17,832 research outputs found

    The Mathematics of Information Science

    Get PDF
    This paper describes a course, The Mathematics of Information Science, which was taught at Towson University in Spring 1998, 1999, and 2000. This course is the junior level interdisciplinary course of the Maryland Collaborative for Teacher Preparation program. The effectiveness of the course in teaching problem solving techniques and abstract mathematical ideas is documented. The students constructed their own knowledge from laboratory experiences involving digital logic circuits. They were subsequently challenged to abstract this knowledge and to find ways to solve progressively more difficult problems using these digital logic circuits. The mathematics of encoding and decoding information constituted the major mathematical content of the course. This course is shown to be effective in introducing prospective elementary and middle school teachers to abstract mathematical ideas and problem solving techniques

    Metric Features of a Dipolar Model

    Full text link
    The lattice spin model, with nearest neighbor ferromagnetic exchange and long range dipolar interaction, is studied by the method of time series for observables based on cluster configurations and associated partitions, such as Shannon entropy, Hamming and Rohlin distances. Previous results based on the two peaks shape of the specific heat, suggested the existence of two possible transitions. By the analysis of the Shannon entropy we are able to prove that the first one is a true phase transition corresponding to a particular melting process of oriented domains, where colored noise is present almost independently of true fractality. The second one is not a real transition and it may be ascribed to a smooth balancing between two geometrical effects: a progressive fragmentation of the big clusters (possibly creating fractals), and the slow onset of a small clusters chaotic phase. Comparison with the nearest neighbor Ising ferromagnetic system points out a substantial difference in the cluster geometrical properties of the two models and in their critical behavior.Comment: 20 pages, 15 figures, submitted to JPhys

    The Short Path Algorithm Applied to a Toy Model

    Get PDF
    We numerically investigate the performance of the short path optimization algorithm on a toy problem, with the potential chosen to depend only on the total Hamming weight to allow simulation of larger systems. We consider classes of potentials with multiple minima which cause the adiabatic algorithm to experience difficulties with small gaps. The numerical investigation allows us to consider a broader range of parameters than was studied in previous rigorous work on the short path algorithm, and to show that the algorithm can continue to lead to speedups for more general objective functions than those considered before. We find in many cases a polynomial speedup over Grover search. We present a heuristic analytic treatment of choices of these parameters and of scaling of phase transitions in this model.Comment: 11 pages, 9 figures; v2 final version published in Quantu

    Learning an Interactive Segmentation System

    Full text link
    Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user - a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.Comment: 11 pages, 7 figures, 4 table

    Competition of Languages and their Hamming Distance

    Full text link
    We consider the spreading and competition of languages that are spoken by a population of individuals. The individuals can change their mother tongue during their lifespan, pass on their language to their offspring and finally die. The languages are described by bitstrings, their mutual difference is expressed in terms of their Hamming distance. Language evolution is determined by mutation and adaptation rates. In particular we consider the case where the replacement of a language by another one is determined by their mutual Hamming distance. As a function of the mutation rate we find a sharp transition between a scenario with one dominant language and fragmentation into many language clusters. The transition is also reflected in the Hamming distance between the two languages with the largest and second to largest number of speakers. We also consider the case where the population is localized on a square lattice and the interaction of individuals is restricted to a certain geometrical domain. Here it is again the Hamming distance that plays an essential role in the final fate of a language of either surviving or being extinct.Comment: 18 pages, 19 figure

    Predicting evolution and visualizing high-dimensional fitness landscapes

    Full text link
    The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossingsComment: 12 pages, 7 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (A. Engelbrecht and H. Richter, eds.). Springer Series in Emergence, Complexity, and Computation, 201
    • …
    corecore