253 research outputs found

    The ForMaRE Project - Formal Mathematical Reasoning in Economics

    Full text link
    The ForMaRE project applies formal mathematical reasoning to economics. We seek to increase confidence in economics' theoretical results, to aid in discovering new results, and to foster interest in formal methods, i.e. computer-aided reasoning, within economics. To formal methods, we seek to contribute user experience feedback from new audiences, as well as new challenge problems. In the first project year, we continued earlier game theory studies but then focused on auctions, where we are building a toolbox of formalisations, and have started to study matching and financial risk. In parallel to conducting research that connects economics and formal methods, we organise events and provide infrastructure to connect both communities, from fostering mutual awareness to targeted matchmaking. These efforts extend beyond economics, towards generally enabling domain experts to use mechanised reasoning.Comment: Conference on Intelligent Computer Mathematics, 8--12 July, Bath, UK. Published as number 7961 in Lecture Notes in Artificial Intelligence, Springe

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur

    Budget Imbalance Criteria for Auctions: A Formalized Theorem

    Full text link
    We present an original theorem in auction theory: it specifies general conditions under which the sum of the payments of all bidders is necessarily not identically zero, and more generally not constant. Moreover, it explicitly supplies a construction for a finite minimal set of possible bids on which such a sum is not constant. In particular, this theorem applies to the important case of a second-price Vickrey auction, where it reduces to a basic result of which a novel proof is given. To enhance the confidence in this new theorem, it has been formalized in Isabelle/HOL: the main results and definitions of the formal proof are re- produced here in common mathematical language, and are accompanied by an informal discussion about the underlying ideas.Comment: 6th Podlasie Conference on Mathematics 2014, 11 page

    An Introduction to Mechanized Reasoning

    Get PDF
    Mechanized reasoning uses computers to verify proofs and to help discover new theorems. Computer scientists have applied mechanized reasoning to economic problems but -- to date -- this work has not yet been properly presented in economics journals. We introduce mechanized reasoning to economists in three ways. First, we introduce mechanized reasoning in general, describing both the techniques and their successful applications. Second, we explain how mechanized reasoning has been applied to economic problems, concentrating on the two domains that have attracted the most attention: social choice theory and auction theory. Finally, we present a detailed example of mechanized reasoning in practice by means of a proof of Vickrey's familiar theorem on second-price auctions

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    Bel-Games: A Formal Theory of Games of Incomplete Information Based on Belief Functions in the Coq Proof Assistant

    Get PDF
    • …
    corecore