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A series of new concepts including interval entropy, interval similarity measure, interval distance measure, and interval inclusion
measure of fuzzy sets are introduced. Meanwhile, some theorems and corollaries are proposed to show how these definitions can
be deduced from each other. And then, based on interval entropy, a fuzzy multiple attribute decision making (FMADM) model is
set up. In this model, interval entropy is used as the weight, by which the evaluation values of all alternatives can be obtained.Then
all alternatives with respect to each criterion can be ranked as the order of the evaluation values. At last, a practical example is given
to illustrate an application of the developed model and a comparative analysis is made.

1. Introduction

Multiple attribute decision making (MADM) problems
existed in the economic, management, and various social
fields. And it refers to making preference decisions over
the available alternatives that are characterized by multiple
attributes. But for practical needs and peoples’ more pro-
found understanding, there is much uncertain information
included in the decision making process. How to handle
the uncertain information is the issue that decision makers
must be concerned about. In 1965, the fuzzy set theory was
proposed by Zadeh, which provided effective methods to
solve the issue. Several years later, Bellman and Zadeh [1]
put forward a fuzzy model based on MADM method by
combining fuzzy set and decision making. In the model, the
attributes which cannot be defined exactly will be expressed
as some proper fuzzy sets and converted into classical
decision making problems by use of level sets. Because of its
great flexibility and adaptability, the model has been widely
viewed as the basis of fuzzy decision making. The FMADM
method, proposed by Bass and Kwakernaak in 1977 [2], is
regarded as the classical method in fuzzy decision making.
In recent years, many new methods have been applied to

FMADM problems (such as hesitant fuzzy theory [3–6],
TOPSIS method [7, 8], some operators [9–11], preference
relations [12], and intuitionistic fuzzy decision making [13]).
Hadi-Vencheh and Mirjaberi [14] developed an approach to
solve MADM problems considering distances both to the
positive ideal solution and to the negative ideal solution.
Zhang and Xu [15] proposed an extended technique for order
preference based on Pythagorean fuzzy set. In this approach,
a score function based comparison method is proposed to
identify the Pythagorean fuzzy positive ideal solution and the
Pythagorean fuzzy negative ideal solution. And a distance
measure is defined to calculate the distances between each
alternative and the Pythagorean fuzzy positive ideal solution
as well as the Pythagorean fuzzy negative ideal solution,
respectively. And the comparative analysis had been made
among these methods [16].

As Zimmermann [17] pointed out, the existing methods
can be divided into two steps: the first is to determine the
weights of all alternatives and then combine them into the
evaluation values with fuzzy operator; the second is to rank
the order of all alternatives according to the evaluation values.
For MADM problems, when the weight of alternative is
defined, results of decision making depended on the values
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of alternatives. And the alternative weights in MADM can be
classified as subjective and objective alternativeweights based
on the information acquisition approach. The subjective
alternative weights are determined by preference information
on the alternatives given by the decisionmaker.The objective
alternative weights are determined by the decision making
matrix. In terms of determining objective alternative weights,
one of the most famous approaches is the entropy method,
which expresses the relative intensities of alternative impor-
tance to signify the average intrinsic information transmitted
to the decision maker. Entropy concept was used in various
scientific fields, especially in information theory, and used to
refer to a general measure of uncertainty [18]. In MADM, the
greater the value of the entropy corresponding to a special
attribute is, which means the smaller attribute’s weight, the
less the discriminate power of that attribute in decision
making process is. So far, a lot of literature pertaining to
MADM analysis has been published using entropy weights,
for instance, the cross entropy [19, 20], fuzzy entropy [21],
Shannon entropy [22], maximizing fuzzy entropy [23], and
sine entropy [24]. Jin et al. [25] proposed the interval
value intuitionistic fuzzy continuous weighted entropy which
generalizes intuitionistic fuzzy entropy measures defined by
Szmidt and Kacprzyk on the basis of the continuous ordered
weighted averaging operator. Zhang et al. [26] investigated
the MADM problem with completely unknown attribute
weights in the framework of interval value intuitionistic fuzzy
sets. Using a new definition of interval value intuitionistic
fuzzy entropy and some calculation methods for interval
value intuitionistic fuzzy entropy, an entropy-based decision
makingmethod to solve interval value intuitionistic FMADM
problems with completely unknown attribute weights is
proposed. Besides the above results, there are also some
papers focused on the relationships between entropy and
other concepts (such as distance measure [27], similarity
measure [28, 29], and inclusion measure [30–32]).

For the above methods, the common point is to use
different entropies as weights. That is to say, the weight
value is one specific number. But in practice, because of
uncertainty of people’s cognition, the data of the decision
making processes cannot be measured precisely and there
may be some other types of data, for instance, interval value
data. In other words, the decision maker would prefer to
express the point of view in this form rather than a real
number because of the uncertainty and the lack of certain
data, especially when data are known to lie within bounded
variables, or when facing missing data, judgment data, and
so forth. In MADM it is most probable that we confront such
a case. So when the weight is an interval value, how to use
entropy to represent it is worthy of discussion.

In this paper, according to the definition of fuzzy set
entropy, the concept of interval entropy on fuzzy sets is
proposed, and its application in MADM is introduced.There
are four sections in the paper. Firstly, Section 2 is preliminary,
and interval entropy of fuzzy set is proposed in Section 3. Sec-
ondly, the relationships among interval entropy, interval sim-
ilaritymeasure, interval distancemeasure, and interval inclu-
sionmeasure are discussed in Section 4. Finally, the FMADM

analysis has been conducted in risk assessment of Taiwan
railway reconstruction project in Section 5.

2. Preliminary

In this section, some definitions are introduced. Here, let 𝑋
be a set.Themapping 𝜇

𝐴
: 𝑋 → [0, 1] is called a fuzzy subset

of𝑋. Let 𝐹(𝑋) and 𝑃(𝑋) denote the class of all fuzzy sets and
crisp sets over𝑋, respectively.

Definition 1 (see [33]). A fuzzy number is defined as a fuzzy
subset with the membership function 𝜇

𝐴
(𝑥), for any 𝑥 ∈ 𝑅

satisfies the following properties:

(1) 𝐴 is a normal fuzzy set; that is, ∃𝑥 ∈ 𝑅, 𝜇
𝐴
(𝑥) = 1.

(2) 𝐴 is a convex fuzzy set; that is to say, for any 𝑥
1
, 𝑥
2
and

𝜆 ∈ [0, 1],

𝜇
𝐴
(𝜆𝑥
1
+ (1 − 𝜆) 𝑥2) ≥ min (𝜇

𝐴
(𝑥
1
) , 𝜇
𝐴
(𝑥
2
)) . (1)

(3) The support of 𝐴 is bounded; that is to say, the set
Supp(𝐴) = {𝑥 ∈ 𝑅 | 𝜇

𝐴
(𝑥) > 0} is bounded.

Definition 2 (see [7]). The fuzzy number 𝐴 is called the
trapezoidal fuzzy number and denoted by [𝑎, 𝑏, 𝑐, 𝑑], where
the membership function can be expressed as the following:

𝜇
𝐴 (𝑥) =

{{{{{{{{

{{{{{{{{

{

𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑏 ≤ 𝑥 ≤ 𝑐

𝑑 − 𝑥

𝑑 − 𝑐
𝑐 ≤ 𝑥 ≤ 𝑑

0 else.

(2)

If 𝑏 = 𝑐, then 𝐴 is called the triangular fuzzy number and
denoted by [𝑎,𝑚, 𝑑]. Therefore, a triangular fuzzy number is
a special case of the trapezoidal fuzzy number.

Definition 3 (see [7, 34, 35]). For 𝛼 ∈ (0, 1], the 𝛼-cut set 𝐴
𝛼

of 𝐴 is a classic set defined as

𝐴
𝛼
= {𝑥 ∈ 𝑅 | 𝜇

𝐴 (𝑥) ≥ 𝛼} . (3)

If𝐴 is the trapezoidal fuzzy number, then𝐴
𝛼
can be denoted

by

𝐴
𝛼
=

{

{

{

[𝑏𝛼 + 𝑎 (1 − 𝛼) , 𝑐𝛼 + 𝑑 (1 − 𝛼)] 𝛼 ∈ (0, 1)

[𝑏, 𝑐] 𝛼 = 1.

(4)

Let 𝐷([0, 1]) = {[𝑎
−
, 𝑎
+
] | 0 ≤ 𝑎

−
≤ 𝑎
+
≤ 1} be the interval

value set; we set [25]

(1) [𝑎−, 𝑎+] ≤ [𝑏
−
, 𝑏
+
] ⇔ 𝑎

−
≤ 𝑏
−
, 𝑎
+
≤ 𝑏
+;

(2) [𝑎−, 𝑎+] = [𝑏
−
, 𝑏
+
] ⇔ 𝑎

−
= 𝑏
−
, 𝑎
+
= 𝑏
+;

(3) [𝑎−, 𝑎+]𝑐 = [1 − 𝑎
+
, 1 − 𝑎

−
].



Mathematical Problems in Engineering 3

3. Interval Entropy of Fuzzy Sets

In fact, entropy of fuzzy sets can be used to describe the
general measure of fuzziness through the mapping between
fuzzy numbers and real numbers on [0, 1], just like the
process of the defuzzification, in which only one point is
used to represent the fuzzy number. But, in many real life
problems, the data of the decision making processes cannot
be measured precisely. For instance, when the fuzziness of
the fuzzy set can be expressed as a maximum of 0.8 and a
minimum of 0.2, how about it? It is necessary to extend the
value of entropy from the number to interval value, and then
the definition of interval entropy is proposed as follows.

Definition 4. A real function IE: 𝐹(𝑋) → 𝐷([0, 1]) 𝐴 →

IE(𝐴) is called interval entropy on 𝐹(𝑋), if IE has the
following properties:

(EP1) If 𝐴 ∈ 𝑃(𝑋), then IE(𝐴) = [0, 0].

(EP2) If ∀𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥) ≡ 1/2, then IE(𝐴) = [1, 1].

(EP3) If ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2 or 𝜇
𝐴
2

(𝑥) ≥

𝜇
𝐴
1

(𝑥) ≥ 1/2, then

IE (𝐴
2
) ≤ IE (𝐴

1
) . (5)

(EP4) IE(𝐴) = IE(𝐴𝑐).

Remark 5. It can be concluded that if IE(𝐴
1
) = [𝑎

−

1
, 𝑎
+

1
],

IE(𝐴
2
) = [𝑎

−

2
, 𝑎
+

2
] ∈ 𝐷([0, 1]), then we have

IE (𝐴
1
) ≤ IE (𝐴

2
) ⇐⇒ 𝑎

−

1
≤ 𝑎
−

2
, 𝑎
+

1
≤ 𝑎
+

2
. (6)

We can construct some interval entropy formulas based
on Definition 4 as follows.

Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
};

IE
1 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

2 (𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)) ,

1

𝑛

⋅

𝑛

∑

𝑖=1

4 (𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
))] ;

(7)

IE
2 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

4 ((𝜇
𝐴
(𝑥
𝑖
))
2
∧ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
) ,
1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
] ;

(8)

IE
3 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2 (𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
))] ;

(9)

IE
4 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

2 (𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)) ,

1

𝑛

⋅

𝑛

∑

𝑖=1

2 (𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
))

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
] ;

(10)

IE
5 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

2 (𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
))

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1

4 (𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
))] ;

(11)

IE
6 (𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
)

1/𝑝

] (𝑝 ≥ 1) .

