

Shape of slip surface and distribution type Non-circular slip surface (load factor method)

cdss cpss Bhattacharya Bhattacharya

(cpss) (cdss)

Both unit weight of

18.0 kN m−3
Normal

distribution

3.840 2.408 3.897 4.089

Log-normal

distribution

4.770 3.230 5.422 5.235

One is 18 kN m−3

and the other is 48.0

kN m−3

Normal

distribution

3.707 2.393 3.897 5.639

Log-normal

distribution

4.906 3.200 5.422 7.884

Table 7. Mean values and standard deviations for soil property pa-

rameters (soil number from top to bottom).

Layers γ (kN m−3) c (kPa) ϕ (◦)

µc σc µϕ σϕ

1 19.5 0.0 0.0 38.0 5.71

2 19.5 5.3 0.7 23.0 2.86

3 19.5 7.2 0.2 20.0 2.86

Table 8. Summary of reliability indices for example 3 in Fig. 13.

Shape of slip surface Circular slip surface

and distribution type (simplified Bishop method)

cdss cpss

Normal distribution 3.281 1.918

Log-normal distribution 3.802 2.264

ing the critical deterministic slip surface as the critical prob-

abilistic slip surface may be acceptable in certain cases, but

it may also leads to a large error in other cases, and great care

should be taken concerning this problem. A summary of the

reliability indices are given in Table 8.

5.3 Illustration of the results from rapid analysis using

example 4

The fourth example is considered by Zolfaghari et al. (2005).

The cross section of the slope is given in Fig. 14, and the

statistical parameters are given in Table 9.

It can be seen from Fig. 14 that the left ends of the critical

deterministic slip surface and the critical probabilistic slip

surface are practically identical, but considerable differences

can be found at the middle and the right exit ends of the slip

surfaces. The results from the rapid method, as proposed in

this paper, are actually better than those given by Zolfaghari

Table 9. Mean values and standard deviations for soil property pa-

rameters (soil number from top to bottom).

Layers γ (kN m−3) c (kPa) ϕ (◦)

µγ σγ µc σc µϕ σϕ

1 19.0 0.9 15.00 1.5 20.0 2.0

2 19.0 0.9 17.00 3.4 21.0 1.9

19.0 0.9 5.00 0.5 10.0 0.6

19.0 0.9 35.00 7.0 28.0 2.8

 

 
 

 

40

45

50

0 10 20 30
slope width/m

sl
op

e 
he

ig
ht

/m

ZOLFAGAHRI
cdss
cpss

 
Figure 14. Cross section of Zolfaghari slope in example 4.

et al. (2005), which is further support for the application of

the fast method for routine analysis and design.

5.4 Illustration of the results from rapid analysis using

example 5

A further example in which vertical surcharge is applied is

given for the problem in Fig. 15, while the soil parameters

are given in Table 11. The analyses are carried out for the
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Figure 15. A problem with three soils and vertical pressure for non-

circular slip surface analysis.

Table 10. Summary of reliability indices for the problem in Fig. 14.

Shape of slip surface Non-circular slip surface

and distribution type (load factor method)

cdss cpss Zolfaghari

Normal distribution 2.46 2.41 2.79

Log-normal distribution 2.60 2.55 3.02

cases of circular and non-circular slip surfaces. This case is

special in that the soil cohesion is notably low for soil layer 2,

which creates a special slip surface and increases the diffi-

culty of the optimization search. From the results as shown

in Table 12, the reliability indices for cpss are always lower

than those from cdss, which is similar to the above cases,

and the differences are more pronounced for non-circular slip

surfaces.

6 Discussion

For Hong Kong and other such places that are well known

for frequent slope failures, where the slopes are composed of

three to four layers of soils with varying soil parameters, the

classical approach in evaluating the critical deterministic slip

surface and determining the reliability index based on this

slip surface is commonly practiced. A full analysis for the

true reliability index using the full Monte Carlo simulation

method is seldom applied, due to the excessive time require-

ment for the analysis. While this approach may be acceptable

in some cases, the authors, as well as other researchers, have

commented that there are many cases where the critical de-

terministic slip surface may not provide the critical reliability

index. To attempt to solve this problem, the authors have con-

structed thousands of test problems with arbitrary geometry

and soil parameters for a reliability study of slope based on

this study.

By nature, slope stability analysis is a non-linear problem

for the soil parameters. The reliability index based on cdss

is hence not necessarily the true minimum reliability index.

Based on the results from the MCSM for both homogeneous

and heterogeneous slopes (thousands of internal studies but

Table 11. Mean values and standard deviations for soil property

parameters (soil number from top to bottom).

Layers γ (kN m−3) c (kPa) ϕ (◦)

µc σc µϕ σϕ

1 11.0 20.0 2.0 5.0 0.0

2 11.0 2.0 0.0 5.0 0.0

3 11.0 25.0 0.0 5.0 0.0

Table 12. Summary of reliability indices for the problem in Fig. 15.

