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Abstract

Multi-agent systems are increasingly being used in complex applications because of features such

as autonomy, proactivity, flexibility, robustness and social ability. However, these very features

also make verifying multi-agent systems a challenging task. Thus, techniques to detect and avoid

defects in such systems are essential. In particular, it is desirable to detect defects as early as

possible in the software development life-cycle (i.e., at the design phase). Nevertheless, little

research has been conducted in this context.

This thesis proposes a mechanism, including automated tool support, for early-phase defect

detection by comparing the plan structures of a belief-desire-intention (BDI) agent design against

the following: (1) requirement models, specified in terms of scenarios and goals; and (2) agent

communication models. The intuition of our approach is to extract sets of possible behaviour runs

from the agent-behaviour models and to verify whether these runs conform to the specifications

of the system-to-be. The proposed approach in this thesis is applicable at design time and does

not require source code. Our approach is based on the Prometheus agent-design methodology but

is applicable to other methodologies that support the same notions.

We evaluate the proposed verification framework on designs, ranging from student projects

to case studies of industry-level projects. Our evaluation demonstrates that even a simple speci-

fication developed by relatively experienced developers is prone to defects, and our approach is

successful in uncovering most of these defects. In addition, we conduct a scalability analysis of

our methods, and the outcomes reveal that our approach can scale when designs grow in size.





CHAPTER 1
Introduction

Software systems based on autonomous agents are used in a significant number of applications

in which the domain is highly dynamic [Munroe et al. 2006, Evertsz et al. 2014]. Agents in such

systems are often autonomous so that they are able to make the most suitable decisions based on

current environmental situations, without human intervention. Many models have been proposed

for use as blueprints for developing agent-based systems [Wooldridge and Jennings 1994]. A

popular and successful model that has been used in many application areas such as automated

manufacturing, robotics and flight management is the belief-desire-intention (BDI) model [Rao

and Georgeff 1995]. The BDI model has been used as the basis for many agent-implementation

platforms such as JACK, Jason and JadeX [Bordini et al. 2006a].

The development of BDI-based systems involves many design and implementation activi-

ties; therefore, numerous agent-oriented software engineering (AOSE) methodologies have been

proposed to act as frameworks to organise these activities (see [Winikoff and Padgham 2013] for

a recent survey). The development activities within these methodologies are performed by soft-

ware engineers (i.e., humans), which renders these activities error prone. These errors may result

in undetected faults in the final product and may consequently lead to significant failures in the

product’s behaviour.

In software engineering, it has long been established that the early detection and resolution

of software defects saves development costs, particularly for large projects [Boehm and Papaccio

1988, Boehm et al. 1981]. However, there has been little research into verifying agent designs
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against the specifications of the system-to-be (i.e., during the design phase and before the imple-

mentation phase). Existing work on verifying BDI-agent systems focuses on formal verification

techniques [Dastani et al. 2009], particularly using model checking ([Dennis et al. 2012]) and

theorem proving ([Sudeikat et al. 2006]) or run-time testing ([Padgham et al. 2013]). Although

these techniques are effective for ensuring the correctness of the agent system, they perform a late

check and require complete programmes to be written before any verification is performed.

In this thesis, we propose a framework grounded in the Prometheus agent-design method-

ology [Padgham and Winikoff 2005] that enables early (i.e., at the design phase) detection of

defects in agent-based designs. Prometheus is a well-established methodology that has not only

been adopted in academia, but is also used in the industry [Singh and Padgham 2015, Evertsz

et al. 2015]. We use Prometheus, both due to our greater familiarity with the methodology and the

accessibility to the source code of the methodology’s tool-support (PDT). Being able to access the

source code of PDT allowed us to integrate the tool-support of the proposed approach in this thesis

with the methodology’s tool. Although our framework is grounded in the Prometheus methodol-

ogy, the general concepts and approach we use are applicable to other methodologies that support

the BDI model of agency because they share similar notions [DeLoach et al. 2009].

The proposed verification framework checks that the agent-behaviour models conform to two

specification models of the intended system: (1) high-level requirements in the form of scenar-

ios and goal models, as specified in Prometheus; and (2) agent-communication protocols, which

define the set of messages that can be sent between agents within the system. It is worth noting

that our proposal exceeds the simple static consistency checks that tools such as the Prometheus

Design Tool (PDT) [Padgham et al. 2005a] perform because our framework also considers the

dynamic behaviour of the system.

We evaluate the proposed verification framework on designs, ranging from student projects

to case studies of industry-level projects. These designs were developed by relatively experienced

developers and based on the Prometheus methodology. The following industry-level projects are

included in the evaluation: (1) an oil production simulator and (2) an air-traffic management

system. Our results demonstrate that the approach is successful in revealing defects in agent

designs with respect to the specification models of the sought system. For example, in the air-

traffic management system, we revealed 15 defects (most of which were not detected via a manual
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check) in the agent designs concerning a large interaction protocol involving 11 participants.

Summary of Existing Work

In the context of AOSE, there has been little research conducted to verify the accuracy of BDI

designs at the design phase. Existing work in verifying agent designs focuses on ensuring the static

consistency between design entities across different design models ([DeLoach and Garcia-Ojeda

2010], [Cernuzzi and Zambonelli 2009] and [Padgham and Winikoff 2005]), or on validating the

requirement models of the sought system ([Lopez-Lorca et al. 2016], [Giorgini et al. 2005] and

[Fuxman et al. 2001]).

Lopez-Lorca et al. [Lopez-Lorca et al. 2016] propose an ontology-based approach to support

the validation of the requirement models of an agent system. The approach is semi-automated and

requires the following ontologies: (1) a domain ontology and (2) an agent-oriented meta-model.

The approach then combines these two ontologies to validate, through automated reasoning, the

requirement models of the agent-based system. Although this approach ensures that the require-

ment models of the sought system comply with the needs of the stakeholders of that system, it

does not verify the agent-behaviour models against these requirement models.

Considering five of the most commonly used AOSE methodologies—Prometheus, Tropos,

the Organisation-based Multi-agent Software Engineering (O-MaSE), INGENIAS and Gaia—

only three provide support for agent-design verification and to a limited extent. Although these

three AOSE methodologies partially support the verification of agent designs, they do not provide

any support for verifying agent-behaviour models against requirement models.

Tropos supports the verification of the requirement models of the sought system. It offers two

frameworks (each including tool support) for the following: (1) validating formal requirements

specification (‘T-Tool’ [Fuxman et al. 2001]) and (2) reasoning with formal goal models (‘GR-

Tool’ [Giorgini et al. 2005]). Although Tropos ensures the validity of the requirement models of

the system-to-be, it does not support the verification of the agent-behaviour models (i.e., agents’

low-level designs) against these requirement models.

The INGENIAS Development Kit (IDK) [Gómez-Sanz et al. 2008], which supports the IN-

GENIAS methodology, integrates a tool named ‘ACLAnalyser’ for analysing the interaction spec-

ifications between agents by executing the system and logging the run-time interactions [Botı́a
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et al. 2006]. The tool uses the JADE code-generation module and, hence, the agent templates will

not be generated if the models are lacking certain information. Although the IDK, through the

ACLAnalyser tool, provides feedback about the interactions specified in the design phase, it does

not provide any support for verifying agent-behaviour models against requirement models.

Prometheus, O-MaSE and Gaia methodologies provide agent engineers with a graphical en-

vironment for developing agent-based systems (PDT, [Padgham et al. 2008]; AgentTool III, [De-

Loach and Garcia-Ojeda 2010]; Gaia4E, [Cernuzzi and Zambonelli 2009]). These tools do not

offer any framework for verifying and validating the agent-behaviour models against the specifi-

cations of the system-to-be, although O-MaSE and earlier versions of PDT supported limited static

consistency checking of the design. For example, PDT generates warnings such as events that are

not handled and messages that should be sent/received according to a protocol. While these checks

are based solely on static relationships between the design entities, our work assesses the dynamic

behaviour of designs.