(12)

If 𝜇
𝐴
(𝑥) can be integrated over the considered interval [𝑎, 𝑏],

then

IE
7 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥] ,

IE
8 (𝐴) = [

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 ((𝜇
𝐴 (𝑥))

2
∧ (𝜇
𝑐

𝐴
(𝑥))
2
) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇

𝑐

𝐴
(𝑥)

𝑑𝑥] ;

IE
9 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇

𝑐

𝐴
(𝑥)

𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥] ;

IE
10 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥))

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝑐

𝐴
(𝑥))
2
𝑑𝑥] ;

IE
11 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥))

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝑐

𝐴
(𝑥))
2
𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥] ;
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IE
12 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇

𝑐

𝐴
(𝑥)

)

𝑝

𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇

𝑐

𝐴
(𝑥)

)

1/𝑝

𝑑𝑥] (𝑝 ≥ 1) .

(13)

The following theorem shows that the above formulas are all
interval entropies.

Theorem 6. 𝐼𝐸
𝑖
(𝐴, 𝐵) (𝑖 = 1, 2, . . . , 12) are interval entropies.

Proof. When 𝑖 = 7, by (7), we have

IE
7 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥] .

(14)

Firstly, if 0 ≤ 𝜇
𝐴
(𝑥) ≤ 1/2, then 2(𝜇

𝐴
(𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) = 2𝜇

𝐴
(𝑥)

and 1/2 ≤ 𝜇
𝑐

𝐴
(𝑥) ≤ 1, so

2𝜇
𝐴 (𝑥) ≤ 4𝜇

𝐴 (𝑥) ⋅ 𝜇
𝑐

𝐴
(𝑥) ≤ 1. (15)

Namely,

0 ≤
1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥

≤
1

𝑏 − 𝑎
∫

𝑏

𝑎

4 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥 ≤ 1.

(16)

So

IE
7 (𝐴) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥)) 𝑑𝑥] ∈ 𝐷 ([0, 1]) .

(17)

To (EP1): if 𝐴 ∈ 𝑃(𝑋), then 𝜇
𝐴
(𝑥) = 0 or 𝜇

𝐴
(𝑥) = 1. So

2 (𝜇
𝐴 (𝑥) ∧ 𝜇

𝑐

𝐴
(𝑥)) = 0,

4𝜇
𝐴 (𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥) = 0.

(18)

Namely, IE
7
(𝐴) = [0, 0].

(EP2) If ∀𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥) ≡ 1/2, then 2(𝜇

𝐴
(𝑥)∧𝜇

𝑐

𝐴
(𝑥)) = 1,

4𝜇
𝐴
(𝑥) ⋅ 𝜇

𝑐

𝐴
(𝑥) = 1.

Namely, IE
7
(𝐴) = [1, 1].

(EP3) If ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2, then

IE
7
(𝐴
1
) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴
1
(𝑥) ∧ 𝜇

𝑐

𝐴
1

(𝑥)) 𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴
1
(𝑥) ⋅ 𝜇

𝑐

𝐴
1

(𝑥)) 𝑑𝑥] = [
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴
1
(𝑥) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴
1
(𝑥) ⋅ 𝜇

𝑐

𝐴
1

(𝑥)) 𝑑𝑥] ,

IE
7
(𝐴
2
) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

2 (𝜇
𝐴
2
(𝑥) ∧ 𝜇

𝑐

𝐴
2

(𝑥)) 𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴
2
(𝑥) ⋅ 𝜇

𝑐

𝐴
2

(𝑥)) 𝑑𝑥] = [
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴
2
(𝑥) 𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

4 (𝜇
𝐴
2
(𝑥) ⋅ 𝜇

𝑐

𝐴
2

(𝑥)) 𝑑𝑥] .

(19)

For 𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2, then we have

2𝜇
𝐴
2
(𝑥) ≤ 2𝜇

𝐴
1
(𝑥) ,

4𝜇
𝐴
2
(𝑥) ⋅ 𝜇

𝑐

𝐴
2

(𝑥) ≤ 4𝜇
𝐴
1
(𝑥) ⋅ 𝜇

𝑐

𝐴
1

(𝑥) .

(20)

Namely,

IE
7
(𝐴
2
) ≤ IE

7
(𝐴
1
) . (21)

When 𝜇
𝐴
2

(𝑥) ≥ 𝜇
𝐴
1

(𝑥) ≥ 1/2, the proof is similar.
(EP4) It can be easily concluded that IE

7
(𝐴) = IE

7
(𝐴
𝑐
).

The proofs for other cases are similar.
In particular, if 𝐴 is a trapezoidal fuzzy number and

denoted bys 𝐴 = [𝑎, 𝑏, 𝑐, 𝑑], we have

IE
7 (𝐴) = [

𝑏 − 𝑎 − 𝑐 + 𝑑

2 (𝑑 − 𝑎)
,
2 (𝑏 − 𝑎 − 𝑐 + 𝑑)

3 (𝑑 − 𝑎)
] ;

IE
8 (𝐴)

= [
𝑏 − 𝑎 − 𝑐 + 𝑑

3 (𝑑 − 𝑎)
,
(2 ln 2 − 1) (𝑏 − 𝑎 − 𝑐 + 𝑑)

𝑑 − 𝑎
] ;

IE
9 (𝐴)

= [
(2 ln 2 − 1) (𝑏 − 𝑎 − 𝑐 + 𝑑)

𝑑 − 𝑎
,
𝑏 − 𝑎 − 𝑐 + 𝑑

2 (𝑑 − 𝑎)
] ;

IE
10 (𝐴) = [

𝑏 − 𝑎 − 𝑐 + 𝑑

2 (𝑑 − 𝑎)
,
(𝜋 − 2) (𝑏 − 𝑎 − 𝑐 + 𝑑)

2 (𝑑 − 𝑎)
] ;

IE
11 (𝐴)

= [
(𝜋 − 2) (𝑏 − 𝑎 − 𝑐 + 𝑑)

2 (𝑑 − 𝑎)
,
2 (𝑏 − 𝑎 − 𝑐 + 𝑑)

3 (𝑑 − 𝑎)
] .

(22)
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4. Property

4.1. Other Definitions to Describe the Uncertainty. In fact, the
conceptions to describe the general measure of uncertainty
such as similarity measure, distance measure, and inclusion
measure have also built the mapping between two fuzzy
numbers and real numbers on [0, 1], in which only one
point is used to represent two fuzzy numbers (see appendix).
But when the values are interval, it is necessary to extend
these conceptions to interval values, and, in this section, the
definitions of interval similarity measure, interval distance
measure, and interval inclusion measure are proposed as
follows.

Definition 7. A real function IS: 𝐹(𝑋) × 𝐹(𝑋) → 𝐷([0, 1])

is called interval similarity measure on 𝐹(𝑋) if IS satisfies the
following properties:

(SP1) IS(𝐴, 𝐴𝑐) = [0, 0] if 𝐴 is a crisp set.

(SP2) IS(𝐴, 𝐴) = [1, 1].

(SP3) IS(𝐴, 𝐵) = IS(𝐵, 𝐴).

(SP4) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

IS (𝐴, 𝐶) ≤ IS (𝐴, 𝐵) ,

IS (𝐴, 𝐶) ≤ IS (𝐵, 𝐶) .
(23)

We can construct some interval similarity measure for-
mulas based on Definition 7 as follows.

For instance, let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}; we set

IS
1 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
, 1

−max
𝑥
𝑖
∈𝑋

𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)
] ;

IS
2 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] ;

IS
3 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
, 1 −

1

𝑛

⋅

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



] ;

IS
4 (𝐴, 𝐵) = [1 −

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] ;

IS
5 (𝐴, 𝐵) = [

1

𝑛𝑝

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

,
1

𝑛1/𝑝

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

] (𝑝 ≥ 1) .

(24)
If 𝜇
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) can be integrated over the considered

interval [𝑎, 𝑏], then

IS
6 (𝐴, 𝐵) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥, 1

− max
𝑥∈[𝑎,𝑏]

𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)
] ;

IS
7 (𝐴, 𝐵) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴 (𝑥) ⋅ 𝜇𝐵 (𝑥)

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝐵 (𝑥))

2
𝑑𝑥] ;

IS
8 (𝐴, 𝐵) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥, 1 −
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎



𝜇
𝐴 (𝑥) − 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) + 𝜇𝐵 (𝑥)



𝑑𝑥] ;

IS
9 (𝐴, 𝐵) = [1 −

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎



𝜇
𝐴 (𝑥) − 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) + 𝜇𝐵 (𝑥)



𝑑𝑥,
1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴 (𝑥) ⋅ 𝜇𝐵 (𝑥)

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝐵 (𝑥))

2
𝑑𝑥] ;

IS
10 (𝐴, 𝐵) = [

1

(𝑏 − 𝑎)
𝑝

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

𝑝

𝑑𝑥,
1

(𝑏 − 𝑎)
1/𝑝

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

1/𝑝

𝑑𝑥] (𝑝 ≥ 1) .

(25)

The following theorem shows that the above formulas are all
interval similarity measures.

Theorem 8. 𝐼𝑆
𝑖
(𝐴, 𝐵) (𝑖 = 1, 2, . . . , 10) are interval similarity

measures.

Proof. When 𝑖 = 2, we have

IS
2 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] .

(26)
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If 𝜇
𝐴
(𝑥
𝑖
) ≤ 𝜇
𝐵
(𝑥
𝑖
), then (𝜇

𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
))/(𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)) =

𝜇
𝐴
(𝑥
𝑖
)/𝜇
𝐵
(𝑥
𝑖
),

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
−
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)

=

𝜇
𝐴
(𝑥
𝑖
) [(𝜇
𝐵
(𝑥
𝑖
))
2
− (𝜇
𝐴
(𝑥
𝑖
))
2
]

[(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] 𝜇
𝐵
(𝑥
𝑖
)

≥ 0.

(27)

Namely,

0 ≤
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)

≤
1

𝑛

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
≤ 1.

(28)

That is to say,

IS
2 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] ∈ 𝐷 ([0, 1]) .

(29)

The proof for 𝜇
𝐴
(𝑥
𝑖
) ≥ 𝜇
𝐵
(𝑥
𝑖
) is similar.

(SP1) If 𝐴 ∈ 𝑃(𝑋), then 𝜇
𝐴
(𝑥) = 0 or 𝜇

𝐴
(𝑥) = 1.

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
= 0,

1

𝑛

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
= 0.

(30)

Namely, IS
2
(𝐴, 𝐴
𝑐
) = [0, 0].

(SP2) Consider

IS
2 (𝐴, 𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐴
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐴
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐴
(𝑥
𝑖
))
2
] = [1, 1] .

(31)

(SP3) It is obvious that IS
2
(𝐴, 𝐵) = IS

2
(𝐵, 𝐴).

(SP4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥). So

IS
2 (𝐴, 𝐶) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐶
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐶
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐶
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐶
(𝑥
𝑖
))
2
] = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐶
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐶
(𝑥
𝑖
))
2
] ,

IS
2 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] ,

(32)

for the reason that

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐶
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐶
(𝑥
𝑖
))
2
−

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2

= 2𝜇
𝐴
(𝑥
𝑖
)

⋅

(𝜇
𝐶
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)) ((𝜇

𝐴
(𝑥
𝑖
))
2
− 𝜇
𝐵
(𝑥
𝑖
) 𝜇
𝐶
(𝑥
𝑖
))

[(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐶
(𝑥
𝑖
))
2
] [(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
]

< 0.

(33)

Namely,

𝜇
𝐴 (𝑥)

𝜇
𝐶 (𝑥)

≤
𝜇
𝐴 (𝑥)

𝜇
𝐵 (𝑥)

,

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐶
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐶
(𝑥
𝑖
))
2
≤

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
.