Shape of slip surface Circular slip surface

and distribution type (simplified Bishop method)

cdss cpss

Normal distribution 3.75 3.73

Log-normal distribution 4.36 4.35

Shape of slip surface Non-circular slip surface

and distribution type (load factor method)

cdss cpss

Normal distribution 3.913 3.622

Log-normal distribution 4.514 4.092

not shown in the present paper), an interesting phenomenon

is observed, and a rapid approach in reliability analysis is

proposed. The main advantage of the proposed fast approach

is that two safety factor calculations (or more if needed) are

required within each iteration step during the search for the

critical probabilistic slip surface in the present paper. Though

the reliability index for the critical probabilistic slip surface

does not fully represent the reliability of the slope as a sys-

tem, the critical probabilistic slip surface and the reliability

index are still useful to many geotechnical engineers for the

assessment. The proposed method is applicable to any spe-

cific stability analysis method, and the Bishop and load fac-

tor methods are adopted simply because of their simplicity

and popularity in Asia. Based on the present results for sev-

eral examples, as well as other results from internal studies,

it is found that there is a high correlation between the pseudo

reliability indices and the true reliability indices for different

conditions. Although the pseudo reliability index for a given

slip surface is greatly different from the true reliability index,

the correlation coefficient between the pseudo and true series

of values is greater than 0.9 (usually greater than 0.95) for all

of the cases that have been tested by the authors, as well as

many other cases not shown in this paper. This result is the

basis for the rapid search approach proposed in this study. For

those problems with a correlation less than 0.95 but greater

than 0.9, they are usually problems with highly contrasting

soil parameters that may not be found for real cases. There

are only a few test cases with a correlation less than 0.9 in

Nat. Hazards Earth Syst. Sci., 15, 2241–2256, 2015 www.nat-hazards-earth-syst-sci.net/15/2241/2015/



Y. M. Cheng et al.: Simplified approach for locating the critical probabilistic slip surface 2253

the experience of the authors, which supports the use of the

fast method as a practical tool for engineers in routine anal-

ysis and design work. If the engineers intend to obtain better

results, the improvement in the result can be achieved by us-

ing more safety factor calculations within each iteration step

(Ns> 2) during the search for the critical probabilistic slip

surface, and the computer code that the authors have devel-

oped have allowed for this requirement. For normal engineer-

ing works where very high accuracy may not be required,

however, the use of two computations is adequate in general.

The authors have performed several thousands of tests in

homogeneous and non-homogeneous slopes, and the perfor-

mance of the fast method is actually good in nearly all cases.

It is noticed that in most cases the fast method will give sim-

ilar or smaller reliability indices as compared with cdss with

only few exceptions. In actual application, the fast method is

applied while the reliability index for cdss is also suggested

to be evaluated as a counter-check for routine analysis and

design. Determination of the reliability indices from the cdss

and fast method approaches are very fast in operation (usu-

ally within 20 min) as compared with the full Monte Carlo

simulation (may require 1 day of computation). The results

from cdss or the fast method can be useful to the engineers in

their works, particularly when there are a significant amount

of construction works being undertaken in Asia.

The present fast approach can be incorporated into many

research and commercial codes easily with minor effort, and

a good approximation of the reliability index for a given

problem can be determined within minutes, which is suitable

for normal engineering use. At present, reliability analysis

is not commonly considered for routine slope design work

because of the long computation time, and it is suggested

to adopt the present rapid approach that can provide an ac-

ceptable solution within an acceptable time period suitable

for routine engineering analysis and design work. In fact, the

fast method has already been used with satisfaction by some

engineers for normal engineering works in Hong Kong.

7 Conclusions

Classically, cdss is used by the engineers for simplicity, while

the full MCSM analysis is seldom performed, due to the

lengthy computation required. In this paper, cdss is demon-

strated to be a poor assessment of the reliability index of

slope for certain cases from five examples (many more in the

internal studies). Even though the proposed fast method for

cpss, as suggested in the present paper, is based on the obser-

vations of many test problems without any theoretical back-

ground, the authors have carried out thousands of trial tests to

confirm the applicability, and the results have supported this

method for limit equilibrium analysis. For the full MCSM

results, the analysis must be calculated with extensive com-

putational effort that may require 1 or more days of compu-

tations, while the fast method requires less than half an hour

for the analysis. For highly important cases or complicated

problems, the full MCSM is still recommended. Conversely,

the rapid approach, as proposed in the present study, is tar-

geted toward the majority of slopes requiring routine analysis

and design, and the test results, as given in the present study,

support the adoption of the proposed rapid method for nor-

mal routine engineering work with a significant savings in

computational time.
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Appendix A

Table A1. List of symbols.

G(X) Performance function, X is input parameters vector

FS(X) Factor of safety function

f (x) Interslice force function, and x is a normalized distance from 0 to 1.0

Z Samples of variables

PDF Probability density function

Ns Total number of samples

Pf Failure probability

ω Trial failure surface

β Reliability index

µ Mean values of variables

σ SD of the variables

Nm Number of trials for deterministic search

p The set of input geotechnical parameters (c′,ϕ′, etc.)

c′ Soil cohesive strength

ϕ′ Soil friction angle

γ Unit weight of soil

ru Pore–pressure ratio

xy Coordinates of trial failure surface

Hr Harmony memory consideration rate

Pr Pitch adjusting rate

Nt Maximum number of iteration in harmony search

δi Random variables, which may be either normally distributed or log-normally distributed

ηi Normal distributed random variables for which each variable is independent of the others
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