10 research outputs found

    A systematic approach for detecting faults in agent designs

    Get PDF
    This thesis proposes a mechanism, including automated tool support, for early-phase defect detection by comparing the plan structures of a belief-desire-intention (BDI) agent design against the following: (1) requirement models, specified in terms of scenarios and goals; and (2) agent communication models. The intuition of our approach is to extract sets of possible behaviour runs from the agent-behaviour models and to verify whether these runs conform to the specifications of the system-to-be. The proposed approach in this thesis is applicable at design time and does not require source code. Our approach is based on the Prometheus agent-design methodology but is applicable to other methodologies that support the same notions. We evaluate the proposed verification framework on designs, ranging from student projects to case studies of industry-level projects. Our evaluation demonstrates that even a simple specification developed by relatively experienced developers is prone to defects, and our approach is successful in uncovering most of these defects. In addition, we conduct a scalability analysis of our methods, and the outcomes reveal that our approach can scale when designs grow in size

    Swarm robotics: Cooperative navigation in unknown environments

    Get PDF
    Swarm Robotics is garnering attention in the robotics field due to its substantial benefits. It has been proven to outperform most other robotic approaches in many applications such as military, space exploration and disaster search and rescue missions. It is inspired by the behavior of swarms of social insects such as ants and bees. It consists of a number of robots with limited capabilities and restricted local sensing. When deployed, individual robots behave according to local sensing until the emergence of a global behavior where they, as a swarm, can accomplish missions individuals cannot. In this research, we propose a novel exploration and navigation method based on a combination of Probabilistic Finite Sate Machine (PFSM), Robotic Darwinian Particle Swarm Optimization (RDPSO) and Depth First Search (DFS). We use V-REP Simulator to test our approach. We are also implementing our own cost effective swarm robot platform, AntBOT, as a proof of concept for future experimentation. We prove that our proposed method will yield excellent navigation solution in optimal time when compared to methods using either PFSM only or RDPSO only. In fact, our method is proved to produce 40% more success rate along with an exploration speed of 1.4x other methods. After exploration, robots can navigate the environment forming a Mobile Ad-hoc Network (MANET) and using the graph of robots as network nodes

    Diagnostic distribué de systèmes respectant la confidentialité

    Get PDF
    Dans cette thèse, nous nous intéressons à diagnostiquer des systèmes intrinsèquement distribués (comme les systèmes pairs-à-pairs) où chaque pair n'a accès qu'à une sous partie de la description d'un système global. De plus, en raison d'une politique d'accès trop restrictive, il sera pourra qu'aucun pair ne puisse expliquer le comportement du système global. Dans ce contexte, le challenge du diagnostic distribué est le suivant: expliquer le comportement global d'un système distribué par un ensemble de pairs ayant chacun une vision limitée, tout comme l'aurait fait un unique pair diagnostiqueur ayant, lui, une vision globale du système.D'un point de vue théorique, nous montrons que tout nouveau système, logiquement équivalent au système pair-à-pairs initialement observé, garantit que tout diagnostic local d'un pair pourra être prolongé par un diagnostic global (dans ce cas, le nouveau système est dit correct pour le diagnostic distribué).Nous montrons aussi que si ce nouveau système est structuré (c-à-d: il contient un arbre couvrant pour lequel tous les pairs contenant une même variable forme un graphe connecté) alors il garantit que tout diagnostic global pourra être retrouvé à travers un ensemble de diagnostics locaux des pairs (dans ce cas le nouveau système est dit complet pour le diagnostic distribué).Dans un souci de représentation succincte et afin de respecter la politique de confidentialité du vocabulaire de chacun des pairs, nous présentons un nouvel algorithme Token Elimination (TE), qui décompose le système de pairs initial vers un système structuré.Nous montrons expérimentalement que TE produit des décompositions de meilleurs qualité (c-à-d: de plus petites largeurs arborescentes) que les méthodes envisagées dans un contexte distribué. À partir du système structuré construit par TE, nous transformons chaque description locale en une Forme Normale Disjonctive (FND) globalement cohérente.Nous montrons que ce dernier système garantit effectivement un diagnostic distribué correct et complet. En plus, nous exhibons un algorithme capable de vérifier efficacement que tout diagnostic local fait partie d'un diagnostic minimal global, faisant du système structuré de FNDs un système compilé pour le diagnostic distribué.In this thesis, we focus on diagnosing inherently distributed systems such as peer-to-peer, where each peer has access to only a sub-part of the description of an overall system.In addition, due to a too restrictive access control policy, it can be possible that neither peer nor supervisor is able to explain the behaviour of the overall system.The goal of distributed diagnosis is to explain the behaviour of a distributed system by a set of peers (each having a limited local view) as a single diagnosis engine having a global view of the overall system.First, we show that any new system logically equivalent to the initially observed peer-to-peer setting ensures that all diagnosis of a peer may be extended to a global diagnosis (in this case the new system ensures correctness of the distributed diagnosis).Moreover, we prove that if the new system is structured (i.e.it contains a spanning tree for which all peers containing the same variable form a connected graph) then it ensures that any global diagnosis can be found through a set of local diagnoses (in this case the new system ensures the completeness of the distributed diagnoses).For a succinct representation and in order to comply with the privacy policy of the vocabulary of each peer, we present a new algorithm Token Elimination (TE), which decomposes the original peer system to a structured one.We experimentally show that TE produces better quality decompositions (i.e. smaller tree widths) than proposed methods in a distributed context.From the structured system built by TE, we transform each local description into globally consistent DNF.We demonstrate that the latter system is correct and complete for the distributed diagnosis.Finally, we present an algorithm that can effectively check that any local diagnosis is part of a global minimal diagnosis, turning the structured system of DNFs into a compiled system for distributed diagnosis.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Multi-agent based simulation of self-governing knowledge commons