(34)

That is to say, IS
2
(𝐴, 𝐶) ≤ IS

2
(𝐴, 𝐵) and IS

2
(𝐴, 𝐶) ≤ IS

2
(𝐵, 𝐶).

And the proofs for other cases are similar.

Definition 9. A real function ID: 𝐹(𝑋) × 𝐹(𝑋) → 𝐷([0, 1])

is called interval distance measure on 𝐹(𝑋), if ID satisfies the
following properties:

(DP1) ID(𝐴, 𝐴𝑐) = [1, 1] if 𝐴 is a crisp set.

(DP2) ID(𝐴, 𝐴) = [0, 0].

(DP3) ID(𝐴, 𝐵) = ID(𝐵, 𝐴).

(DP4) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

ID (𝐴, 𝐵) ≤ ID (𝐴, 𝐶) ,

ID (𝐵, 𝐶) ≤ ID (𝐴, 𝐶) .

(35)

We can construct some interval distance measure formu-
las based on Definition 9 as follows.
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Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}; we set

ID
1 (𝐴, 𝐵) = [

𝑛max
𝑖=1

𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)
 , 1 −

1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] ;

ID
2 (𝐴, 𝐵) = [1 −

1

𝑛

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
, 1 −

1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] ;

ID
3 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



, 1 −
1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] ;

ID
4 (𝐴, 𝐵) = [1 −

1

𝑛

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



] ;

ID
5 (𝐴, 𝐵) = [1 −

1

𝑛1/𝑝

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

, 1

−
1

𝑛𝑝

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

] (𝑝 ≥ 1) .

(36)

If 𝜇
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) can be integrated over the considered

interval [𝑎, 𝑏], then

ID
6 (𝐴, 𝐵) = [max

𝑥∈[𝑎,𝑏]

𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)
 , 1 −

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥] ;

ID
7 (𝐴, 𝐵) = [1 −

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴 (𝑥) ⋅ 𝜇𝐵 (𝑥)

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝐵 (𝑥))

2
𝑑𝑥, 1 −

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥] ;

ID
8 (𝐴, 𝐵) = [

1

𝑏 − 𝑎
∫

𝑏

𝑎



𝜇
𝐴 (𝑥) − 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) + 𝜇𝐵 (𝑥)



𝑑𝑥, 1

−
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

𝑑𝑥] ;

ID
9 (𝐴, 𝐵) = [1 −

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎

2𝜇
𝐴 (𝑥) ⋅ 𝜇𝐵 (𝑥)

(𝜇
𝐴 (𝑥))

2
+ (𝜇
𝐵 (𝑥))

2
𝑑𝑥,

1

𝑏 − 𝑎

⋅ ∫

𝑏

𝑎



𝜇
𝐴 (𝑥) − 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) + 𝜇𝐵 (𝑥)



𝑑𝑥] ;

ID
10 (𝐴, 𝐵) = [1 −

1

(𝑏 − 𝑎)
1/𝑝

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

1/𝑝

𝑑𝑥, 1 −
1

(𝑏 − 𝑎)
𝑝

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

𝑝

𝑑𝑥] (𝑝 ≥ 1) .

(37)

The following theorem shows that the above formulas are all
interval distance measures.

Theorem 10. 𝐼𝐷
𝑖
(𝐴, 𝐵) (𝑖 = 1, 2, . . . , 10) are interval distance

measures.

Proof. When 𝑖 = 3, we have

ID
3 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] .

(38)

If 𝜇
𝐴
(𝑥
𝑖
) ≤ 𝜇
𝐵
(𝑥
𝑖
), then



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



=
𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)
,

1 −
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
= 1 −

𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)

=
𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)

.

(39)

Namely,

0 ≤
1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



≤ 1 −
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
≤ 1.

(40)

That is to say,

ID
3 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] ∈ 𝐷 ([0, 1]) .

(41)
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(DP1) If 𝐴 ∈ 𝑃(𝑋), then 𝜇
𝐴
(𝑥) = 0 or 𝜇

𝐴
(𝑥) = 1,

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝑐

𝐴
(𝑥
𝑖
)



= 1,

1 −
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
= 1.

(42)

Namely, ID
3
(𝐴, 𝐴
𝑐
) = [1, 1].

(DP2) Consider

ID
3 (𝐴, 𝐴) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐴
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐴
(𝑥
𝑖
)
] = [0, 0] .

(43)

(DP3) It is obvious that ID
3
(𝐴, 𝐵) = ID

3
(𝐵, 𝐴).

(DP4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥) and

ID
3 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
]

= [
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

𝑛

∑

𝑖=1

1 −
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
] ,

ID
3 (𝐴, 𝐶) = [

1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐶
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐶
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐶
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐶
(𝑥
𝑖
)
]

= [
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐶
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐶
(𝑥
𝑖
)
,
1

𝑛

𝑛

∑

𝑖=1

1 −
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
] ,

(44)

for the reason that

𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)
= 1 −

2𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)
,

𝜇
𝐶
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐶
(𝑥
𝑖
)
= 1 −

2𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐶
(𝑥
𝑖
)
.

(45)

We have

𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)
≤
𝜇
𝐶
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐶
(𝑥
𝑖
)
,

1 −
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
≤ 1 −

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐶
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐶
(𝑥
𝑖
)
.

(46)

Namely, ID
3
(𝐴, 𝐵) ≤ ID

3
(𝐴, 𝐶), ID

3
(𝐵, 𝐶) ≤ ID

3
(𝐴, 𝐶).

The proofs for other cases are similar.

Definition 11. A real function II: 𝐹(𝑋) × 𝐹(𝑋) → 𝐷([0, 1])

is called interval inclusion measure on 𝐹(𝑋), if II satisfies the
following properties:

(IP1) II(𝑋,Φ) = [0, 0].

(IP2) II(𝐴, 𝐵) = [1, 1] ⇔ 𝐴 ⊆ 𝐵.

(IP3) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

II (𝐶, 𝐴) ≤ II (𝐵, 𝐴) ,

II (𝐶, 𝐴) ≤ II (𝐶, 𝐵) .
(47)

We can construct some interval inclusion measure for-
mulas based on Definition 11 as follows.

Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
},

II
1 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

1/𝑝

] (𝑝 ≥ 1) ;

II
2 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

] (𝑝 ≥ 1) .

(48)

If 𝜇
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) can be integrated over the considered

interval [𝑎, 𝑏], we set

II
3 (𝐴, 𝐵) = [

1

(𝑏 − 𝑎)

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥)

)

𝑝

𝑑𝑥,
1

(𝑏 − 𝑎)

⋅ ∫

𝑏

𝑎

(
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥)

)

1/𝑝

𝑑𝑥] (𝑝 ≥ 1) ;

II
4 (𝐴, 𝐵) = [

1

(𝑏 − 𝑎)

⋅ ∫

𝑏

𝑎

(
𝜇
𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

𝑝

𝑑𝑥,
1

(𝑏 − 𝑎)

⋅ ∫

𝑏

𝑎

(
𝜇
𝐵 (𝑥)

𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥)

)

1/𝑝

𝑑𝑥] (𝑝 ≥ 1) .

(49)

The following theorem shows that the above formulas are all
interval inclusion measures.

Theorem 12. 𝐼𝐼
𝑖
(𝐴, 𝐵) (𝑖 = 1, 2, 3, 4) are interval inclusion

measures.
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Proof. When 𝑖 = 1, we have

II
1 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

1/𝑝

] (𝑝 ≥ 1) .

(50)

It is obvious that

0 ≤
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

𝑝

≤
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

1/𝑝

≤ 1.

(51)

(IP1) Consider

II
1
(𝑋, 𝜙) = [

[

1

𝑛

𝑛

∑

𝑖=1

(

𝜇
𝑋
(𝑥
𝑖
) ∧ 𝜇
𝜙
(𝑥
𝑖
)

𝜇
𝑋
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(

𝜇
𝑋
(𝑥
𝑖
) ∧ 𝜇
𝜙
(𝑥
𝑖
)

𝜇
𝑋
(𝑥
𝑖
)

)

1/𝑝

]

]

= [0, 0] .

(52)

(IP2) Consider

II
1 (𝐴, 𝐵) = [1, 1]

⇐⇒ [
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

1/𝑝

] = [1, 1]

⇐⇒
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

= 1

⇐⇒ 𝐴 ⊆ 𝐵.

(53)

(IP3) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥),

II
1 (𝐶, 𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐶
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐶
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)

)

1/𝑝

] = [
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
)

1/𝑝

] ,

II
1 (𝐵, 𝐴) = [

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐵
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐵
(𝑥
𝑖
) ∧ 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)

)

1/𝑝

] = [
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

] .

(54)
So

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
)

𝑝

≤
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

,

1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐶
(𝑥
𝑖
)
)

1/𝑝

≤
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

.

(55)

Namely, II
1
(𝐶, 𝐴) ≤ II

1
(𝐵, 𝐴) and II

1
(𝐶, 𝐴) ≤ II

1
(𝐶, 𝐵). The

proofs for other cases are similar.

4.2. The Relationships with the above Definitions. In this
section, some conclusions about the relationships with those
definitions are presented. From the follow theorems and
corollaries, any two can be transformed into each other.

Theorem 13. If 𝐼𝐸 is interval entropy of fuzzy sets, ∀𝐴, 𝐵 ∈

𝐹(𝑋), ∀𝑥 ∈ 𝑋,

𝑓
1 (𝐴, 𝐵) (𝑥) =

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

,

𝑓
2 (𝐴, 𝐵) (𝑥) =

1 −
𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)



2
,

𝑓
3 (𝐴, 𝐵) (𝑥) =

1 +
𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)



2
,

(56)

then
(1) 𝐼𝐸(𝑓

𝑖
(𝐴, 𝐵)) (𝑖 = 1, 2, 3) are interval similarity mea-

sures of fuzzy sets,
(2) 𝐼𝐸𝑐(𝑓

𝑖
(𝐴, 𝐵)) (𝑖 = 1, 2, 3) are interval distance mea-

sures of fuzzy sets,
(3) 𝐼𝐸(𝑓

𝑖
(𝐵, 𝐴 ∪ 𝐵)) (𝑖 = 1, 2, 3) are interval inclusion

measures of the fuzzy sets.

Proof. (1) When 𝑖 = 3, we have the following:
(SP1) If 𝐴 ∈ 𝑃(𝑋), then ∀𝑥 ∈ 𝑋,

𝑓
3
(𝐴, 𝐴
𝑐
) (𝑥) =

1 +
𝜇𝐴 (𝑥) − 𝜇

𝑐

𝐴
(𝑥)



2
= 1. (57)

Namely, 𝑓
3
(𝐴, 𝐴
𝑐
) ∈ 𝑃(𝑋), so IE(𝑓

3
(𝐴, 𝐴
𝑐
)) = [0, 0].

(SP2) ∀𝑥 ∈ 𝑋, we have

𝑓
3 (𝐴, 𝐴) (𝑥) =

1 +
𝜇𝐴 (𝑥) − 𝜇𝐴 (𝑥)



2
=
1

2
. (58)

So IE(𝑓
3
(𝐴, 𝐴
𝑐
)) = [1, 1].

(SP3) It is obvious that IE(𝑓
3
(𝐴, 𝐵)) = IE(𝑓

3
(𝐵, 𝐴)).
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(SP4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥), so

1

2
≤
1 +

𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)


2
≤
1 +

𝜇𝐴 (𝑥) − 𝜇𝐶 (𝑥)


2
,

1

2
≤
1 +

𝜇𝐵 (𝑥) − 𝜇𝐶 (𝑥)


2
≤
1 +

𝜇𝐴 (𝑥) − 𝜇𝐶 (𝑥)


2
.