Research Questions

In this research, we develop a framework with tool support to verify agent-based design artefacts

before the implementation phase. The novelty of this research is the ability to verify a variety

of agent-based systems at the design phase before implementation. To achieve this goal, the

following questions must be answered:

1. What design artefacts should be included in the verification process?

The answer to this question identifies the specification models of the system under investi-

gation and the design units to be considered in the proposed approach.

2. What is a suitable executable model for an agent-based system’s specification models?

In Prometheus, system-specification models are semi-formal. Thus, there is a need to trans-

form these specification models to executable models with precise semantics so they can be

used in the verification process. This question investigates different formalisms with the aim

of using them as executable representations for the system specification models. Given that

these models encompass both the requirements and the agent communications, this question

has two sub-questions:
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(a) What is a suitable executable model for representing requirement models?

(b) What is a suitable executable model for representing agent communications?

3. What is a suitable executable model for representing agent-behaviour models?

Like the specification models in the previous question, agent-behaviour models in Prometheus

are semi-formal; therefore, there is a need to transform these agent-behaviour models to ex-

ecutable models so they can be used in the verification process. In Prometheus, a realisation

of a given specification model (scenario or protocol) is often spread across multiple agents.

The steps of a scenario are associated with roles, which can be assigned to multiple agents.

Similarly, agent communications often involve multiple agents and, hence, the realisations

of such communications are often spread across the agents that are involved in these com-

munications. In this question, we investigate how to merge all the relevant design entities

of a given specification model into one coherent structure. We then investigate how the

coherent structure can be translated into an executable model.

4. How can an automated checking framework be developed to detect design defects effec-

tively?

We address this question through the following two sub-questions:

(a) How can all possible behavioural runs be extracted out of the agent-behaviour models?

(b) How can the behavioural runs be checked against the specification models?

5. How can the proposed verification framework be evaluated?

The aim of our evaluation is to ensure the effectiveness of the framework proposed by

answering the following sub-questions:

(a) Which design defects can the framework detect?

(b) What is the level of false positives generated by the proposed approach?

(c) How scalable is the proposed framework?

To the best of our knowledge, there are no existing benchmarks that can be used for evaluating

the proposed approach. Thus, we conduct an empirical evaluation by applying this proposed
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approach to complete agent systems. As part of our evaluation, we have considered 15 designs.

Some of these designs were developed as final projects in the agent-oriented programming and

design course, at RMIT University, whereas others were developed by the agent group at the

university1. In addition, we have included two industry-level case studies in the evaluation: (1)

an oil production simulator and (2) an air-traffic management system. We have also conducted a

scalability analysis on 24 synthesised plan graphs to measure the scalability of our approach.

We have used quantitative and qualitative measures in our evaluation, quantifying the number

of errors detected and categorising the errors (true and false positives) for qualitative measures.

Summary of Contributions

The research contributions of this thesis are summarised below.

1. Verification Framework: The major research contribution for this thesis is the creation of a

verification framework designed to ensure the correctness of the agent-behaviour models (the

events and their associated plans) with respect to the specification (i.e., requirement models

or agent-communication protocols) of the sought system. The framework is applicable at the

design phase and before any implementation is performed. We believe our proposal will have

a positive effect on the development costs of agent-based systems. More importantly, our ap-

proach contributes to the widespread use of agent technology because it increases the reliability

of such systems.

2. Automated approach for generating activity diagrams from scenarios and the goal model: A

further contribution of this research project is the addition of activity diagrams to complement

the process of specifying requirements in Prometheus. Our evaluation demonstrated that in-

cluding activity diagrams leads to a better understanding of the requirement models of the

sought system. This is achieved by providing a more holistic view of what the system is de-

signed to achieve and how it should behave. Activity diagrams also provide assistance when

performing maintenance on the sought system. Participants in our experiment unanimously

agreed that the inclusion of the activity diagram improved their abilities to understand the re-

1The agent group is part of the intelligent systems area within the School of Science (Computer Science) at RMIT
university.
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quirement models. Therefore, we recommend that the Prometheus methodology—and, indeed,

the other AOSE methodologies as well—include activity diagrams as an integrated feature.

3. Tool-Support: Through this research, we developed an Eclipse plug-in that integrates with

PDT to automate our verification methods. Although the tool is grounded in PDT, we believe

that some of the code packages can be reused as part of the supported tools of other AOSE

methodologies.

Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides the necessary back-

ground for understanding the various elements of this thesis, including the basics of the agent

systems and the AOSE discipline. Further, this chapter presents the state-of-the-art of AOSE dis-

cipline and assuring the correctness of agent designs. Chapter 3 describes the conceptual model

of the proposed verification framework, explaining the design units considered. This chapter also

describes and documents the concepts of and assumptions about our verification framework. The

chapter concludes by providing an overview of the technicalities of the verification framework.

Chapter 4 explains the transformation of requirements in Prometheus into unified-modelling lan-

guage (UML) activity diagrams. The current representation of requirements in Prometheus has

some limitations. To overcome these limitations, we propose the use of the activity diagrams to

complement the process of specifying requirements in Prometheus. The chapter also includes

the user study that was performed as part of this research to evaluate our proposal. Chapter 5

presents the technical approach we used to transform the semi-formal models in Prometheus to

executable models. This transformation includes the specification and agent-behaviour models in

Prometheus. Chapter 6 explains the process of checking the correctness of the agent-behaviour

models against a given specification model in the sought system (i.e., requirements models or

agent-communication protocols). This chapter also discusses the tool support of the verification

framework. Chapter 7 presents the evaluation of the proposed verification framework and a discus-

sion of the approach created by this research. Chapter 8 concludes the thesis and details possible

extensions of this work.
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CHAPTER 2
Background and Related Work

In this thesis, we propose a suite of techniques, which can be used to detect defects in BDI systems

during the design phase—that is, prior to implementation. This chapter explains the necessary

background for understanding the various elements of this thesis. It also reviews relevant litera-

ture in the area of AOSE. Section 2.1 introduces some of the concepts and characteristics of agents

and Section 2.2 explains a popular agent architecture—the belief-desire-intention architecture—

that serves as a basis for agents in this thesis. In Section 2.3 we discuss the AOSE discipline,

which is intended to help software engineers to plan such systems, along with the process of

specifying requirements and agent interactions. Section 2.4 details the Prometheus methodology,

which forms the groundwork of our approach. Section 2.5 briefly introduces some other, com-

monly used methodologies to show that they share similar notions for specifying and designing

agent-based systems.

In the proposed approach, Petri nets are used as a formal representation of the system’s spec-

ification and to extract all possible behaviour runs from the agent-behaviour models. Additionally,

we propose using UML-activity diagrams as more structured representation of requirement mod-

els to complement the process of specifying requirements in the Prometheus methodology. Sec-

tion 2.6 gives an introduction to Petri nets and Section 2.7 introduces the UML-activity diagrams.

Section 2.8 introduces the concepts of software verification and validation as a step in de-

veloping agent-based systems. The final section (Section 2.9) reviews existing work in verifying

software systems, including agent-based systems, both automatically and manually.
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2.1 Agent Systems

In the context of this thesis, an agent system is goal-oriented computer system that acts on behalf

of the user to achieve the goals desired. The higher-level of modelling abstraction offered by this

paradigm helps system designers to manage complexity and, hence, to improve the construction

of complex systems [Jennings 2001]. These systems exhibit a set of characteristics that make this

paradigm suitable for building systems that operate in highly dynamic and unpredictable environ-

ments. The characteristics are as follows [Wooldridge and Jennings 1994]:

• Autonomy: Entities in the system (agents) behave independently and without any interven-

tion. They are responsible for taking their decisions based on their current state and their

environment.

• Social ability: In multi-agent systems, agents have the ability to interact to pursue their

desired goals. Such socialisation is modelled as communications between different agents

within the system. Thus, inter-agent communication plays a significant role in achieving

the systems’ goals. For example, in an agent-based auction system, the buyer agent needs

to communicate with the seller agent to complete the sale process.

• Reactiveness: Agents continuously perceive their environment and respond to any changes

in a timely manner.

