8 research outputs found

    A novel sorting method topsis-sort: an applicaiton for tehran environmental quality evaluation

    Get PDF
    Many real-life problems are multi-objective by nature that requires evaluation of more than one criterion, therefore MCDM has become an important issue. In recent years, many MCDM methods have been developed; the existing approaches have been improved and extended. Multi criteria decision analysis has been regarded as a suitable set of methods to perform sustainability evaluations. Among numerous MCDM methods developed to solve real-life decision problems, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) continues to work satisfactorily in diverse application areas. In this paper, a novel sorting method (TOPSIS-Sort) based on the classic TOPSIS method is presented. In the TOPSIS-Sort approach an outranking relation is used for sorting purposes. The proposed approach uses characteristic profiles for defining the classes and outranking relation as the preference model. Application of the proposed approach is demonstrated by classifying 22 districts of Tehran into five classes (but none of the districts fits into Classes 4 and 5), representing areas with different levels of environmental quality. An analysis and assessment of the environmental conditions in Tehran helps to identify the districts with the poor environmental quality. Priority should be given to these areas to maintain and improve the quality of environment. The results obtained by the TOPSIS-Sort give credence to its success, because the results of sorting con firm our and specialists’ evaluation of the districts. This research provides appropriate results with respect to the development of sorting models in the form of outranking relations. The model, proposed by this study, is applicable to the other outranking methods such as ELECTRE, PROMETHEE, etc

    A Modified TOPSIS Method Based on D

    Get PDF
    Multicriteria decision-making (MCDM) is an important branch of operations research which composes multiple-criteria to make decision. TOPSIS is an effective method in handling MCDM problem, while there still exist some shortcomings about it. Upon facing the MCDM problem, various types of uncertainty are inevitable such as incompleteness, fuzziness, and imprecision result from the powerlessness of human beings subjective judgment. However, the TOPSIS method cannot adequately deal with these types of uncertainties. In this paper, a D-TOPSIS method is proposed for MCDM problem based on a new effective and feasible representation of uncertain information, called D numbers. The D-TOPSIS method is an extension of the classical TOPSIS method. Within the proposed method, D numbers theory denotes the decision matrix given by experts considering the interrelation of multicriteria. An application about human resources selection, which essentially is a multicriteria decision-making problem, is conducted to demonstrate the effectiveness of the proposed D-TOPSIS method

    An Intelligent Complex Event Processing with D

    Get PDF
    Efficient matching of incoming mass events to persistent queries is fundamental to complex event processing systems. Event matching based on pattern rule is an important feature of complex event processing engine. However, the intrinsic uncertainty in pattern rules which are predecided by experts increases the difficulties of effective complex event processing. It inevitably involves various types of the intrinsic uncertainty, such as imprecision, fuzziness, and incompleteness, due to the inability of human beings subjective judgment. Nevertheless, D numbers is a new mathematic tool to model uncertainty, since it ignores the condition that elements on the frame must be mutually exclusive. To address the above issues, an intelligent complex event processing method with D numbers under fuzzy environment is proposed based on the Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) method. The novel method can fully support decision making in complex event processing systems. Finally, a numerical example is provided to evaluate the efficiency of the proposed method

    Interval Entropy of Fuzzy Sets and the Application to Fuzzy Multiple Attribute Decision Making

    Get PDF
    A series of new concepts including interval entropy, interval similarity measure, interval distance measure, and interval inclusion measure of fuzzy sets are introduced. Meanwhile, some theorems and corollaries are proposed to show how these definitions can be deduced from each other. And then, based on interval entropy, a fuzzy multiple attribute decision making (FMADM) model is set up. In this model, interval entropy is used as the weight, by which the evaluation values of all alternatives can be obtained. Then all alternatives with respect to each criterion can be ranked as the order of the evaluation values. At last, a practical example is given to illustrate an application of the developed model and a comparative analysis is made

    Multicriteria sorting method based on global and local search for supplier segmentation

    Get PDF
    The aim of this research is to develop a robust multicriteria method to classify suppliers into ordered categories and its validation in real contexts. The proposed technique is based on a property of net flows of the PROMETHEE method and uses global and local search concepts, which are common in the optimisation field. The results obtained are compared to those from the most cited sorting algorithm, and an empirical validation and sensitivity analysis is performed using real supplier evaluation data. Furthermore, it does not require additional information from decision-makers as other sorting algorithms do for assigning incomparable or indifferent alternatives to groups. An extension of the silhouette concept from data mining is also contributed to measure the quality of ordered classes. Both contributions are easy to apply and integrate into decision support systems for automated decisions in the supply chain management. Finally, this practical approach is also useful to classify customers and any type of alternatives or actions into ordered categories, which have an increasing number of real applications

    A Method to Determine Generalized Basic Probability Assignment in the Open World

    Get PDF
    Dempster-Shafer evidence theory (D-S theory) has been widely used in many information fusion systems since it was proposed by Dempster and extended by Shafer. However, how to determine the basic probability assignment (BPA), which is the main and first step in D-S theory, is still an open issue, especially when the given environment is in an open world, which means the frame of discernment is incomplete. In this paper, a method to determine generalized basic probability assignment in an open world is proposed. Frame of discernment in an open world is established first, and then the triangular fuzzy number models to identify target in the proposed frame of discernment are established. Pessimistic strategy based on the differentiation degree between model and sample is defined to yield the BPAs for known targets. If the sum of all the BPAs of known targets is over one, then they will be normalized and the BPA of unknown target is assigned to 0; otherwise the BPA of unknown target is equal to 1 minus the sum of all the known targets BPAs. IRIS classification examples illustrated the effectiveness of the proposed method
    corecore