(59)

Namely,

IE (𝑓
3 (𝐴, 𝐵)) ≥ IE (𝑓

3 (𝐴, 𝐶)) ,

IE (𝑓
3 (𝐵, 𝐶)) ≥ IE (𝑓

3 (𝐴, 𝐶)) .

(60)

The proofs for other cases are similar.
(2) When 𝑖 = 1, let ID(𝐴, 𝐵) = IE𝑐(𝑓

1
(𝐴, 𝐵)).

(DP1) ∀𝐴 ∈ 𝑃(𝑋), we have𝑓
1
(𝐴, 𝐴)(𝑥) = 0, so𝑓

1
(𝐴, 𝐴) ∈

𝑃(𝑋) and

IE𝑐 (𝑓
1 (𝐴, 𝐴)) = [1, 1] . (61)

(DP2) Let ID(𝐴, 𝐴) = IE𝑐(𝑓1(𝐴, 𝐴)), for the reason that
𝑓
1
(𝐴, 𝐴)(𝑥) = 1/2, so

IE𝑐 (𝑓
1 (𝐴, 𝐴)) = [0, 0] . (62)

(DP3) It is obvious that ID(𝐴, 𝐵) = ID(𝐵, 𝐴).
(DP4) If𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇

𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥). For the

reason that

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐵 (𝑥)

,

𝜇
𝐴 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐶 (𝑥)

,

𝜇
𝐵 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐵 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐵 (𝑥)

2𝜇
𝐶 (𝑥)

,

(63)

we have

𝜇
𝐴 (𝑥)

2𝜇
𝐶 (𝑥)

≤
𝜇
𝐴 (𝑥)

2𝜇
𝐵 (𝑥)

≤
1

2
,

𝜇
𝐴 (𝑥)

2𝜇
𝐶 (𝑥)

≤
𝜇
𝐵 (𝑥)

2𝜇
𝐶 (𝑥)

≤
1

2
.

(64)

Namely,

IE𝑐 (𝑓
1 (𝐴, 𝐵)) ≤ IE𝑐 (𝑓

1 (𝐴, 𝐶)) ,

IE𝑐 (𝑓
1 (𝐵, 𝐶)) ≤ IE𝑐 (𝑓

1 (𝐴, 𝐶)) .

(65)

The proofs for other cases are similar.
(3) When 𝑖 = 1, we set II(𝐴, 𝐵) = IE(𝑓

1
(𝐵, 𝐴 ∪ 𝐵)).

(IP1) II(𝑋,Φ) = IE(𝑓
1
(Φ,𝑋 ∪ Φ)) = IE(𝑓

1
(Φ,𝑋)), ∀𝑥 ∈

𝑋, 𝑓
1
(Φ,𝑋) = 0, so 𝑓

1
(Φ,𝑋) ∈ 𝑃(𝑋) and II(𝑋,Φ) =

IE(𝑓
1
(Φ,𝑋)) = [0, 0].

(IP2) Consider

II (𝐴, 𝐵) = [1, 1]

⇐⇒ IE (𝑓
1 (𝐵, 𝐴 ∪ 𝐵)) = [1, 1]

⇐⇒ 𝑓
1 (𝐵, 𝐴 ∪ 𝐵) (𝑥) ≡

1

2
, ∀𝑥 ∈ 𝑋

⇐⇒
𝜇
𝐵 (𝑥) ∧ (𝜇𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

≡
1

2
,

∀𝑥 ∈ 𝑋

⇐⇒ 𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥) = 𝜇

𝐵 (𝑥) , ∀𝑥 ∈ 𝑋

⇐⇒ 𝜇
𝐴 (𝑥) ≤ 𝜇

𝐵 (𝑥) , ∀𝑥 ∈ 𝑋

⇐⇒ 𝐴 ⊆ 𝐵.

(66)

(IP3) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥) and

II (𝐶, 𝐴) = IE (𝑓
1 (𝐴, 𝐶 ∪ 𝐴)) = IE (𝑓

1 (𝐴, 𝐶)) ,

II (𝐵, 𝐴) = IE (𝑓
1 (𝐴, 𝐵 ∪ 𝐴)) = IE (𝑓

1 (𝐴, 𝐵)) ,

II (𝐶, 𝐵) = IE (𝑓
1 (𝐵, 𝐶 ∪ 𝐵)) = IE (𝑓

1 (𝐵, 𝐶)) .

(67)

Owing to the fact that

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐵 (𝑥)

,

𝜇
𝐴 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐶 (𝑥)

,

𝜇
𝐵 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐵 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐵 (𝑥)

2𝜇
𝐶 (𝑥)

,

(68)

then ∀𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥)/2𝜇

𝐶
(𝑥) ≤ 𝜇

𝐴
(𝑥)/2𝜇

𝐵
(𝑥) ≤ 1/2, 𝜇

𝐴
(𝑥)/

2𝜇
𝐶
(𝑥) ≤ 𝜇

𝐵
(𝑥)/2𝜇

𝐶
(𝑥) ≤ 1/2.

Namely, II(𝐶, 𝐴) ≤ II(𝐵, 𝐴), II(𝐶, 𝐴) ≤ II(𝐶, 𝐵).
The proofs for other cases are similar.

Corollary 14. 𝐼𝐸(𝑓
𝑖
(𝐴 ∩ 𝐵, 𝐴)) (𝑖 = 1, 2, 3) are interval

inclusion measures of the fuzzy sets.

Proof. When 𝑖 = 1, we set II(𝐴, 𝐵) = IE(𝑓
1
(𝐴 ∩ 𝐵, 𝐴)).

(IP1) II(𝑋,Φ) = IE(𝑓
1
(𝑋 ∩ Φ,𝑋)) = IE(𝑓

1
(Φ,𝑋)),

∀𝑥 ∈ 𝑋, 𝑓
1
(Φ,𝑋) = 0, so 𝑓

1
(Φ,𝑋) ∈ 𝑃(𝑋) and II(𝑋,Φ) =

IE(𝑓
1
(Φ,𝑋)) = [0, 0].

(IP2) Consider

II (𝐴, 𝐵) = [1, 1]

⇐⇒ IE (𝑓
1 (𝐴 ∩ 𝐵, 𝐴)) = [1, 1]

⇐⇒ 𝑓
1 (𝐴 ∩ 𝐵, 𝐴) (𝑥) ≡

1

2
, ∀𝑥 ∈ 𝑋

⇐⇒
𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

2𝜇
𝐴 (𝑥)

≡
1

2
, ∀𝑥 ∈ 𝑋
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⇐⇒ 𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥) = 𝜇

𝐴 (𝑥) , ∀𝑥 ∈ 𝑋

⇐⇒ 𝜇
𝐴 (𝑥) ≤ 𝜇

𝐵 (𝑥) , ∀𝑥 ∈ 𝑋

⇐⇒ 𝐴 ⊆ 𝐵.

(69)

(IP3) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) ≤ 𝜇

𝐶
(𝑥) and

II (𝐶, 𝐴) = IE (𝑓
1 (𝐶 ∩ 𝐴, 𝐶)) = IE (𝑓

1 (𝐴, 𝐶)) ;

II (𝐵, 𝐴) = IE (𝑓
1 (𝐵 ∩ 𝐴, 𝐵)) = IE (𝑓

1 (𝐴, 𝐵)) ;

II (𝐶, 𝐵) = IE (𝑓
1 (𝐶 ∩ 𝐵, 𝐶)) = IE (𝑓

1 (𝐵, 𝐶)) .

(70)

In view of the fact that

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐵 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐵 (𝑥)

,

𝜇
𝐴 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐴 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐴 (𝑥)

2𝜇
𝐶 (𝑥)

,

𝜇
𝐵 (𝑥) ∧ 𝜇𝐶 (𝑥)

2 (𝜇
𝐵 (𝑥) ∨ 𝜇𝐶 (𝑥))

=
𝜇
𝐵 (𝑥)

2𝜇
𝐶 (𝑥)

,

(71)

then we have ∀𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥)/2𝜇

𝐶
(𝑥) ≤ 𝜇

𝐴
(𝑥)/2𝜇

𝐵
(𝑥) ≤ 1/2,

𝜇
𝐴
(𝑥)/2𝜇

𝐶
(𝑥) ≤ 𝜇

𝐵
(𝑥)/2𝜇

𝐶
(𝑥) ≤ 1/2.

Namely, II(𝐶, 𝐴) ≤ II(𝐵, 𝐴), II(𝐶, 𝐴) ≤ II(𝐶, 𝐵).
The proofs for other cases are similar.
For example, if

IE (𝐴) = [
1

𝑛

𝑛

∑

𝑖=1

4 ((𝜇
𝐴
(𝑥
𝑖
))
2
∧ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
) ,
1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
] ,

(72)

then

IS
11 (𝐴, 𝐵) = IE (𝑓

3 (𝐴, 𝐵)) = [
1

𝑛

⋅

𝑛

∑

𝑖=1

(1 −
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)

)
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1

1 −
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)



1 +
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)



]

(73)

is an interval similarity measure. And

ID
11 (𝐴, 𝐵) = IE𝑐 (𝑓

3 (𝐴, 𝐵))

= [
1

𝑛

𝑛

∑

𝑖=1

2
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)



1 +
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

(1 −
𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)

)
2
]

(74)

is an interval distance measure. And

II
5 (𝐴, 𝐵) = IE (𝑓

3 (𝐵, 𝐴 ∪ 𝐵)) = [
1

𝑛

⋅

𝑛

∑

𝑖=1

(1 −
𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖) ∨ 𝜇𝐵 (𝑥𝑖)

)
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1

1 −
𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖) ∨ 𝜇𝐵 (𝑥𝑖)



1 +
𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖) ∨ 𝜇𝐵 (𝑥𝑖)



] ,

II
6 (𝐴, 𝐵) = IE (𝑓

3 (𝐴 ∩ 𝐵, 𝐴)) = [
1

𝑛

⋅

𝑛

∑

𝑖=1

(1 −
𝜇𝐴 (𝑥𝑖) ∧ 𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖)

)
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1

1 −
𝜇𝐴 (𝑥𝑖) ∧ 𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖)



1 +
𝜇𝐴 (𝑥𝑖) ∧ 𝜇𝐵 (𝑥𝑖) − 𝜇𝐴 (𝑥𝑖)



]

(75)

are interval inclusion measures.

Theorem 15. For 𝐴, 𝐵 ∈ 𝐹(𝑋), 𝐼𝑆 is interval similarity
measure of fuzzy sets; then

(1) 𝐼𝑆(𝐴, 𝐴𝑐) is interval entropy of the fuzzy sets;
(2) 𝐼𝑆𝑐(𝐴, 𝐵) is interval distance measure;
(3) 𝐼𝑆(𝐵, 𝐴 ∪ 𝐵) is interval inclusion measure.

Proof. The proof is as follows:

(1)
(EP1) If 𝐴 ∈ 𝑃(𝑋), then IS(𝐴, 𝐴𝑐) = [0, 0].
(EP2) If ∀𝑥 ∈ 𝑋, 𝜇

𝐴
(𝑥) ≡ 1/2, then 𝐴(𝑋) = 𝐴

𝑐
(𝑋)

and IS(𝐴, 𝐴𝑐) = IS(𝐴, 𝐴) = [1, 1].
(EP3) When ∀𝑥 ∈ 𝑋, 𝜇

𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2, we have
𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2 ≤ 𝜇
𝑐

𝐴
1

(𝑥) ≤ 𝜇
𝑐

𝐴
2

(𝑥), so

𝐴
2
⊆ 𝐴
1
⊆ 𝐴
𝑐

1
⊆ 𝐴
𝑐

2
. (76)

(EP4) It is obvious that IS(𝐴, 𝐴𝑐) = IS(𝐴𝑐, 𝐴).