• Pro-activeness: Agents are persistent in pursuing their goals irrespective of changes in the

environment. Note that a combination of pro-activeness and reactiveness is often a source

of conflict.

2.2 The BDI Architecture

An agent architecture is an abstract model of an agent-based system. Many architectures have

been proposed as blueprints for developing agent-based systems [Wooldridge and Jennings 1994].

This thesis focuses on a popular architecture, the belief-desire-intention (BDI) architecture. The

roots of this architecture are found in a philosophical model proposed by Bratman [Bratman 1987,

Bratman et al. 1988, Bratman 1999] and formalised by Rao and Georgeff [Rao and Georgeff 1991;
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Figure 2.1: Execution cycle in the belief-desire-intention architecture

1995]. This model supports the notion of agency by having each agent within the system uses its

beliefs, desires and intentions [Kinny et al. 1996].

Beliefs are what an agent believes about itself and its surrounding environment. The term

‘beliefs’ is used rather than ‘knowledge’ or ‘fact’, since the information an agent believes is not

necessarily always true. For example, consider a soccer player agent ‘A’, who wants to pass the

ball to player agent ‘B’. Agent ‘A’ in this case believes that it has the ball (beliefs about itself) and

believes that agent ‘B’ is beside it (beliefs about the environment). However, it is not necessarily

true that agent ‘A’ has the ball when it intends to pass the ball, or that agent ‘B’ will be beside it.

Desires are what an agent wants to achieve within the system [Rao and Georgeff 1992]. To

be achievable, the desires should be consistent and feasible. For example, a soccer player agent

cannot pursue its goals to pass a ball while believing that it does not have the ball.

Intentions are ways of achieving agents’ goals. For example, a soccer player agent, who

believes it has the ball, intends to pursue a goal to pass the ball to the nearest player. The agent
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needs to execute the proper steps that enable it to attain this goal. First, it may intend to explore

the field for locating the players next to it, and then it decides the nearest player according to its

beliefs. It will then adopt the intention to pass the ball.

A BDI-based system is situated in a dynamic environment and continually interacts with it

by handling all inputs (events) as well as producing outputs (actions) that may change the state

of the environment. The inputs can be received from the environment (external), or they can be

internal events within the system. The system has a library that contains a collection of plans to

serve as recipes for handling possible inputs to the system.

Figure 2.1 shows the overall architecture of a BDI-based system and its execution cycle. As

the figure depicts, the system perceives the inputs from the environment through sensors. These

inputs may change the beliefs of the agents in the system and, consequently, affect the selection

of the plan to handle the input from the intention stack. If a plan is selected, the agent will commit

to execute it to satisfy its trigger (i.e., the event that triggered the plan). The final result of the

execution of a plan could involve a series of actions affecting the environment and may produce

other inputs (events) to the system.

Many BDI-based implementation platforms have been proposed, including JACK [Winikoff

2005b], Jadex [Pokahr et al. 2005] and Jason [Bordini et al. 2007]. These platforms support the

BDI execution cycle explained by Rao and Georgeff in [Rao and Georgeff 1995].

Events and Plans

In most BDI-based platforms, intentions are realised by plans, while goals are captured by

events or triggers [Winikoff 2005b]. Events represent inputs to the system and they can be external

(perceptions of the environment) or internal. These events are initiators that stimulate agents

to respond to them accordingly by executing the appropriate plans. Plans act as recipes that

state the steps for addressing their associated events [Winikoff et al. 2001]. Even though the

implementation of plans is different from one platform to another, they share a common structure:

name, body, invocation condition (trigger) and precondition. The name of a plan is a unique string

that identifies the plan in the system. The body of a plan is the course of steps that enables the

agent to satisfy the event that triggered it. A plan may invoke other plans to realise other goals and
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Figure 2.2: Determination mechanism for plans in the bdi model

to achieve a successful execution.

The invocation condition of a plan is a condition that determines whether the plan is relevant

to a given event or not. However, each plan has a different precondition for determining the appli-

cability of the plan to its triggering event, considering the current state of the agent ([Wooldridge

2000], page 29).

Considering the soccer player agent, let us assume that the event is ‘Handle Ball’, and that

there are two plans: (1) ‘Pass Ball’ and (2) ‘Shoot Ball’. Additionally, let us assume that the

‘Handle Ball’ event is the trigger for both plans, whereas the precondition for each plan is differ-

ent. Regarding the ‘Pass Ball’ plan, the precondition is that the distance to the goal keeper should

be greater than 10 metres. The precondition of the ‘Shoot Ball’ plan is that the distance to the

goal keeper should be less than 10 metres. Given this, once the ‘Handle Ball’ event triggers both

plans, in the system, one plan will be executed (i.e., deemed applicable) based on the distance of

the player agent from the goal keeper.

Figure 2.2 demonstrates the BDI-agent execution cycle. Assuming that a multi-agent system

is developed according to the BDI model, at some point an event will occur in the system (either

from a percept or internally) and the system will handle it. In this case, the agent responsible for
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handling that event would react. As shown in Figure 2.2, the agent’s plan library will be filtered to

reveal relevant plans for the particular event. Based on the plan’s context (the precondition), the

relevant plans list will be filtered to reveal the applicable plans list. Then, the agent will select a

plan from the applicable plans list to execute.

2.3 Agent-oriented Software Engineering

AOSE is a discipline that helps software engineers in conceptualising, designing and implement-

ing agent-based software systems. The agent-oriented paradigm is of interest not only as a research

area but also in industry, since it is suitable for building complex systems ranging from critical

systems used in crisis management [Murakami et al. 2002] to systems such as information ex-

change [Munroe et al. 2006]. It is also suitable for systems that need to operate in a dynamic and

unpredictable environments [Wooldridge 1998, Pechoucek and Marı́k 2008].

The development of agent-based systems involves many design and implementation activi-

ties. Numerous AOSE methodologies have been proposed to provide the necessary frameworks

to organise these activities. MaSE [Deloach 2004], ROADMAP [Juan et al. 2002], Tropos [Bres-

ciani et al. 2004], INGENIAS [Pavón et al. 2005], Gaia [Wooldridge et al. 2000, Zambonelli et al.

2003], PASSI [Cossentino 2005] and Prometheus [Padgham and Winikoff 2005] are some of the

most commonly used AOSE methodologies for developing BDI-agent systems. In addition, there

are many frameworks that allow process engineers to create custom agent-oriented methodologies,

such as FAML [Beydoun et al. 2009] and O-MaSE [DeLoach and Garcia-Ojeda 2010].

Each AOSE methodology consists of a number of phases in which activities take place that

result in many design artefacts. Design artefacts document information about the development

process including requirement specifications and agent-behaviour models and, thus, they are con-

sidered the blueprints for the proposed system. While these methodologies differ in many ways,

they are common in their inclusion of the core activities, namely: analysis, design, implementation

and testing. The first two activities (analysis and design) are the focus of this thesis. In the analy-

sis activity, the specifications (i.e., the requirements) of the intended system are to be determined.

These requirements are designed in a concrete and well-structured way to provide a foundation

for the implementation activity. The following subsections investigate the specification of these
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requirements in the context of AOSE paradigms and the relevant design artefacts.

2.3.1 Requirement Engineering in AOSE

A fundamental aspect of any software engineering methodology is the specification of require-

ments and the related area of requirement engineering (RE). Requirement engineering is a process

that provides systematic techniques for ensuring the quality of the system requirements ([Som-

merville and Sawyer 1997], page 5). This process encompasses a number of activities including

requirements elicitation, analysis, specification, verification and management (i.e., managing any

change in the requirements). Many RE methodologies have been proposed. While these RE

methodologies are common in their inclusion of the basic activities, they may vary in terms of

techniques applied [Misra et al. 2005]. In the context of the agent-oriented paradigm, most of

these approaches are centred on the concept of goals for capturing agent-based requirements [van

Lamsweerde 2000].

