6,971 research outputs found

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (3/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 3 of

    Empowering citizens' cognition and decision making in smart sustainable cities

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advances in Internet technologies have made it possible to gather, store, and process large quantities of data, often in real time. When considering smart and sustainable cities, this big data generates useful information and insights to citizens, service providers, and policy makers. Transforming this data into knowledge allows for empowering citizens' cognition as well as supporting decision-making routines. However, several operational and computing issues need to be taken into account: 1) efficient data description and visualization, 2) forecasting citizens behavior, and 3) supporting decision making with intelligent algorithms. This paper identifies several challenges associated with the use of data analytics in smart sustainable cities and proposes the use of hybrid simulation-optimization and machine learning algorithms as an effective approach to empower citizens' cognition and decision making in such ecosystemsPeer ReviewedPostprint (author's final draft

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    Last-mile logistics optimization in the on-demand economy

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics

    Get PDF
    Slow steaming, i.e., the possibility to ship vessels at a significantly slower speed than their nominal one, has been widely studied and implemented to improve the sustainability of long-haul supply chains. However, to create an efficient symbiosis with the paradigm of synchromodality, an evolution of slow steaming called smart steaming is introduced. Smart steaming is about defining a medium speed execution of shipping movements and the real-time adjustment (acceleration and deceleration) of traveling speeds to pursue the entire logistic system’s overall efficiency and sustainability. For instance, congestion in handling facilities (intermodal hubs, ports, and rail stations) is often caused by the common wish to arrive as soon as possible. Therefore, smart steaming would help avoid bottlenecks, allowing better synchronization and decreasing waiting time at ports or handling facilities. This work aims to discuss the strict relationships between smart steaming and synchromodality and show the potential impact of moving from slow steaming to smart steaming in terms of sustainability and efficiency. Moreover, we will propose an analysis considering the pros, cons, opportunities, and risks of managing operations under this new policy

    Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications

    Full text link
    [EN] The need for effective freight and human transportation systems has consistently increased during the last decades, mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally, transportation systems have been designed with the main goal of reducing their monetary cost while offering a specified quality of service. During the last decade, however, sustainability concepts are also being considered as a critical component of transportation systems, i.e., the environmental and social impact of transportation activities have to be taken into account when managers and policy makers design and operate modern transportation systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a classification of common challenges, best practices, future trends, and open research lines that might be useful for both researchers and practitioners.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T) and the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Torre-Martínez, MRDL.; Corlu, CG.; Faulin, J.; Onggo, BS.; Juan-Pérez, ÁA. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability. 13(3):1-21. https://doi.org/10.3390/su1303155112113

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141
    corecore