Namely,

IS (𝐴
2
, 𝐴
𝑐

2
) ≤ IS (𝐴

1
, 𝐴
𝑐

2
) ≤ IS (𝐴

1
, 𝐴
𝑐

1
) . (77)

When ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≥ 𝜇
𝐴
1

(𝑥) ≥ 1/2, the proof is
similar.

(2) Let ID(𝐴, 𝐵) = IS𝑐(𝐴, 𝐵).

(DP1) If 𝐴 ∈ 𝑃(𝑋), then IS𝑐(𝐴, 𝐴𝑐) = [0, 0]
𝑐
= [1, 1].

(DP2) IS𝑐(𝐴, 𝐴) = [1, 1]
𝑐
= [0, 0].

(DP3) It is obvious that IS𝑐(𝐴, 𝐵) = IS𝑐(𝐵, 𝐴).
(DP4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then IS(𝐴, 𝐶) ≤ IS(𝐴, 𝐵),

IS(𝐴, 𝐶) ≤ IS(𝐵, 𝐶). Namely,

IS𝑐 (𝐴, 𝐵) ≤ IS𝑐 (𝐴, 𝐶) ,

IS𝑐 (𝐵, 𝐶) ≤ IS𝑐 (𝐴, 𝐶) .
(78)



12 Mathematical Problems in Engineering

(3) Let II(𝐴, 𝐵) = IS(𝐵, 𝐴 ∪ 𝐵).

(IP1) II(𝑋,Φ) = IS(Φ,𝑋 ∪ Φ) = IS(Φ,𝑋), for Φ,𝑋 ∈

𝑃(𝑋), so II(𝑋,Φ) = IS(Φ,𝑋) = [0, 0].
(IP2) II(𝐴, 𝐵) = [1, 1] ⇔ IS(𝐵, 𝐴 ∪ 𝐵) = [1, 1] ⇔

𝐴 ∪ 𝐵 = 𝐵 ⇔ 𝐴 ⊆ 𝐵.
(IP3) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then IS(𝐴, 𝐶) ≤ IS(𝐴, 𝐵),

IS(𝐴, 𝐶) ≤ IS(𝐵, 𝐶) and

II (𝐶, 𝐴) = IS (𝐴, 𝐴 ∪ 𝐶) = IS (𝐴, 𝐶) ;

II (𝐵, 𝐴) = IS (𝐴, 𝐴 ∪ 𝐵) = IS (𝐴, 𝐵) ;

II (𝐶, 𝐵) = IS (𝐵, 𝐵 ∪ 𝐶) = IS (𝐵, 𝐶) .

(79)

Namely, II(𝐶, 𝐴) ≤ II(𝐵, 𝐴), II(𝐶, 𝐴) ≤ II(𝐶, 𝐵).

Corollary 16. 𝐼𝑆(𝐴 ∩ 𝐵, 𝐵) is interval inclusion measure.

Proof. Let II(𝐴, 𝐵) = IS(𝐴 ∩ 𝐵, 𝐵).
(IP1) II(𝑋,Φ) = IS(𝑋 ∩ Φ,𝑋) = IS(Φ,𝑋). For Φ, 𝑋 ∈

𝑃(𝑋), we have II(𝑋,Φ) = IS(Φ,𝑋) = [0, 0].
(IP2) II(𝐴, 𝐵) = [1, 1] ⇔ IS(𝐴∩𝐵, 𝐴) = [1, 1] ⇔ 𝐴∩𝐵 =

𝐴 ⇔ 𝐴 ⊆ 𝐵.
(IP3) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then IS(𝐴, 𝐶) ≤ IS(𝐴, 𝐵), IS(𝐴, 𝐶) ≤

IS(𝐵, 𝐶), and

II (𝐶, 𝐴) = IS (𝐴 ∩ 𝐶, 𝐶) = IS (𝐴, 𝐶) ;

II (𝐵, 𝐴) = IS (𝐴 ∩ 𝐵, 𝐵) = IS (𝐴, 𝐵) ;

II (𝐶, 𝐵) = IS (𝐵 ∩ 𝐶, 𝐶) = IS (𝐵, 𝐶) .

(80)

Namely, II(𝐶, 𝐴) ≤ II(𝐵, 𝐴), II(𝐶, 𝐴) ≤ II(𝐶, 𝐵).
For example, if

IS (𝐴, 𝐵) = [
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝐵
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
] ,

(81)

then

IE
13 (𝐴) = IS (𝐴, 𝐴𝑐) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝑐

𝐴
(𝑥
𝑖
))
2
]

(82)

is an interval entropy. And

ID
12 (𝐴, 𝐵) = IS𝑐 (𝐴, 𝐵) = [

1

𝑛

⋅

𝑛

∑

𝑖=1

(𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
))
2

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐵
(𝑥
𝑖
))
2
,
1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)


𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
]

(83)

is an interval distance measure. And

II
7 (𝐴, 𝐵) = IS (𝐵, 𝐴 ∪ 𝐵) = [

1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐵
(𝑥
𝑖
) ⋅ (𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
))

(𝜇
𝐵
(𝑥
𝑖
))
2
+ (𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
))
2
] ,

II
8 (𝐴, 𝐵) = IS (𝐴 ∩ 𝐵, 𝐴) = [

1

𝑛

⋅

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

,
1

𝑛

⋅

𝑛

∑

𝑖=1

2𝜇
𝐴
(𝑥
𝑖
) ⋅ (𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
))

(𝜇
𝐴
(𝑥
𝑖
))
2
+ (𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
))
2
]

(84)

are interval inclusion measures.

Theorem 17. For𝐴, 𝐵 ∈ 𝐹(𝑋), 𝐼𝐷 is interval distancemeasure
of fuzzy sets; then

(1) 𝐼𝐷𝑐(𝐴, 𝐵) is interval similarity measure;
(2) 𝐼𝐷𝑐(𝐴, 𝐴𝑐) is interval entropy;
(3) 𝐼𝐷𝑐(𝐵, 𝐴 ∪ 𝐵), ID𝑐(𝐴 ∩ 𝐵, 𝐴) are interval inclusion

measures.

Proof. (1) It can be easily concluded byTheorem 15.
(2) It can be easily concluded byTheorem 13.
(3) It can be easily concluded byTheorems 13 and 15.
For example, if

ID (𝐴, 𝐵) = [
1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
] ,

(85)

then

IS
12 (𝐴, 𝐵) = ID𝑐 (𝐴, 𝐵) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
, 1

−
1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) − 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) + 𝜇
𝐵
(𝑥
𝑖
)



]

(86)

is an interval similarity measure. And

II
14 (𝐴) = ID𝑐 (𝐴, 𝐴𝑐) = [

1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
, 1

−
1

𝑛

𝑛

∑

𝑖=1

𝜇𝐴 (𝑥𝑖) − 𝜇
𝑐

𝐴
(𝑥
𝑖
)
]

(87)
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is an interval entropy. And

II
9 (𝐴, 𝐵) = ID𝑐 (𝐵, 𝐴 ∪ 𝐵)

= [
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
, 1

−
1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐵
(𝑥
𝑖
) + 𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)



]

II
10 (𝐴, 𝐵) = ID𝑐 (𝐴 ∩ 𝐵, 𝐴)

= [
1

𝑛

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

, 1

−
1

𝑛

𝑛

∑

𝑖=1



𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
) − 𝜇
𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
) + 𝜇
𝐴
(𝑥
𝑖
)



]

(88)

are interval inclusion measures.

Theorem 18. For𝐴, 𝐵 ∈ 𝐹(𝑋), 𝐼𝐼 is interval inclusionmeasure
of fuzzy sets; then

(1) 𝐼𝐼(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) is interval similarity measure;
(2) 𝐼𝐼(𝐴 ∪ 𝐴

𝑐
, 𝐴 ∩ 𝐴

𝑐
) is interval entropy;

(3) 𝐼𝐼𝑐(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) is interval distance measure.

Proof. (1) Let IS(𝐴, 𝐵) = II(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵).

(SP1) If 𝐴 ∈ 𝑃(𝑋), then IS(𝐴, 𝐴𝑐) = II(𝐴 ∪ 𝐴
𝑐
, 𝐴 ∩ 𝐴

𝑐
) =

II(𝑋, 𝜙) = [0, 0].
(SP2) IS(𝐴, 𝐴) = II(𝐴 ∪ 𝐴,𝐴 ∩ 𝐴) = II(𝐴, 𝐴) = [1, 1].
(SP3) It is obvious that IS(𝐴, 𝐵) = IS(𝐵, 𝐴).
(SP4) If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then II(𝐶, 𝐴) ≤ II(𝐵, 𝐴), II(𝐶, 𝐴) ≤

II(𝐶, 𝐵) and

IS (𝐴, 𝐶) = IS (𝐴 ∪ 𝐶,𝐴 ∩ 𝐶) = II (𝐶, 𝐴) ;

IS (𝐴, 𝐵) = IS (𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = II (𝐵, 𝐴) ;

IS (𝐵, 𝐶) = IS (𝐵 ∪ 𝐶, 𝐵 ∩ 𝐶) = II (𝐶, 𝐵) .

(89)

Namely,

IS (𝐴, 𝐶) ≤ IS (𝐴, 𝐵) ,

IS (𝐴, 𝐶) ≤ IS (𝐵, 𝐶) .
(90)

(2) Let IE(𝐴) = II(𝐴 ∪ 𝐴
𝑐
, 𝐴 ∩ 𝐴

𝑐
).

(EP1) If 𝐴 ∈ 𝑃(𝑋), then IE(𝐴) = II(𝐴 ∪ 𝐴
𝑐
, 𝐴 ∩ 𝐴

𝑐
) =

II(𝑋, 𝜙) = [0, 0].
(EP2) If ∀𝑥 ∈ 𝑋, 𝜇

𝐴
(𝑥) ≡ 1/2, then 𝐴(𝑥) = 𝐴

𝑐
(𝑥) and

IE (𝐴) = II (𝐴 ∪ 𝐴
𝑐
, 𝐴 ∩ 𝐴

𝑐
) = II (𝐴, 𝐴) = [1, 1] . (91)

(EP3) When ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2, we have
𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2 ≤ 𝜇
𝑐

𝐴
1

(𝑥) ≤ 𝜇
𝑐

𝐴
2

(𝑥); then

𝐴
2
⊆ 𝐴
1
⊆ 𝐴
𝑐

1
⊆ 𝐴
𝑐

2
. (92)

Namely,

IE (𝐴
1
) = II (𝐴

1
∪ 𝐴
𝑐

1
, 𝐴
1
∩ 𝐴
𝑐

1
) = II (𝐴𝑐

1
, 𝐴
1
) ,

IE (𝐴
2
) = II (𝐴

2
∪ 𝐴
𝑐

2
, 𝐴
2
∩ 𝐴
𝑐

2
) = II (𝐴𝑐

2
, 𝐴
2
) .

(93)

For II(𝐴𝑐
2
, 𝐴
2
) ≤ II(𝐴𝑐

2
, 𝐴
1
) ≤ II(𝐴𝑐

1
, 𝐴
1
), we have

IE(𝐴
2
) ≤ IE(𝐴

1
).

When ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≥ 𝜇
𝐴
1

(𝑥) ≥ 1/2, the proof is
similar.
(EP4) It is obvious that IE(𝐴) = IE(𝐴𝑐).