In goal-oriented RE, the intended system is defined and analysed in terms of goals, which are

the objectives that the system must attain ([van Lamsweerde 2009], page 259). These goals are

classified into two categories according to type of concern [van Lamsweerde 2001]: first, the func-

tional requirements that concern the services provided by the system; second, the non-functional

requirements that specify the quality of these services, such as the reliability of the system. These

goals can be modelled through the following: (i) their types (e.g., functional and non-functional),

(ii) their attributes, such as the priorities of the goals; and (iii) their associations with other entities

in the model including the inter-goals links. The main purpose of these modelling techniques is

to facilitate reasoning about goals. In the context of the agent-oriented paradigm, most of the

methodologies use goals when specifying requirements [DeLoach et al. 2009].

2.3.2 Agent Communication

In multi-agent systems, communication plays a significant role, since it enables agents to exchange

information. Agents communicate through message passing and, hence, it is important to ensure

that they can understand each other. In open systems, there is a need to unify the language to

make sure that agents from different systems understand each other. Thus, agent-communication
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languages (ACLs) were proposed to standardise communication between agents by providing

formats and semantics for the messages exchanged. There are two main ACLs in the literature:

knowledge query and manipulation language (KQML) [Finin et al. 1994] and the Foundation for

Intelligent Physical Agents (FIPA) [Fipa 2002]. Messages in both languages consist of two parts

([Wooldridge 2009], page 106 ): (1) an outer part and (2) a content part. The outer part of a

message (known as an ‘envelope’) defines the format of the message being sent, stating its pre-

formative status (the class of the message) and its parameters. The content of the message being

sent needs to be represented in a specific language, such as the knowledge interchange format.

The communication between agents is modelled using interaction protocols. An interaction

protocol strictly defines the ways in which agents ought to communicate to accomplish their ob-

jectives in a joint setting. Protocols facilitate negotiation and argumentation between agents in

multi-agent systems [Aknine et al. 2004, Artikis et al. 2007]. They are useful in many scenarios,

such as the auctioning scenario, where the auctioneer agent needs to communicate with the bidder

agents to complete a sale process [David et al. 2002].

Many approaches are used to represent protocols including the finite state machine approach

used in the work of electronic institutions [Arcos et al. 2005], statecharts [Paurobally et al. 2003],

Petri nets [Cost et al. 2000] and standard UML [Odell et al. 2001b], as well as its extended version

to comply with agent standards (AUML) [Odell et al. 2001a]. The remainder of this section con-

centrates on the AUML notations, not only because popular AOSE methodologies have adopted

them, but also because they are employed by the Prometheus methodology, the AOSE methodol-

ogy used in this thesis.

Modelling interaction protocols with AUML

AUML is an extension of the standard UML used in the object-oriented paradigm [Odell et al.

2001b]. The process of creating interaction protocols involves generalising interaction diagrams

that show the flow of messages between agents in the system to encompass interaction protocols

using the AUML notations. Some of the most commonly used interaction diagrams in the mod-

elling of interaction protocols are AUML-sequence diagrams [Huget and Odell 2004]. AUML-

sequence diagrams, which are used to depict the interactions between agents visually, are the

same as the UML sequence diagrams that are used in the object-oriented paradigm. However,
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instead of having objects as the main entities of the diagram, agents—or agents roles—form the

main entities [Padgham et al. 2005a].

AUML-sequence diagram

An AUML-sequence diagram, also called a protocol diagram [Bergenti and Poggi 2000],

a dynamic AUML model [Odell et al. 2000] showing the flow of messages between agents in

an interaction protocol. Sequence diagrams not only demonstrate the communication between

agents but also restrict the order of their messages through a number of constructs [Huget and

Odell 2004]. Constructs are entities that control the sequence diagram’s execution flow. The

AUML-sequence diagram has eight different constructs, as follows [Winikoff 2005a]:

• Alternative construct [alt]: indicates that one of the multiple regions is executed based on

the region’s guard (the condition that must be true for the region to be executed).

• Option construct [opt]: indicates that communication may or may not occur based on the

construct’s guard.

• Loop construct [loop]: shows the repetition of a sequence of design entities (e.g., messages)

for a fixed number of iterations by indicating a number or drawing on a Boolean expression.

• Break Construct [break]: shows that the communication has been interrupted.

• Stop construct [stop]: indicates the end of the agent’s communication lifeline.

• Parallel construct [par]: allows the communication to be made in parallel.

• Reference [ref]: enables the designer to indicate another protocol within the modelled pro-

tocol by referring to the name of that protocol. Thus, when the execution flow comes to that

reference construct, the referenced protocol will be executed.

• Continues [goto/label]: is used to control the execution flow of a protocol through two

directives: goto and label. In other words, the designer can change the sequence flow to a

specific point within the protocol by stating the goto directive along with the label’s name,

indicating the point within the protocol.
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Directive Description Command Structure Example

start This directive indicates the start of the protocol and is
used to declare the protocol’s name. start‘Protocol’s Name’ start A-B

agent This directive is used to define an agent who is in-
volved in the protocol. agent ‘Alias Name’ ‘Actual Name’ agent A Buyer

actor This directive is used to define an actor who is exter-
nal to the system and involved in the protocol. actor ‘Alias Name’ ‘Actual Name’ actor A Web-

Server

box This directive is used to declare the body of a con-
struct (alt, loop, opt and par for alternative, loop ,
option and parallel constructs).

box ‘Construct’s Name’ box alt

next This directive indicates the end of a region and the
beginning of another region in a construct. next next

end This directive indicates the end of a construct’s body.
end ‘Construct’s Name’ end alt

message This directive is used to define a message to be sent to
another agent. message ‘Sender Agent’s Alias

Name’ ‘Receiver Agent’s Alias
Name’ ‘ The Message’

message A B M1

action This directive is used to define an action to be posted
to the environment that is represented by an actor. action ‘Sender Agent’s Alias

Name’ ‘Receiver Actor’s Alias
Name’ ‘ The Action’

action A B A1

percept This directive is used to define a percept that is re-
ceived from the environment to be handled by an
agent.

percept ‘Sender Actor’s Alias
Name’ ‘Receiver Agent Alias
Name’ ‘The Percept’

percept A B P1

guard This directive is used to define a condition for a mes-
sage. Consequently, the message will not be sent until
that condition is satisfied. The guard must be defined
before the intended message.

guard [ ‘The Condition’ ] guard [ x = 5 ]

finish This directive indicates the end of the protocol. The
textual protocol must end with this directive. finish finish

Table 2.1: AUML textual notation directives

AUML-sequence diagrams can be constructed in two ways, using either graphical or textual nota-

tions [Winikoff 2005a]. AUML textual notation is considered a convenient way to construct and

model interaction protocols. Because of the simplicity of the textual AUML syntax, AUML tex-

tual format is fast and easy to write and edit [Winikoff 2005a]. To textually construct an AUML

interaction protocol, the written AUML textual notations must be well structured according to the

following rules:

• Having each AUML textual command on a separate line is essential.

• All the commands must be well nested. In other words, where an alternative construct is

embedded in a loop construct, the body of the alternative construct must be ended before

closing the loop definition.
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Buyer Seller

Ask for a product price

Give the price

Ask for a discount

Accept the price

Refuse the price

Give the same price

Give discounted price

Buyer-Seller

loop

opt

alt

alt

(a) AUML-sequence diagram

start Buyer-Seller
agent A Buyer
agent B Seller
box loop

message A B Ask for a product price
message B A Give the price

box opt
message A B Ask for discount

box alt
message B A Give the same price

next
message B A Give the discount price

end alt
end opt
box alt

message A B Accept the price
next

message A B Refuse the price
end alt
end loop
finish

(b) AUML textual notation

Figure 2.3: Buyer-Seller interaction protocol

• All the AUML textual notation directives must be written in lowercase format (see Table

2.1).

• The protocol must begin with the keyword start to declare the protocol’s name.

• After declaring the protocol’s name, all the involved participants (i.e., agents and actors)

must be declared by using the agent/actor directive.

• The protocol must end with the finish keyword to indicate the end of the protocol.

AUML-sequence diagram example

This example assumes that a virtual shop is developed as a multi-agent system. The system

has two agents: a buyer and a seller. The agents need to communicate to achieve a successful sale.