    No full text
    The potential of user-generated sensor data for participatory sensing has motivated the formation of organisations focused on the exploitation of collected information and associated knowledge. Given the power and value of both the raw data and the derived knowledge, we advocate an open approach to data and intellectual-property rights. By treating user-generated content as well as derived information and knowledge as a common-pool resource, we hypothesise that all participants can be compensated fairly for their input. To test this hypothesis, we undertake an extensive review of experimental, commercial and social participatory-sensing applications, from which we identify that a decentralised, community-oriented governance model is required to support this open approach. We show that the Institutional Analysis and Design framework as introduced by Elinor Ostrom, in conjunction with a framework for self-organising electronic institutions, can be used to give both an architectural and algorithmic base for the necessary governance model, in terms of operational and collective choice rules specified in computational logic. As a basis for understanding the effect of governance on these applications, we develop a testbed which joins our logical formulation of the knowledge commons with a generic model of the participatory-sensing problem. This requires a multi-agent platform for the simulation of autonomous and dynamic agents, and a method of executing the logical calculus in which our electronic institution is specified. To this end, firstly, we develop a general purpose, high performance platform for multi-agent based simulation, Presage2. Secondly, we propose a method for translating event-calculus axioms into rules compatible with business rule engines, and provide an implementation for JBoss Drools along with a suite of modules for electronic institutions. Through our simulations we show that, when building electronic institutions for managing participatory sensing as a knowledge commons, proper enfranchisement of agents (as outlined in Ostrom's work) is key to striking a balance between endurance, fairness and reduction of greedy behaviour. We conclude with a set of guidelines for engineering knowledge commons for the next generation of participatory-sensing applications.Open Acces

    Facilitating Ontology Reuse Using User-Based Ontology Evaluation

    Get PDF

    The AORTA Reasoning Framework - Adding Organizational Reasoning to Agents

    Get PDF

    Logics for AI and Law: Joint Proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, September 8-9 and 11-12, 2023, Hangzhou

    Get PDF
    This comprehensive volume features the proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, held in Hangzhou, China on September 8-9 and 11-12, 2023. The collection offers a diverse range of papers that explore the intersection of logic, artificial intelligence, and law. With contributions from some of the leading experts in the field, this volume provides insights into the latest research and developments in the applications of logic in these areas. It is an essential resource for researchers, practitioners, and students interested in the latest advancements in logic and its applications to artificial intelligence and law
    corecore