(3) It can be easily concluded byTheorems 15 and 17.
For example, if

II (𝐴, 𝐵) = [
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
)

)

1/𝑝

] (𝑝 ≥ 1) ,

(94)

then

IS
13 (𝐴, 𝐵) = II (𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = [

1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

] (𝑝 ≥ 1)

(95)

is an interval similarity measure. And

IE
15 (𝐴, 𝐵) = II (𝐴 ∪ 𝐴

𝑐
, 𝐴 ∩ 𝐴

𝑐
) = [

1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
)

𝑝

,
1

𝑛

⋅

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
)
)

1/𝑝

] (𝑝 ≥ 1)

(96)

is an interval entropy. And

ID
13 (𝐴, 𝐵) = II𝑐 (𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = [1

−
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

1/𝑝

, 1

−
1

𝑛

𝑛

∑

𝑖=1

(
𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝐵
(𝑥
𝑖
)

𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝐵
(𝑥
𝑖
)
)

𝑝

] (𝑝 ≥ 1)

(97)

is an interval distance measure.
Above all, it can be concluded that, among interval

entropy, interval similarity measure, interval distance mea-
sure and interval inclusion measure, any two can be trans-
formed into each other.
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5. The Application to Fuzzy Multiple Attribute
Decision Making

Given 𝑚 alternatives and 𝑛 criteria, a typical FMADM
problem can be expressed in matrix format as

𝑋 =

𝐶
1
⋅ ⋅ ⋅ 𝐶

𝑛

𝐴
1

.

.

.

𝐴
𝑚

[
[
[
[

[

𝑥
11

⋅ ⋅ ⋅ 𝑥
1𝑛

.

.

.
.
.
.

.

.

.

𝑥
𝑚1

⋅ ⋅ ⋅ 𝑥
𝑚𝑛

]
]
]
]

]

, (98)

where 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
are the alternatives to be chosen,

𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
denote the evaluation criteria, 𝑥

𝑖𝑗
represents

the value of alternative 𝐴
𝑖
with respect to criterion 𝐶

𝑗

evaluated, and the set 𝑊 = {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
} is the weight of

criterion [4–6, 8, 9, 11, 12].Then the alternatives can be ranked
based on the given information [36–38]. In this section, the
steps of the proposed method are described with an example.
How to determine the weights of all alternatives is described
in Section 5.1. And the method to compute the evaluation
values of all alternatives with respect to criteria is listed in
Section 5.2. The method to rank the order of all alternatives
named as possibility-based comparison relation is expressed
in Section 5.3. Finally, a FMADM problem with thirty-one
alternatives and twenty-three criteria is used to explain the
process of the decision making.

5.1. Internal Entropy Weight. It is well known that entropy
is a method in obtaining the weights for a MADM prob-
lem especially when obtaining suitable weights based on
the preferences and decision making experiments are not
possible [22]. The original procedure of entropy weight can
be expressed in a series of steps [39]:

(1) Compute entropy 𝐸
𝑗
.

(2) Set 𝜔
𝑗
= (1 − 𝐸

𝑗
)/𝐸, 𝐸 = ∑

𝑛

𝑠=1
(1 − 𝐸

𝑠
), 𝑗 = 1, 2, . . . , 𝑛,

as the weight of attribute 𝑗.

Now suppose that the weight of the elements of decision
matrix is difficult and uncertain, as a result, their values are
considered as intervals. Entropy can be extended to interval
entropy. The steps are as follows:

(I1) Compute interval entropy IE
𝑖𝑗
= [IE𝐿
𝑖𝑗
, IE𝑅
𝑖𝑗
], 𝑖 = 1, 2,

. . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛.

(I2) Set 𝜔
𝑖𝑗
= [𝜔
𝐿

𝑖𝑗
, 𝜔
𝑅

𝑖𝑗
] = [1 − IE𝑅

𝑖𝑗
, 1 − IE𝐿

𝑖𝑗
], 𝑖 = 1, 2, . . . , 𝑚,

𝑗 = 1, 2, . . . , 𝑛, as the weight of attribute 𝑗.

For instance, if 𝐴 = [0.5, 0.6, 0.7, 0.8], by (7), then inter-
val entropy and interval entropy weight can be shown as
[0.5, 0.6667] and [0.3333, 0.5], respectively.

5.2. The Evaluation Values Obtained by the Weight Average.
To the given 𝛼 value, the 𝛼-cut sets of the weight 𝜔

𝑗
and the

alternatives 𝑥
𝑖𝑗
can be denoted by (𝜔

𝑗
)
𝛼
= [(𝜔
𝑗
)
𝐿

𝛼
, (𝜔
𝑗
)
𝑅

𝛼
] and

(𝑥
𝑖𝑗
)
𝛼
= [(𝑥
𝑖𝑗
)
𝐿

𝛼
, (𝑥
𝑖𝑗
)
𝑅

𝛼
], respectively. So the evaluation values

of the given 𝛼 value can be denoted by the following:

(𝐹
𝑖
)
𝛼
= [(𝐹
𝑖
)
𝐿

𝛼
, (𝐹
𝑖
)
𝑅

𝛼
]

= [

[

𝑛

∑

𝑗=1

(𝜔
𝑗
)
𝐿

𝛼
(𝑥
𝑖𝑗
)
𝐿

𝛼
,

𝑛

∑

𝑗=1

(𝜔
𝑗
)
𝑅

𝛼
(𝑥
𝑖𝑗
)
𝑅

𝛼

]

]

.

(99)

Remark 19 (see [40]). Here, two reasons are responded to the
unnormalization. Firstly, the evaluation values after normal-
ization are not always in [0, 1]. Secondly, the normalization
can only effect the proportion changes of the evaluation
values, without any changes to the actual ranking results.

For instance, if 𝐴 = [0.5, 0.6, 0.7, 0.8], then interval
entropy weight can be shown as [0.3333, 0.5] and the 𝛼-cut
sets can be denoted by

𝐴
𝛼

=

{

{

{

[0.6𝜆 + 0.5 (1 − 𝜆) , 0.7𝜆 + 0.8 (1 − 𝜆)] 𝜆 ∈ (0, 1)

[0.6, 0.7] 𝜆 = 1.

(100)

So

𝐹
𝛼
= [0.05556𝛼 + 0.2778, 0.53336 − 0.06667𝛼] . (101)

5.3. The Possibility-Based Method for Ranking Fuzzy Numbers
[41]. In this section, possibility-based comparison relation
is presented. Since the 𝛼-cut sets of fuzzy numbers can be
expressed as the interval value sets, possibility-based compar-
ison relation on interval values is proposed in Section 5.3.1,
and then the comparison relation on fuzzy numbers is
presented in Section 5.3.2.

5.3.1. Interval Values. Assuming 𝑋 = [𝑥
−
, 𝑥
+
], 𝑌 = [𝑦

−
, 𝑦
+
]

are the interval values, 𝑋
𝜆
, 𝑌
𝜆
(𝜆 ∈ 𝑅) can be constructed as

follows:

𝑋
𝜆
=

{{{{

{{{{

{

1 𝑥
−
≥ 𝜆

1

2
𝑥
−
< 𝜆 ≤ 𝑥

+

0 𝑥
+
< 𝜆,

𝑌
𝛼
=

{{{{

{{{{

{

1 𝑦
−
≥ 𝜆

1

2
𝑦
−
< 𝜆 ≤ 𝑦

+

0 𝑦
+
< 𝜆.

(102)

Set

𝐺 (𝜆) =

{

{

{

1 𝑋
𝜆
> 𝑌
𝜆

0 𝑋
𝜆
≤ 𝑌
𝜆
.

(103)

𝑃(𝑋 ≻ 𝑌) is used to represent the degree of interval values
“𝑋 ≻ 𝑌” which is named as possibility-based comparison
relation on interval values:

𝑃 (𝑋 ≻ 𝑌) =
1

𝑥+ ∨ 𝑦+ − 𝑥− ∧ 𝑦−
∫

𝑥
+
∨𝑦
+

𝑥
−
∧𝑦
−

𝐺 (𝜆) 𝑑𝜆. (104)
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Table 1: The ranking results.

𝐴 = [0, 0.1, 0.5, 1] 𝐵 = [0.3, 0.5, 0.8, 0.9] Ranking order
Optimistic 0 0.065 𝐴 ≺ 𝐵

Neutral 0.5 0.4 𝐴 ≺ 𝐵

Pessimistic 0.4547 0.7723 𝐴 ≺ 𝐵

5.3.2. Fuzzy Numbers. If 𝐴 and 𝐵 are two fuzzy numbers,
then the possibility-based comparison relation between fuzzy
numbers can be denoted by 𝑃(𝐴 ≻ 𝐵) as follows:

𝑃 (𝐴 ≻ 𝐵) = ∫

1

0

𝑃 (𝐴
𝛼
≻ 𝐵
𝛼
) 𝑑𝛼. (105)

Let 𝑆 = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
} be a set which contains finite

fuzzy numbers to be ranked; we can select function 𝑇 as the
evaluation of comparisons [42]. Then the fuzzy numbers can
be ranked as the values of 𝑃(𝑆

𝑖
≻ 𝑇). Here, 𝑇 can be seen

as an attitude which comes from the decision maker. Usually,
the attitude of the decision maker can be classified into three
groups: neutral, optimistic, and pessimistic. The optimistic
attitude reflects the preferences of decision makers to the
maximal payoff, and it is often used as follows:

𝜇
𝐴opt

(𝑥) =

{

{

{

𝑥 − 𝑥min
𝑥max − 𝑥min

𝑥min ≤ 𝑥 ≤ 𝑥max

0 else.
(106)

The neutral attitude reflects the preferences of decision
makers for not only the payoff which could be obtained but
also the risk which could be faced, and it is often used as
follows:

𝜇
𝐴neu

(𝑥) =

{

{

{

1 𝑥min ≤ 𝑥 ≤ 𝑥max

0 else.
(107)

And the last attitude is the pessimistic one reflecting the
preferences of decision makers for not only the payoff which
could be gained but also the risk which could be faced. It is
often used as follows:

𝜇
𝐴pess

(𝑥) =

{

{

{

𝑥max − 𝑥

𝑥max − 𝑥min
𝑥min ≤ 𝑥 ≤ 𝑥max

0 else.
(108)

For example, the ranking results with respect to three
attitudes are shown in Table 1.

5.4. A Numerical Example. In this section, the steps of the
proposed method are described with an example. Suppose
that there is a FMADM problem with thirty-one alternatives
and twenty-three criteria. Data are presented in Tables 2-3
[43] which can be represented as seven linguistic variables to
evaluate degree of impact for railway reconstruction projects
and their corresponding trapezoid fuzzy numbers are listed
in Table 4. The decision making can be conducted as follows.

Step 1. Compute interval entropy weight of all alternatives
according to the corresponding the 𝛼-cut sets. Here, to

Table 2: The evaluation values of 𝐶
1
–𝐶
12
.