Figure 2.3 shows the AUML-interaction protocol between the buyer agent and the seller agent

along with its textual notations. The following scenario illustrates the communication between

the buyer agent and the seller agent.

The buyer asks the seller for a product’s price, then the seller replies by giving the buyer

the price. Optionally, the buyer agent may ask for a discount. In the case where the buyer asks
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Figure 2.4: Phases of the Prometheus methodology

the seller for a discount, the seller agent may respond by offering either the same or a discounted

price. The buyer may then accept the price or refuse it. This process may be repeated.

2.4 The Prometheus Methodology

Prometheus is a well-established methodology that provides support for the complete agent-based

software development life-cycle [Padgham and Winikoff 2005]. It provides software designers

with a process associated with artefacts, resulting in a well-documented design. The methodology

consists of three phases: the system specification phase, the architectural design phase and the

detailed design phase. The output of each phase in Prometheus is delivered as an input into the

next phase (see Figure 2.4). The following briefly introduces the relevant parts of Prometheus to

the work in this thesis, using a transport ticketing smart-kiosk as a running example.

Transport-ticketing Smart Kiosk

Transport-ticketing smart kiosk is an agent-based system that implements many ticketing
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transactions including top up, refund, journey planning, account inquiries, lost cards and card

replacement. The system has four agents as follows:

• Ticketing agent: this agent is responsible for managing the ticketing transactions. This

agent is at the front end—in other words, interacting with customers by finalising their re-

quests. This agent is also responsible for updating the provider servers as to the transactions

that take place in the system.

• Payment manager: this agent is responsible for managing sale transactions such as pay-

ments and refunds.

• Scheduling agent: this agent is responsible for tracking live transportation data, such as

departure times, arrival times and changes and delays in the transportation system.

• GUI (graphical user interface): this agent is responsible for displaying messages from the

other three agents on the touch screen and all possible transactions for customers.

The system interacts with their clients through seven interfaces: the radio-frequency identification

(RFID) reader and writer, the transportation provider server, the touch screen, the card slot, the

printer, the money scanner and the banking server.

The customer should have a smart pass card (an RFID card). This card is then used as an input

into the system (through the RFID reader/writer port). Using this smart pass card, a customer can

interact with the system using a touch screen. The customer should be able to conduct the follow-

ing transactions: top up, lost-card, plan journey, make account inquiries, request refund, purchase

a new card and replace card. For the purpose of explaining the relevant parts of the methodology,

we will consider only one transaction out of the seven mentioned above. Specifically, we will

describe the lost card scenario.

- Lost card: the system should enable customers to process their lost card requests by either

issuing a new card or refunding the amount on the lost card. Customers should be allowed

to provide their subscription number and password using the touch screen. After validating

the customer’s credentials, the system should allow the customer to pick one option out of

the following two: (1) issuing a new card or (2) refunding the amount. The refund can be
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conducted as follows: (1) direct deposit into the linked bank account or (2) in cash. If the

customer chooses to have a new card issued, the system should be able to: (1) transfer the

account information onto the new card, (2) update the provider servers with the details of

the new card and (3) write the info to the card before releasing it to the customer (through

the card slot).

If the customer chooses to have the amount refunded, the system needs to execute an interac-

tion protocol with five participants: the ticketing agent, the payment manager, the GUI, the

banking server (actor) and the money scanner (actor). Initially, the payment manager should

receive a refund request from the ticketing agent before obtaining the current balance. The

payment manager should act according to the refund option chosen. If the deposit option

has been selected, the payment manager should (1) obtain the details of the customer’s bank

account that is linked to the card; (2) deposit the amount on the lost card into the bank ac-

count; (3) receive notification through the system once confirmation has been obtained from

the bank server. If the cash option has been selected, the payment manager should check the

cash availability first. In the case that sufficient cash is available, the money scanner will be

commanded to release the amount and then to confirm the delivery. If this does not occur,

the ticketing agent should be informed. At the end of this process, a notification will be sent

to both agents: the GUI and the ticketing agent. The ticketing agent will print a receipt and

the system will update the provider servers with the changes. If the amount on the lost card

is less than or equal to zero, the system will notify the customer and abort the transaction.

System specification phase

In the system specification phase, the requirements are taken as an input and the initial spec-

ification of the system is drawn, defining the goals to be pursued and the scenarios, which are the

basic runs that the system-to-be should capture. Additionally, the external entities (actors), system

inputs (percepts), and system outputs (actions) of the intended system are defined. The primary

outputs from this phase are a goal-overview diagram, a definition of the interface between the

system-to-be and its environment and a collection of scenarios (see Figure 2.4).

Revisiting the running example (lost card scenario), the system should interact with the en-

vironment through an interface that encompasses three actors: the RFID reader/writer, the touch
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Type Name
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7
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Goal
Percept

Goal
Action
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LostRequest
ExtractRequestInfo
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GetAccountInfo
RefundOldCard
UpdateServersWithLostRequest
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Issuer
InfoExtractor
Issuer

Issuer
Issuer
Seller
Updater

Issuer

9 Action UpdateAccountData Updater

Figure 2.5: Lost card (refund option) scenario description

AND
ManageKisokTransactions

PlanJourneyReplaceDamagedCard LostCard
AND

RefundInCash

DipostMoneyIntoTheLinkedAccount

ExtractRequestInfo
AND

ObtainLinkedBankAccountNumber

ObtainAccountCurrentNumber

TopupAccountInquires

VerifyCredentials GetAccountInfo

IssueNewCard
OR

RefundOldCard

ObtainRequestPref

FulfilLostCardRequest
OR

ObtainRequestNecessaryInfo
AND

GetSubscriptionInfo
AND

UpdateServersWithLostRequest

Figure 2.6: Goal overview diagram for the transport-ticketing smart kiosk

screen and the banking server; percepts: LostRequest and AccountInfo; and should interact by

posting the following actions: UpdateAccountInfo and EnteredCredentials.

In the Prometheus methodology, scenarios are a sequence of steps. A step in a scenario can

be one of the following types: an action (i.e., something the agent does), a percept (i.e., an input

from the environment), a goal to realise or a sub-scenario. Each step is associated with a number

of roles. Revisiting our running example, the lost card request transaction can be fulfilled either

through refunding the card or issuing the customer with a new card. Figure 2.5 shows a particular

run (i.e., scenario) that the system-to-be should implement; namely, the lost card request scenario.

This scenario enacts the refund option without the issue of a new card. Note that the aim of the

scenario is to capture a sample trace through the system’s behaviour and it therefore does not

specify a complete set of execution traces. However, as we shall see in Chapter 4, the information

in scenarios and goal-overview diagrams can be used to construct constraints that must be met by
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InformEndOfRefundTransaction

EndOfRefundTransaction

Figure 2.7: Refund interaction protocol

the agents’ designs.

Goals are commonly modelled using a goal diagram that shows the relationship between

goals, including how goals are decomposed into sub-goals. There are three types of goal decompo-

sitions (shown in Figure 2.6): disjunctive, undirected conjunctive or directed conjunctive. The dis-

junctive decomposition (denoted by OR) implies that a parent goal is realised if any of its children

are realised. The undirected conjunctive decomposition (denoted by AND) means that a parent

goal is realised if all its children are realised in some unspecified order. The directed conjunctive

decomposition (denoted by AND with dashed arrows between the children) implies that a parent

goal is realised if all its children are realised in the specified order. The dashed arrows between

the children indicate the ordering constraints (e.g., VerifyCredentials before GetAccountInfo). To
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distinguish between the two AND decompositions, we refer to the directed conjunctive as SEQ in

this thesis. Figure 2.6 shows a goal-overview diagram1 for the transport-ticketing smart kiosk that

outlines the goals and sub-goals required to achieve a lost card request successfully.

Architectural design phase

The architectural design phase is concerned with the internal architecture of the system.

Based on the system goals and scenarios from the previous phase (the system specification phase),

the roles and agent types are determined; then, the interactions between agents are modelled. The

overall system architecture—the agent types and their interactions—is captured in the system

overview diagram forming the primary output of this phase. The system-overview diagram cap-

tures each agent type in the system linked to its data sets, the events they receive (percepts), the

events they post (their actions) and communication protocols between agents. AUML textual no-

tations are used to model the necessary interaction between agents involved in the scenario. The

AUML textual notations are translated and presented in the AUML-sequence diagram.

