103,690 research outputs found

    First steps in synthetic guarded domain theory: step-indexing in the topos of trees

    Get PDF
    We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S. Moreover, we give an axiomatic categorical treatment of models of synthetic guarded domain theory and prove that, for any complete Heyting algebra A with a well-founded basis, the topos of sheaves over A forms a model of synthetic guarded domain theory, generalizing the results for S

    Towards a Convenient Category of Topological Domains

    Get PDF
    We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a flexible toolkit for modelling computational effects as free algebras for algebraic theories. Our convenient category is obtained as an application of recent work on the remarkable closure conditions of the category of quotients of countably-based topological spaces. Its convenience is a consequence of a connection with realizability models

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties

    Sampling and Recovery of Pulse Streams

    Full text link
    Compressive Sensing (CS) is a new technique for the efficient acquisition of signals, images, and other data that have a sparse representation in some basis, frame, or dictionary. By sparse we mean that the N-dimensional basis representation has just K<<N significant coefficients; in this case, the CS theory maintains that just M = K log N random linear signal measurements will both preserve all of the signal information and enable robust signal reconstruction in polynomial time. In this paper, we extend the CS theory to pulse stream data, which correspond to S-sparse signals/images that are convolved with an unknown F-sparse pulse shape. Ignoring their convolutional structure, a pulse stream signal is K=SF sparse. Such signals figure prominently in a number of applications, from neuroscience to astronomy. Our specific contributions are threefold. First, we propose a pulse stream signal model and show that it is equivalent to an infinite union of subspaces. Second, we derive a lower bound on the number of measurements M required to preserve the essential information present in pulse streams. The bound is linear in the total number of degrees of freedom S + F, which is significantly smaller than the naive bound based on the total signal sparsity K=SF. Third, we develop an efficient signal recovery algorithm that infers both the shape of the impulse response as well as the locations and amplitudes of the pulses. The algorithm alternatively estimates the pulse locations and the pulse shape in a manner reminiscent of classical deconvolution algorithms. Numerical experiments on synthetic and real data demonstrate the advantages of our approach over standard CS
    corecore