𝐶
1
𝐶
2
𝐶
3
𝐶
4
𝐶
5
𝐶
6
𝐶
7
𝐶
8
𝐶
9
𝐶
10

𝐶
11

𝐶
12

𝐴
1

𝐴
11

S S VS VS A A A U S A U A
𝐴
12

A AS AS AS VS A VS A VS S S VS
𝐴
13

VS VS VS VS S VS S S AS S VS VS
𝐴
14

VS VS VS A A S A A S U A VS

𝐴
2

𝐴
21

A S S S S A A VS A U S S
𝐴
22

A A S VS S U A S S U S S
𝐴
23

A A S S A U A VS A U S S
𝐴
24

S A S AS A A S S A A VS S

𝐴
3

𝐴
31

VS U AS AS VS S A AS A S S S
𝐴
32

A U VS S S S A VS A A S VS
𝐴
33

A A S VS VS A U VS A A A VS
𝐴
34

S A VS A VS A A AS S A S S

𝐴
4

𝐴
41

U VS VS AS VS S A AS A VS VS AS
𝐴
42

A VS A S S S S VS VS S A S
𝐴
43

A VS S VS S A A S VS S S S
𝐴
44

A S VS S VS S A S A A S S
𝐴
45

A VS AS AS VS S S AS A A A AS
𝐴
46

A S VS S VS S VS AS A A S VS

𝐴
5

𝐴
51

S U A VS S VS S AS VS S U AS
𝐴
52

VS A S S A A A S S A S AS
𝐴
53

VS A S U A A A A S A U S
𝐴
54

S S S A S S A VS AS S S VS

𝐴
6

𝐴
61

A S AS VS VS S S S S A A S
𝐴
62

A S VS S S S S S S A A S
𝐴
63

A VS VS S S A A A A A A S
𝐴
64

A VS VS A S S S VS A A A S
𝐴
65

A VS AS VS S S A AS A S S VS

𝐴
7

𝐴
71

A S AS VS S A S U A A A A
𝐴
72

A VS AS AS S A VS AS A S A S
𝐴
73

U A AS S VS U S S A A A VS
𝐴
74

U U AS S S A A S S S S VS

the trapezoid fuzzy number [𝑎, 𝑏, 𝑐, 𝑑], the interval entropy
IE
7
(𝐴) can be expressed as

IE
7 (𝐴) = [

𝑏 − 𝑎 − 𝑐 + 𝑑

2 (𝑑 − 𝑎)
,
2 (𝑏 − 𝑎 − 𝑐 + 𝑑)

3 (𝑑 − 𝑎)
] . (109)

Then the corresponding 𝛼-cut sets and interval entropy
weights are listed in Table 5.

Step 2. Compute the evaluation values.
The alternative values (𝐹

𝑖
)
𝛼
can be drawn by (99) and the

results are listed in Table 6.

Step 3. Ranking of all alternatives: the alternatives can be
ranked by (105).
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Table 3: The evaluation values of 𝐶
12
–𝐶
23
.

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

𝐴
1

𝐴
11

A S A S A S VS A A S S
𝐴
12

S AS A S U S VS AS S U VS
𝐴
13

VS VS S VS VS S VS S VS S S
𝐴
14

U A S A A A S A U A S

𝐴
2

𝐴
21

VS S U S VS VS A S A A S
𝐴
22

VS VS A S S S S AS U A VS
𝐴
23

S A U A S VS S S VU A S
𝐴
24

VS S U S S S S VS A A VS

𝐴
3

𝐴
31

VS VS A S A S A S U A VS
𝐴
32

VS S S S A S S S S A S
𝐴
33

S S A S A S S VS A U S
𝐴
34

VS VS A S A S A S VS A S

𝐴
4

𝐴
41

AS VS A A A S U VS VS U VS
𝐴
42

S VS S S A S A VS S S S
𝐴
43

VS S S S A S AS S AS A S
𝐴
44

S VS U A A S U S A U S
𝐴
45

AS AS U A A VS U VS S VU S
𝐴
46

VS VS S A A VS A S A VU VS

𝐴
5

𝐴
51

AS VS U S S S VU VS VU S S
𝐴
52

VS VS U S S S VU S AU S S
𝐴
53

A S U A S A U S VU S S
𝐴
54

VS VS A A S S VU VS VU S S

𝐴
6

𝐴
61

AS VS A S S VS A AS U A S
𝐴
62

VS S U A S S VU A S A S
𝐴
63

VS VS A S S S VU S AS A VS
𝐴
64

AS VS U A S S VU VS VU A VS
𝐴
65

AS AS U A S S S AS S S VS

𝐴
7

𝐴
71

AS S A A VS A S S VU VS S
𝐴
72

A VS U S VS A VU VS AU VS S
𝐴
73

A S A A VS A VU VS AU VS S
𝐴
74

VS S A A VS S U S U A S

Table 4: Semantic scale and corresponding trapezoidal fuzzy
numbers.

Linguistic variables Trapezoidal fuzzy numbers
AS (absolutely serious) [0.8, 0.9, 1, 1]

VS (very serious) [0.7, 0.8, 0.8, 0.9]

S (serious) [0.5, 0.6, 0.7, 0.8]

A (average) [0.4, 0.5, 0.5, 0.6]

U (unserious) [0.2, 0.3, 0.4, 0.5]

VU (very unserious) [0.1, 0.2, 0.2, 0.3]

AU (absolutely unserious) [0.0, 0.0, 0.1, 0.2]

Remark 20 (Lu’s method). Lu’s method is as follows:

(1) The linguistic variables are transferred into corre-
sponding trapezoid fuzzy numbers:

𝑥
𝑗
=
1

𝑚

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
. (110)

Table 5: The 𝛼-cut sets of the linguistic variables and the corre-
sponding interval entropy weights.

Linguistic
variables 𝛼-cut sets Weights

AS [0.9𝛼 + 0.8(1 − 𝛼), 1] [0.6667, 0.75]

VS [0.8𝛼 + 0.7(1 − 𝛼), 0.8𝛼 + 0.9(1 − 𝛼)] [0.3333, 0.5]

S [0.6𝛼 + 0.5(1 − 𝛼), 0.7𝛼 + 0.8(1 − 𝛼)] [0.5556, 0.6667]
A [0.5𝛼 + 0.4(1 − 𝛼), 0.5𝛼 + 0.6(1 − 𝛼)] [0.3333, 0.5]

U [0.3𝛼 + 0.2(1 − 𝛼), 0.4𝛼 + 0.5(1 − 𝛼)] [0.5556, 0.6667]
VU [0.2𝛼 + 0.1(1 − 𝛼), 0.2𝛼 + 0.3(1 − 𝛼)] [0.3333, 0.5]

AU [0, 0.1𝛼 + 0.2(1 − 𝛼)] [0.6667, 0.75]

(2) Defuzzify each aggregated trapezoid fuzzy number
into a crisp value:

𝑥
𝑗
=

∫
𝑥∈𝑈

𝑥𝜇
𝑥
𝑗
(𝑥) 𝑑𝑥

∫
𝑥∈𝑈

𝜇
𝑥
𝑗
(𝑥) 𝑑𝑥

. (111)
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Table 6: The evaluation values of all alternatives.

(𝐹
11
)
𝛼

[0.98889𝛼 + 4.4777, 29.28358 − 1.3167𝛼]

(𝐹
12
)
𝛼

[1.11113𝛼 + 6.48898, 11.51686 − 1.03336𝛼]

(𝐹
13
)
𝛼

[𝛼 + 6.06659, 11.40024 − 1.25003𝛼]

(𝐹
41
)
𝛼

[0.94443𝛼 + 4.12212, 8.76685 − 1.28336𝛼]

(𝐹
21
)
𝛼

[1.03335𝛼 + 4.86672, 9.9003 − 1.35004𝛼]

(𝐹
22
)
𝛼

[1.08892𝛼 + 5.24456, 10.38365 − 1.31671𝛼]

(𝐹
23
)
𝛼

[1.03335𝛼 + 4.40007, 9.25029 − 1.35004𝛼]

(𝐹
24
)
𝛼

[1.04446𝛼 + 5.28896, 10.31695 − 1.28337𝛼]

(𝐹
31
)
𝛼

[1.06668𝛼 + 5.73339, 10.70022 − 1.15003𝛼]

(𝐹
32
)
𝛼

[1.05558𝛼 + 5.17788, 10.33367 − 1.36671𝛼]

(𝐹
33
)
𝛼

[0.96666𝛼 + 4.53327, 9.35022 − 1.30003𝛼]

(𝐹
34
)
𝛼

[0.97777𝛼 + 5.12219, 9.96688 − 1.23336𝛼]

(𝐹
41
)
𝛼

[1.0111𝛼 + 5.78879, 10.61677 − 1.03335𝛼]

(𝐹
42
)
𝛼

[1.05558𝛼 + 5.44455, 10.68368 − 1.36671𝛼]

(𝐹
43
)
𝛼

[1.10003𝛼 + 6.0016, 11.20032 − 1.25004𝛼]

(𝐹
44
)
𝛼

[1.05558𝛼 + 4.74453, 9.78365 − 1.36671𝛼]

(𝐹
45
)
𝛼

[1.10001𝛼 + 6.30009, 11.05014 − 0.95002𝛼]

(𝐹
46
)
𝛼

[0.93331𝛼 + 5.03321, 9.80016 − 1.20002𝛼]

(𝐹
51
)
𝛼

[1.13337𝛼 + 5.80017, 10.90029 − 1.20004𝛼]

(𝐹
52
)
𝛼

[1.03336𝛼 + 5.10014, 10.10031 − 1.32504𝛼]

(𝐹
53
)
𝛼

[1.03335𝛼 + 4.1334, 8.90028 − 1.35004𝛼]

(𝐹
54
)
𝛼

[1.04446𝛼 + 5.35565, 10.36696 − 1.28337𝛼]

(𝐹
61
)
𝛼

[1.08891𝛼 + 5.94456, 10.98359 − 1.1667𝛼]

(𝐹
62
)
𝛼

[1.07781𝛼 + 5.02239, 10.11703 − 1.38338𝛼]

(𝐹
63
)
𝛼

[0.95554𝛼 + 4.87772, 9.58352 − 1.21669𝛼]

(𝐹
64
)
𝛼

[0.95554𝛼 + 4.71104, 9.38351 − 1.21669𝛼]

(𝐹
65
)
𝛼

[1.15559𝛼 + 6.74464, 11.88359 − 1.0667𝛼]

(𝐹
71
)
𝛼

[1.01111𝛼 + 5.05558, 9.76687 − 1.18336𝛼]

(𝐹
72
)
𝛼

[0.96666𝛼 + 5.33331, 10.05015 − 1.12502𝛼]

(𝐹
73
)
𝛼

[0.92221𝛼 + 4.41104, 9.0335 − 1.24169𝛼]

(𝐹
74
)
𝛼

[1.11115𝛼 + 5.12237, 10.267 − 1.33338𝛼]

(3) Normalize the degree of impact of risk factors for each
risk aspect level:

𝑅
𝑗
=

𝑥
𝑗

∑
𝑛

𝑗=1
𝑥
𝑗

. (112)

The results of local ranking and global ranking under
different attitudes are listed in Tables 7 and 8, respectively.
And there are some different results with Lu’s method. The
values of all linguistic variables are determined by interval
entropy weight. Here, the values are the most in 𝐴𝑆 and 𝐴𝑈,
the following are 𝑆 and 𝑈, and then the least are 𝑉𝑆, 𝐴, and
𝑉𝑈. Among all these linguistic variables, 𝑈, 𝑉𝑈, and 𝐴𝑈

are inclined to the optimistic attitude, and 𝑆, 𝑉𝑆, and 𝐴𝑆 are
inclined to the opposite. And the numbers of all linguistic
variables are listed in Table 9. For example, to the second
category, the numbers of 𝑈 and 𝐴 in 𝐹

21
and 𝐹

23
are 2 and

3, respectively. So, for the optimistic attitude, the decision
maker would prefer 𝐹

23
rather than 𝐹

21
. The explanations to

other cases are similar.