According to the description of the lost card scenario, there should be an interaction between

five participants: the ticketing agent (agent), the payment manager (agent), the GUI (agent), the

banking server (actor) and the money scanner (actor). Figure 2.7 depicts the AUML-sequence dia-

gram that models the interactions between these five participants. A participant in any interaction

can be an agent or an actor. The events being exchanged can be one of three types: messages

between agents within the system (e.g., refund request), percepts between actors and agents (e.g.,

deposit confirmation) and actions between agents and actors (e.g., deposit amount).

Detailed design phase

In the detailed design phase, each agent in the system is specified and modelled in detail to

allow it to fulfil its responsibilities (i.e., its behaviours and interactions) according to the system-

overview diagram. Each agent is modelled in its own agent-overview diagram encapsulating the

required design entities for realising its desires. Each agent is designed and detailed in terms of

events, belief sets and plans to realise the specifications of the sought system.

Plans in Prometheus are sequences of steps that assist in realising assigned goals. Each plan

must have a single trigger that initiates its execution (signified by a dashed arrow from the event to

1The provided goal overview is a possible design and it does not necessarily represent the best one
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Figure 2.8: Ticketing agent-overview diagram
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Figure 2.9: Payment manager agent-overview diagram

the plan), and can have multiple inputs to process (signified by a solid arrow from the event to the

plan ). Messages, events and percepts can act as inputs to a plan. A plan may post internal events

(occurring within the same agent) to trigger other plans, it may post actions to interact with the

environment or it may send messages to communicate with other agents (signified by solid arrows

from the plan to the event). Further, each plan has a descriptor that allows designers to specify a

set of properties including goals to be achieved by the plan.

Figures 2.8, 2.9 and 2.10 illustrate the detailed designs of the three agents—the ticketing

agent, the payment manager agent and the GUI agent—in the transport-ticketing smart kiosk sys-

tem with respect to the lost-card-request scenario shown in Figure 2.5. The figures show the

mapping of the scenario for the detailed design of each participant. The ticketing agent is initiated

upon the receipt of the LostCardRequest percept (the trigger of the scenario) from the environment

(the touch screen actor). The percept triggers the StoreLostRequestInfo plan that logs the request
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Figure 2.10: GUI agent-overview diagram

information in the RequestPrefernaces dataset and posts an internal event labelled LostRequestIn-

foStored. This plan, through its descriptor, is assigned the ExtractRequestInfo goal (Step 2 of the

scenario). The internal event LostRequestInfoStored is handled by the AuthenticateUserCreden-

tials plan anticipated to realise the VerifyCredentials goal (Step 3 of the scenario). The plan then

posts the EnteredCredentials action to the environment (Step 4 of the scenario). According to the

scenario in Figure 2.5, the ticketing agent should be idle until it receives the AccountInfo percept.

The AccountInfo percept triggers the ObtainAccountDetails plan, which is responsible for real-

ising the GetAccountInfo goal (Step 5 of the scenario). The plan then posts the AccountFetched

event to indicate the realisation of the GetAccountInfo goal. That internal event is handled by

the ProcessLostRequest plan that realises the RefundOldCard goal by posting the RefundRequest

message to the payment manager agent. This message triggers the protocol in Figure 2.7.

In the refund protocol in Figure 2.7, each agent is designed to fulfil its role in the protocol

faithfully. The protocol is triggered by the sending of the RefundRequest message by the ticketing

agent (see Figure 2.8). The payment manager agent in Figure 2.9 handles the RefundRequest mes-

sage by the ObtainCurrentBalance plan, and the same plan sends the next message in the protocol

GiveCurrentBalance, to ensure the sequence flow that is enforced by the protocol. By following

the flow of the events in the designs of Figures 2.8, 2.9 and 2.10, it can be observed that the agents

are faithfully implementing the DepositAmountIntoAccount option in the protocol.

Tool Support-PDT

Prometheus has a design tool known as PDT [Padgham et al. 2005a], to support its method-
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ology. This tool provides designers with many features for producing well-documented design

artefacts for the intended system. Designers can describe the design units on the diagrams using

the design descriptors [Padgham et al. 2007]. For example, each plan in the agent-overview dia-

gram has a descriptor. This descriptor allows designers to detail the plan in terms of its context

condition, the goals to be realised and an overall description of its purpose.

The tool also has a code-generation feature that transforms the detailed design to a skeleton

implementation code in the JACK programming language [Busetta et al. 1999], which creates

a good starting point for developers. Jayatilleke et al. [Jayatilleke et al. 2006] extended the

tool using the CAFnE toolkit for generating an executable code, rather than a skeleton. This

toolkit requires more information about the models to use in the generation of the code. Thus,

Prometheus supports only the generation of skeleton JACK codes from the PDT design models.

Additionally, there have been some proposals for targeting other implementation platforms, such

as Jadex [Sudeikat et al. 2004] and 3APL [Jayatilleke 2007].

Given the above, it is valuable to ensure the validity of design models before the code-

generation phase. In other words, the ensuring of consistent and correct design models implies a

correct skeleton code for the system-to-be. Although there have been tools for run-time debug-

ging and testing based on PDT models [Padgham et al. 2005b; 2013], there is little support for

examining the validity of the Prometheus-based design models.

2.5 Other AOSE Methodologies

This section briefly explains six other methodologies than Prometheus to show that they share

similar notions about specifying requirements and interaction protocols. This is not intended to

serve as a comprehensive list of methodologies. Such a comparison can be found in [Gómez-Sanz

and Fuentes-Fernández 2015].

These six methodologies were chosen based on the approach adopted in Dam and Winikoff

[Dam and Winikoff 2013]. Dam and Winikoff adopted a multi-stage selection approach, in which

the set of methodologies was reduced by applying the following three criteria:

- Documentation: the selected methodology should be well established and well described.
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- Tool support: a methodology that is supported by a computer-aided software engineering

tool has more value than one without such support.

- Maturity: the selected methodology has been continuously improved and should be well

recognised by the agent community.

Dam and Winikoff [Dam and Winikoff 2013] stated that seven methodologies out of the

AOSE methodologies in the literature met these three criteria. We have included all of them,

except ADEM ([Trencanský and Cervenka 2005], Section 7.2]) since it provides a framework

rather than a methodology. Such frameworks allow software engineers to build customised soft-

ware engineering methodologies and, hence, the resultant methodologies may vary in terms of

artefacts produced. Consequently, such frameworks do not fit the context of this study. We have

also included ROADMAP, even though it is weak on the maturity criterion, since it represents an

extension of Gaia, and supports similar notions to Prometheus.

Tropos

Tropos has five phases [Bresciani et al. 2004]: early requirements, late requirements, archi-

tectural design, detailed design and implementation. In the early requirement phase, the system

stakeholders are identified as well as the system’s objectives, which reveal the system’s actors

and goals. Then, the obligation of the system towards its environment is determined as the main

activity of the late-requirement phase. Tropos adopts the i∗ organisational modelling framework

in its modelling requirements [Bresciani et al. 2004] since the i∗ framework supports the notions

of goals, actors and their dependencies [Yu 1995]. Even though Tropos does not have the concept

of scenarios as part of its requirement-specification process, the application of use cases has been

proposed in its extended version: the Secure Tropos methodology [Alam et al. 2015].

Unlike in Prometheus, the communication protocols definition activity does not take place

in the architectural design phase of the Tropos methodology. The interaction protocols are spec-

ified as part of the capability-modelling activity in the detailed design phase. In Tropos, AUML-

sequence diagrams are used to define the communication protocols between agents [Bresciani

et al. 2004].

