513 research outputs found

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Formal representation of complex SNOMED CT expressions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Definitory expressions about clinical procedures, findings and diseases constitute a major benefit of a formally founded clinical reference terminology which is ontologically sound and suited for formal reasoning. SNOMED CT claims to support formal reasoning by description-logic based concept definitions.</p> <p>Methods</p> <p>On the basis of formal ontology criteria we analyze complex SNOMED CT concepts, such as "Concussion of Brain with(out) Loss of Consciousness", using alternatively full first order logics and the description logic <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1472-6947-8-S1-S9-i1"><m:semantics><m:mrow><m:mi>â„°</m:mi><m:mi>â„’</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@</m:annotation></m:semantics></m:math></inline-formula>.</p> <p>Results</p> <p>Typical complex SNOMED CT concepts, including negations or not, can be expressed in full first-order logics. Negations cannot be properly expressed in the description logic <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1472-6947-8-S1-S9-i1"><m:semantics><m:mrow><m:mi>â„°</m:mi><m:mi>â„’</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@</m:annotation></m:semantics></m:math></inline-formula> underlying SNOMED CT. All concepts concepts the meaning of which implies a temporal scope may be subject to diverging interpretations, which are often unclear in SNOMED CT as their contextual determinants are not made explicit.</p> <p>Conclusion</p> <p>The description of complex medical occurrents is ambiguous, as the same situations can be described as (i) a complex occurrent <it>C </it>that has <it>A </it>and <it>B </it>as temporal parts, (ii) a simple occurrent <it>A' </it>defined as a kind of A followed by some <it>B</it>, or (iii) a simple occurrent <it>B' </it>defined as a kind of <it>B </it>preceded by some <it>A</it>. As negative statements in SNOMED CT cannot be exactly represented without a (computationally costly) extension of the set of logical constructors, a solution can be the reification of negative statments (e.g., "Period with no Loss of Consciousness"), or the use of the SNOMED CT context model. However, the interpretation of SNOMED CT context model concepts as description logics axioms is not recommended, because this may entail unintended models.</p

    New desiderata for biomedical terminologies

    Get PDF
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and surveys some of the problems to which they give rise, all of which have to do with a failure to anchor the terms in terminologies to corresponding referents in reality. Part II outlines a new, realist solution to this anchorage problem, which sees terminology construction as being motivated by the goal of alignment not on concepts but on the universals (kinds, types) in reality and thereby also on the corresponding instances (individuals, tokens). We outline the realist approach, and show how on its basis we can provide a benchmark of correctness for terminologies which will at the same time allow a new type of integration of terminologies and electronic health records. We conclude by outlining ways in which the framework thus defined might be exploited for purposes of diagnostic decision-support

    Redundant Elements in SNOMED CT Concept Definitions

    Get PDF

    "There are too many, but never enough": qualitative case study investigating routine coding of clinical information in depression.

    Get PDF
    We sought to understand how clinical information relating to the management of depression is routinely coded in different clinical settings and the perspectives of and implications for different stakeholders with a view to understanding how these may be aligned

    Enriching a primary health care version of ICD-10 using SNOMED CT mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to satisfy different needs, medical terminology systems must have richer structures. This study examines whether a Swedish primary health care version of the mono-hierarchical ICD-10 (KSH97-P) may obtain a richer structure using category and chapter mappings from KSH97-P to SNOMED CT and SNOMED CT's structure. Manually-built mappings from KSH97-P's categories and chapters to SNOMED CT's concepts are used as a starting point.</p> <p>Results</p> <p>The mappings are manually evaluated using computer-produced information and a small number of mappings are updated. A new and poly-hierarchical chapter division of KSH97-P's categories has been created using the category and chapter mappings and SNOMED CT's generic structure. In the new chapter division, most categories are included in their original chapters. A considerable number of concepts are included in other chapters than their original chapters. Most of these inclusions can be explained by ICD-10's design. KSH97-P's categories are also extended with attributes using the category mappings and SNOMED CT's defining attribute relationships. About three-fourths of all concepts receive an attribute of type <it>Finding site </it>and about half of all concepts receive an attribute of type <it>Associated morphology</it>. Other types of attributes are less common.</p> <p>Conclusions</p> <p>It is possible to use mappings from KSH97-P to SNOMED CT and SNOMED CT's structure to enrich KSH97-P's mono-hierarchical structure with a poly-hierarchical chapter division and attributes of type <it>Finding site </it>and <it>Associated morphology</it>. The final mappings are available as additional files for this paper.</p

    Semantic validation of the use of SNOMED CT in HL7 clinical documents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HL7 Clinical Document Architecture (CDA) constrains the HL7 Reference Information model (RIM) to specify the format of HL7-compliant clinical documents, dubbed <it>CDA documents</it>. The use of clinical terminologies such as SNOMED CT<sup>® </sup>further improves interoperability as they provide a shared understanding of concepts used in clinical documents. However, despite the use of the RIM and of shared terminologies such as SNOMED CT<sup>®</sup>, gaps remain as to how to use both the RIM and SNOMED CT<sup>® </sup>in HL7 clinical documents. The HL7 implementation guide on <it>Using SNOMED CT in HL7 Version 3 </it>is an effort to close this gap. It is, however, a human-readable document that is not suited for automatic processing. As such, health care professionals designing clinical documents need to ensure validity of documents manually.</p> <p>Results</p> <p>We represent the CDA using the Ontology Web Language OWL and further use the OWL version of SNOMED CT<sup>® </sup>to enable the translation of CDA documents to so-called OWL <it>ontologies</it>. We formalize a subset of the constraints in the implementation guide on <it>Using SNOMED CT in HL7 Version 3 </it>as OWL <it>Integrity Constraints </it>and show that we can automatically validate CDA documents using OWL reasoners such as Pellet. Finally, we evaluate our approach via a prototype implementation that plugs in the Open Health Workbench.</p> <p>Conclusions</p> <p>We present a methodology to automatically check the validity of CDA documents which make reference to SNOMED CT<sup>® </sup>terminology. The methodology relies on semantic technologies such as OWL. As such it removes the burden from IT health care professionals of having to manually implement such guidelines in systems that use HL7 Version 3 documents.</p

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
    • …
    corecore