6. Conclusions

It is well known that entropy is a famousmethod in obtaining
the weights for a MADM problem especially when obtaining
suitable weights based on the preferences and decision mak-
ing experiments are not possible. And most of the literatures
pertaining to MADM analysis have been published using
entropy weights. Among all these literatures, the result of
entropy weight can be expressed as the certain number. But,
in practice, because of uncertainty of people’s cognition,
when the weight of the alternatives cannot be measured
precisely and be expressed as some uncertain types of data,
how to use entropy to represent it is worthy of discussion.
In this paper, the concept of interval entropy is proposed
and the relationships among other conceptions such as
interval entropy, interval similaritymeasure, interval distance
measure, and interval inclusion measure are investigated in
detail. And then, a FMADMmodel based on interval entropy
is set up. In this model, interval entropy is used as the weight,
by which the evaluation values can be obtained. And all
alternatives with respect to each criterion can be ranked using
themethod based on the possibility degree.The achievements
in the presented work will provide a newmodel for FMADM
based on interval entropy weight. Because of the relationship
between the interval entropy, interval similarity measure,
interval distance measure, and inclusion measure, in the
future, other types of uncertain weights will be researched in
detail.

Appendices

A. Entropy of Fuzzy Sets

The entropy of fuzzy sets is a measure of fuzziness of the
fuzzy sets. In 1972, Luca and Termini [44] introduced the
axiom constructions of entropy of fuzzy sets: real function
𝐸: 𝐹(𝑋) → [0, 1] 𝐴 → 𝐸(𝐴) is called entropy on 𝐹(𝑋), if
𝐸 has the following properties:

(E1) If 𝐴 ∈ 𝑃(𝑋), then 𝐸(𝐴) = 0.
(E2) If ∀𝑥 ∈ 𝑋, 𝜇

𝐴
(𝑥) ≡ 1/2, then 𝐸(𝐴) = 1.

(E3) If ∀𝑥 ∈ 𝑋, 𝜇
𝐴
2

(𝑥) ≤ 𝜇
𝐴
1

(𝑥) ≤ 1/2 or 𝜇
𝐴
2

(𝑥) ≥

𝜇
𝐴
1

(𝑥) ≥ 1/2, then

𝐸 (𝐴
2
) ≤ 𝐸 (𝐴

1
) . (A.1)

(E4) 𝐸(𝐴) = 𝐸(𝐴
𝑐
).

For instance, if 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝐴 is a fuzzy set,

then

𝐸 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

(𝜇
𝐴
(𝑥
𝑖
) ∧ 𝜇
𝑐

𝐴
(𝑥
𝑖
))

(𝜇
𝐴
(𝑥
𝑖
) ∨ 𝜇
𝑐

𝐴
(𝑥
𝑖
))

(A.2)

is entropy of fuzzy set 𝐴.

B. Similarity Measure of the Fuzzy Sets

To indicate the degree of similarity of two fuzzy sets, the
concept of similarity measure was proposed in 1993 [45].
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Table 7: The local ranking order.

Opt. Local ranking
order Pess. Local ranking

order Neu. Local ranking
order

Lu local
ranking order

1

𝐹
11

0.001224 3 1.2839 3 0.1095 3 3
𝐹
12

0.06217 1 1.41998 2 0.3765 1 2
𝐹
13

0.04008 2 1.4397 1 0.3149 2 1
𝐹
41

0 4 1.25 4 0.0608 4 4

2

𝐹
21

0.0055 4 1.3316 3 0.1625 3 3
𝐹
22

0.01291 2 1.3638 1 0.2148 2 2
𝐹
23

0.0075 3 1.2790 4 0.1024 4 4
𝐹
24

0.01389 1 1.3574 2 0.2176 1 1

3

𝐹
31

0.0273 1 1.3759 1 0.2763 1 1
𝐹
32

0.0113 2 1.3644 2 0.2040 2 3
𝐹
33

0.001636 4 1.2914 4 0.1152 4 4
𝐹
34

0.0100 3 1.3312 3 0.1918 3 2

4

𝐹
41

0.0290 3 1.3673 4 0.2799 3 1
𝐹
42

0.0180 4 1.3909 2 0.2384 4 4
𝐹
43

0.03792 2 1.4155 1 0.3130 2 2
𝐹
44

0.0038 6 1.322 5 0.1482 6 6
𝐹
45

0.051896 1 1.38098 3 0.3515 1 3
𝐹
46

0.00821 5 1.3208 6 0.1775 5 5

5

𝐹
51

0.0300 1 1.3902 1 0.2892 1 1
𝐹
52

0.0096 3 1.3429 3 0.1926 3 3
𝐹
53

0.000001 4 1.2526 4 0.0680 4 4
𝐹
54

0.01558 2 1.3598 2 0.2262 2 2

6

𝐹
61

0.03546 2 1.3948 2 0.3050 2 2
𝐹
62

0.0082 3 1.344988 3 0.18542 3 5
𝐹
63

0.005616 4 1.3012 4 0.1589 4 3
𝐹
64

0.0034 5 1.2867 5 0.1374 5 4
𝐹
65

0.07828 1 1.4417 1 0.4123 1 1

7

𝐹
71

0.008728 3 1.3081 3 0.18540 3 2
𝐹
72

0.01482 1 1.3308 2 0.2183 2 1
𝐹
73

0.0008 4 1.2661 4 0.09663 4 4
𝐹
74

0.0102 2 1.3546 1 0.2005 1 3

Real function 𝑆: 𝐹(𝑋)×𝐹(𝑋) → [0, 1] is called similarity
measure on 𝐹(𝑋), if 𝑆 satisfies the following properties:

(S1) 𝑆(𝐴, 𝐴𝑐) = 0 if 𝐴 is a crisp set.
(S2) 𝑆(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵.
(S3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴).
(S4) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

𝑆 (𝐴, 𝐶) ≤ 𝑆 (𝐴, 𝐵) ,

𝑆 (𝐴, 𝐶) ≤ 𝑆 (𝐵, 𝐶) .

(B.1)

For instance, let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, 𝐴, 𝐵 ∈ 𝐹(𝑋); we set

𝑆 (𝐴, 𝐵) = 1 −max
𝑥
𝑖
∈𝑋

𝜇𝐴 (𝑥𝑖) − 𝜇𝐵 (𝑥𝑖)
 ; (B.2)

then 𝑆(𝐴, 𝐵) is a similarity measure over𝑋.

C. Distance Measure of the Fuzzy Sets

To indicate the degree of distance of two fuzzy sets, the
concept of distance measure was proposed in 1992 [46].

Real function𝐷: 𝐹(𝑋)×𝐹(𝑋) → [0, 1] is called distance
measure on 𝐹(𝑋), if𝐷 satisfies the following properties:

(D1) 𝐷(𝐴,𝐴𝑐) = 1 if 𝐴 is a crisp set.

(D2) 𝐷(𝐴,𝐴) = 0.

(D3) 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴).

(D4) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

𝐷 (𝐴, 𝐵) ≤ 𝐷 (𝐴, 𝐶) ,

𝐷 (𝐵, 𝐶) ≤ 𝐷 (𝐴, 𝐶) .

(C.1)
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Table 8: The global ranking order of all alternatives.

Alternative Opt. Pess. Neu. Lu ranking
order

𝐹
11

27 27 27 27
𝐹
12

2 3 2 3
𝐹
13

4 2 4 1
𝐹
41

31 31 31 29
𝐹
21

23 18 22 19
𝐹
22

14 12 14 17
𝐹
23

29 28 28 30
𝐹
24

13 14 13 13
𝐹
31

9 9 9 8
𝐹
32

15 11 15 16
𝐹
33

26 25 26 22
𝐹
34

17 19 18 11
𝐹
41

8 10 8 4
𝐹
42

10 6 10 9
𝐹
43

5 4 5 5
𝐹
44

24 21 24 26
𝐹
45

3 8 3 6
𝐹
46

20 22 21 10
𝐹
51

7 7 7 12
𝐹
52

30 17 17 24
𝐹
53

18 30 30 31
𝐹
54

11 13 11 14
𝐹
61

6 5 6 7
𝐹
62

21 16 19 25
𝐹
63

22 24 23 18
𝐹
64

25 26 25 20
𝐹
65

1 1 1 2
𝐹
71

19 23 20 21
𝐹
72

12 20 12 15
𝐹
73

28 29 29 28
𝐹
74

16 15 16 23

For instance, when 𝜇
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) can be integrated over

the considered interval [𝑎, 𝑏], we set

𝐷 (𝐴, 𝐵) =
1

𝑏 − 𝑎
∫

𝑎

𝑏

𝜇𝐴 (𝑥) − 𝜇𝐵 (𝑥)


𝜇𝐴 (𝑥) + 𝜇𝐵 (𝑥)


𝑑𝑥; (C.2)

then𝐷(𝐴, 𝐵) is a distance measure over𝑋.

D. Inclusion Measure of the Fuzzy Sets

Inclusion measure of fuzzy sets indicates the degree to which
a fuzzy set is contained in another fuzzy set. In 1993, Sinha
and Dougherty [47] proposed the concept as follows.

Real function 𝐼: 𝐹(𝑋)×𝐹(𝑋) → [0, 1] is called inclusion
measure on 𝐹(𝑋), if 𝐼 satisfies the following properties:

(I1) 𝐼(𝑋,Φ) = 0.
(I2) 𝐼(𝐴, 𝐵) = 1 ⇔ 𝐴 ⊆ 𝐵.

Table 9: The statistical numbers of linguistic variables.

Alternative AS AU S U VS A VU

1

𝐹
11

8 2 3 10
𝐹
12

5 6 2 6 4
𝐹
13

1 9 13
𝐹
41

5 3 4 11

2

𝐹
21

10 2 4 7
𝐹
22

1 10 3 4 5
𝐹
23

9 3 2 8 1
𝐹
24

1 10 1 4 7

3

𝐹
31

3 7 2 5 6
𝐹
32

12 1 4 6
𝐹
33

7 2 5 9
𝐹
34

1 8 5 9

4

𝐹
41

4 2 3 9 5
𝐹
42

13 5 5
𝐹
43

2 12 4 5
𝐹
44

10 3 3 7 1
𝐹
45

6 4 2 4 6 1
𝐹
46

1 6 8 7 1

5

𝐹
51

9 3 5 1 2
𝐹
52

1 1 11 1 3 5 1
𝐹
53

8 4 1 9 1
𝐹
54

1 11 5 4 2

6

𝐹
61

3 9 1 4 6
𝐹
62

13 1 2 6 1
𝐹
63

1 7 5 9 1
𝐹
64

1 6 1 6 7 2
𝐹
65

5 9 1 4 4

7

𝐹
71

2 7 1 3 9 1
𝐹
72

3 1 5 1 6 6 1
𝐹
73

1 1 5 2 5 8 1
𝐹
74

1 10 4 3 5

(I3) For all 𝐴, 𝐵, 𝐶 ∈ 𝐹(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then

𝐼 (𝐶, 𝐴) ≤ 𝐼 (𝐵, 𝐴) ,

𝐼 (𝐶, 𝐴) ≤ 𝐼 (𝐶, 𝐵) .

(D.1)

For instance, when 𝜇
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) can be integrated over

the considered interval [𝑎, 𝑏], we set

𝐼 (𝐴, 𝐵) =
1

𝑏 − 𝑎
∫

𝑎

𝑏

𝜇
𝐴 (𝑥) ∧ 𝜇𝐵 (𝑥)

𝜇
𝐴 (𝑥)

𝑑𝑥; (D.2)

then 𝐼(𝐴, 𝐵) is an inclusion measure over𝑋.
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