31 (August 14, 2017)



CHAPTER 2: BACKGROUND AND RELATED WORK

The Tropos methodology has many tools to support the methodology process [Morandini

et al. 2007]. One of these tools is Tropos Agent-Oriented Modelling (TAOM4e), which enables

the designer to model the intended agent-based system. This tool has a code-generation feature

that takes a detailed design and provides a skeleton code in the JADE agent programming lan-

guage. The tool proposes many generators to facilitate the production of a skeleton code that

targets the JADE and Jadex agent platforms based on the detailed design artefacts or on the goal

model. Tropos provides designers with run-time testing ability through a tool known as eCAT

[Nguyen et al. 2008]. However, it is important to ensure conformity of the design models with the

specifications of the system-to-be to guarantee a correct skeleton code.

INGENIAS

The INGENIAS methodology enables agent designers to develop an agent-based system

through its five viewpoints [Pavón et al. 2005]: organisation, agent, goals/tasks, interactions and

environment. The methodology promotes a number of abstrac concepts, such as agent, goal and

mental state. The requirement specification process takes place under the first three viewpoints.

During the organisational viewpoint, the goals of the intended system are defined. Further, the

tasks that the agents need to execute to achieve the desired goals are specified in this viewpoint.

Under the goals/tasks viewpoint, the goals and tasks are decomposed and refined further. The

tasks are to be defined in terms of what they are, why they are required, their input, their output

and the goals that they are to achieve. Tasks are similar to scenarios in Prometheus.

The definition of interaction protocols in this methodology is part of the interaction view-

point. Although the methodology has its notations (Grasia2) for modelling protocols, it accepts

AUML-sequence diagrams to model the interactions [Pavón and Gómez-Sanz 2003].

The IDK is an integrated development environment that supports the methodologie’s develop-

ment life-cycle [Gómez-Sanz et al. 2008]. Along with the aid the tool provides in documenting the

design, the IDK provides a code-generation capability that transforms the system’s meta-models

into an implementation code targeting the JADE platform [Gómez-Sanz and Pavón 2005]. Fur-

ther, the tool supports the debugging process through the ACLAnalyser tool [Botı́a et al. 2004].

2 http://grasia.fdi.ucm.es
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MaSE

The MaSE methodology allows for the development of agent-based systems through two

main phases: analysis and design [Deloach 2004]. Each phase has steps that result in different

artefacts. In this thesis, we are concerned with the analysis phase, whereby the system goals and

roles are identified. This phase has three steps: (1) capturing goals, whereby the goal hierarchy is

generated; (2) applying use cases, whereby the use cases and sequence diagrams are constructed;

and (3) refining roles, whereby the concurrent tasks and roles are modelled. As the first step, the

designer needs to identify what the intended system wants to achieve (the system’s goal). Then, the

system’s roles and their tasks are specified in the form of use cases that define the system’s desired

behaviour. Use cases are elicited from the context of the intended system and are designated as

positive and negative. The positive use cases state the normal behaviour of the system, while the

negative ones describe behaviour that should not happen. These use cases are then converted into

sequence diagrams to visualise the flow of events between different roles. Finally, a transformation

of the goal hierarchy and the use cases via sequence diagrams into roles and their associated tasks

takes place. Similar to Prometheus, MaSE uses a goal hierarchy to model the goals of the intended

system. In MaSE, use cases are specified using sequence diagrams that capture the flow of steps,

which provide a richer representation than the scenarios of Prometheus.

In the MaSE methodology, interaction protocols are known as conversations between agent

classes, following Barbuceanu and Fox [Barbuceanu and Fox 1995]. The construction of con-

versations takes place in the design phase of the methodology. Unlike Prometheus, MaSE does

not use AUML for modelling conversations. Rather, it uses diagrams that are called communi-

cation class diagrams. A communication class diagram is a set of finite state machine (FSM)

diagrams [DeLoach 1999]. Each FSM models one side of the specified conversation. Given this,

a conversation class diagram that models a conversation between two participants needs to have

two FSMs. Despite MaSE’s adoption of FSMs, it still supports the same inter-agent interactions

as Prometheus. The conversations model the interactions between multiple participants, as in

Prometheus. In addition, FSMs have the same ability as the AUML-sequence diagram constructs

to control the flow of communication.

MaSE provides the agent engineers with AgentTool [DeLoach 2001], a graphical modelling

environment. The tool supports several functions apart from the modelling, including conversa-
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tion verification [Lacey and DeLoach 2000] and code generation.

Gaia

The Gaia methodology enables agent designers to analyse and design an agent-based system

using two main phases: the analysis and design phases [Wooldridge et al. 2000, Zambonelli et al.

2003]. In the analysis phase, the designers elicit all the possible entities of the intended system by

using concepts abstracted from the requirement statements. Gaia models requirements by using

four models: (1) an environmental model, (2) a preliminary role, (3) an interaction model and (4)

organisational rules. In this thesis, we are concerned with the second (role) and third (interaction)

models.

Roles are identified by four attributes: (1) their permissions and rights, (2) their responsi-

bilities or functionality, (3) their activities and (4) their protocols. Responsibilities are similar to

scenarios in that they focus on the functions to be executed by agents. Interaction models cap-

ture the communication between agents in the system. Gaia adopts its notations from the Fusion

object-oriented methodology [Coleman et al. 1994]. Even though Gaia uses other notations than

AUML for modelling interaction protocols, the integration of AUML with its methodology has

been recommended [Cernuzzi and Zambonelli 2004].

Gaia for Eclipse (Gaia4E) is a tool used as part of the Gaia methodology to help document the

analysis and design models of an agent-based system [Cernuzzi and Zambonelli 2009]. Gaia4E

provides designers with the necessary modelling capabilities. For example, it does not support

code generation—nor propagation—as the phases in the tool are separate from each other.

ROADMAP

The ROADMAP methodology extends the Gaia methodology for developing open systems

[Juan et al. 2002]. One of Gaia’s weaknesses is the lack of support for the goal notion in the mod-

elling process. Conversely, the ROADMAP methodology overcomes this issue by introducing a

number of extensions. First, it introduces an initial phase that concerns the requirement elicitation

process via the use cases. Second, the methodology includes the definition of local, social goals

as part of the role modelling process.

ROADMAP treats interaction protocols as reusable message patterns that can be manipulated
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Goals Use Cases / Scenarios Other notations and models

Prometheus 4 4 role overview diagram

Tropos 4 8 actor diagram and rationale diagram

MaSE 4 4 sequence diagrams and concurrent
task model

INGENIAS 4 4 organisation model and task model

Gaia 8 8 environmental, role, protocol and
interaction models

ROADMAP 4 4 environmental, knowledge, role,
protocol and interaction models

PASSI 8 4 UML packages, sequence diagrams
and activity diagrams

Table 2.2: Concepts adopted when using the seven AOSE methodologies to specify requirements

without affecting the agent services that underpin them [Juan et al. 2002].

PASSI

The PASSI is a step-by-step methodology that guides designers throughout the life-cycle of

the development. The methodology has five process components, referred to as models: (1) the

system requirements model, (2) the agent society model, (3) the agent-implementation model,

(4) the code model and (5) the deployment model. Each model comprises a number of phases

[Cossentino 2005]. This thesis is concerned with the first two models: (1) the system requirements

model and (2) the agent society model.

The system requirements model consists of four phases [Cossentino 2005]: (1) the domain

requirement description, (2) agent identification, (3) role identification and (4) task specification.

In the domain requirement description, the functions of the system are identified through use-case

diagrams. The responsibility of each agent is attributed by the agent identification in the form

of UML packages; then, the responsibilities of each agent, based on the role-specific scenarios,

are explored via sequence diagrams. In the task specification phase, activity diagrams are used to

specify the capabilities of each agent.

In the agent society model, the construction process of the social aspect of the intended

system takes place. The process of modelling such interactions involves three steps [Cossentino

2005]: (1) ontology description, (2) role description and (3) protocol description. Similar to

Prometheus, PASSI uses AUML-sequence diagrams to define the interaction protocols in the in-

tended system. The PASSI Toolkit (PTK) is an add-in for the commercial Rational Rose UML-
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AUML Sequence Diagram Other notations and models

Prometheus 4 -

Tropos 4 FIPA-ACL

MaSE 8 Finite State Machines

INGENIAS 4 Grasia

Gaia 8 Interaction Models

ROADMAP 8 Interaction Models

PASSI 4 -

Table 2.3: Concepts adopted when using the seven AOSE methodologies to model interaction
protocols

based tool and it supports the PASSI methodology [Chella et al. 2004]. Although this add-in

enables designers to construct diagrams from scratch, it also automatically generates other full

or partial diagrams to be completed by designers. The tool can produce comprehensive reports

on designs, including diagrams and their descriptions of the intended system. This tool does not

support information propagation between the methodology phases, though it does offer a code-

generation facility.

Discussion

This section has highlighted six other AOSE methodologies than Prometheus to show that

they each share similar notions, especially in terms of specifying requirements and modelling

protocols. Even though each methodology has its unique development process, each bears in

common the inclusion of the core development activities: analysis, design, implementation and

testing. Further, all methodologies with the exception of ROADMAP are supported by tools to

assist designers in implementing and documenting the development process.

In the agent-oriented software engineering methodologies discussed in this chapter, the re-

quirement specifications include scenarios ( [Winikoff and Padgham 2013], Section 4) that are

instances of the desired execution behaviour and goals (see Table 2.2). According to Table 2.3,

four methodologies use AUML-sequence diagrams for modelling protocols. Although MaSE

does not adopt AUML notation, it employs the same communication approaches as the other

four methodologies. MaSE views the communication protocol as a means of governing message-

passing between multiple participants. However, Gaia and ROADMAP do not view interactions
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Figure 2.11: Place/transition Petri net

as a sequences of messages being exchanged in a certain order. Instead, interaction protocols are

treated as a means for defining interaction patterns. Hence, at run time, the same protocol may

result in a number of message interchanges.

2.6 Petri Nets

In our approach, Petri nets were used both as a formal representation of the specification of the

system and to extract all possible behaviour runs from the agent-behaviour models (see Chapter 5).

We provide a brief introduction to Petri nets in this section.

Petri nets (named after Carl Adam Petri) are one of the most commonly used formalisms for

describing and modelling concurrency, communications and synchronisation. Petri nets have been

used in various ways for analysing, modelling and implementing agent-based systems [Purvis

and Cranefield 1996, Mazouzi et al. 2002, Cost et al. 2000, Köhler et al. 2001]. Various types

of Petri nets have been proposed to overcome the limitations of the initial formalism, including

coloured Petri nets [Jensen 2013], timed Petri nets [Wang 2012], object Petri nets [Valk 2004]

and place/transition Petri nets [Desel and Reisig 1998]. This thesis focuses on place/transition

Petri nets, which are formally defined in Definition 1.

Definition 1. A marked Petri net is a tuple where M = {P,T, I,O,µ}, in which P is a finite set

of places, T is a finite set of transitions, such as P∩T = /0, I is an input function, O an output

function, and µ is the marking of the Petri Net defined as an n-vector, µ = {µ1,µ2,µ3, ....,µn}, in

which n = |P| and each µi ∈ N, i = 0,1.
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Figure 2.12: Petri net firing mechanism

Place/transition Petri nets are one of the most prominent types of Petri nets. In this kind of

net (see Figure 2.11), places (denoted graphically by circles) are connected to transitions (denoted

graphically by rectangles) via arcs (donated graphically by arrows). Arcs represent the flow rela-

tion between places and transition. These flow relations are only between places and transitions or

vice versa, and not between places or between transitions alone. Each place in the net should have

a name and may contain tokens (denoted graphically by filled circles). Markings are vectors that

show the distribution of tokens across the places of a given Petri net. Although a place in this kind

of net can contain a finite number of tokens, the approach of this thesis restricts this number to

zero or one token (refer to Definition 2). These tokens determine the execution (firing) of the Petri

nets. Each transition in a Petri net should have a name, a set of input places and a set of output

places. Places with arcs that proceed to the transition are input places, while those with arcs that

emerge from the transition are output places. For example, in Figure 2.11, place P0 is the input

place for transition T0, while P1 and P2 are its output places.

Execution rules for Petri nets

The execution of Petri nets is determined by the marking of the net. Briefly, a Petri net ex-

ecutes by firing transitions and such an operation is contingent on having the transitions enabled

first. A transition is enabled if—and only if—all of its input places have tokens. The consequence

of firing a transition is the removal of one token from each input place of the transition and the

placement of a token on each output place. For example, the Petri net in Figure 2.12 (A) will

not execute since T0 is not enabled (i.e., the input place P0 does not have tokens). However, the

transition in Figure 2.12 (B) will fire since P0 has a token and, hence, the transition is enabled.

Figure 2.12 (C) shows the result of the firing of transition T0 in Figure 2.12 (B). As is shown, a
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Figure 2.13: Petri net and its reachability Graph

token was removed from P0 and a token was placed on both P1 and P2.

Analysis of Petri nets

This thesis uses Petri nets as a means of representing system specifications and extracting

all possible behaviour runs from the agent-behaviour models. Given this, it is vital to analyse the

Petri net that models the agent-behaviour models, especially, for the purpose of extracting the be-

haviour runs. Petri nets are analysed through their behavioural properties: safeness, liveness and

reachability ([Peterson 1981], page 79). Reachability is one of the basic properties that emerging

from the initial marking of the Petri net. In fact, it is the fundamental property to be considered

when studying the behaviour of any system [Murata 1989]. The reachability property calculates

the reachable markings of a Petri net, given its initial marking. In other words, it exposes the state

of the Petri net (i.e., the distribution of tokens across the net) with every transition. Several tech-

niques have been developed to assist with analysing the properties, as mentioned above, including

the reachability graph [Murata 1989].

The reachability graph of a Petri net depicts a transitional relation that defines the state

and transitions of the net. Each state within the reachability graph is, in fact, a marking vector

that shows the distribution of tokens across the places of the Petri net. Figure 2.13b shows the

reachability graph for the Petri net indicated in Figure 2.13a. When the reachability graph is in

state S0, this represents the marking {1,0,0,0,0}. Using the legend at the bottom of Figure 2.13b,
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Figure 2.14: Activity diagram for a sale transaction process
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Figure 2.15: Activity diagrams meta-model

this means that a token is on the Petri net place ‘Start’, because the first slot on the marking is one,

while the remainder is zero.

2.7 UML-activity Diagrams

In this work, we propose using UML-activity diagrams as more structured representations of re-

quirement specifications to complement the process of the Prometheus agent design methodology

(see Chapter 4). Thus, we briefly explain the UML-activity diagrams and the adopted notations of

our approach in this section. Activity diagrams are a type of behaviour model that describes the

dynamic aspects of a given system [Object Management Group 2011]. They visualise processes

(using a sequence of steps) and model the work and data flows of the system. The activity diagram

in Figure 2.14 demonstrates the process that takes place in a sale transaction. After the item list is

40 (August 14, 2017)



SECTION 2.7: UML-ACTIVITY DIAGRAMS

a) Action Node b) Regular Activity Edge c) Initial Node
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Figure 2.16: Adopted UML-activity diagram notations

sent and an item is selected, the price will be either accepted or refused (via a decision point). If

the price is refused, the sale-transaction process will flow to the merge point, allowing the ‘Close

Sale’ action to be performed. However, when a price is accepted, the flow will perform the ‘Make

Payment’ action and the item will be shipped before closing the sale transaction. Note that, ac-

cording to the activity diagram, this sale-transaction process allows for the shipping of an order

before the sending of an invoice (i.e., for parallel action nodes).

UML provides designers with a range of graphical notations for modelling activity diagrams

including activity nodes and activity edges. The creation of these diagrams must conform to the

UML-activity meta-model to ensure the diagrams’ semantics. In fact, this meta-model provides an

enormous number of entities for enhancing the semantics of activity diagrams. Figure 2.15 shows

a subset of the activity diagram meta-model that defines the entities considered in the approach

described in Chapter 4. As Figure 2.16 illustrates, six entities out of the UML activity diagram

notation are adopted as follows:

1. Action Node: the primary atomic node in the activity diagrams (see Figure 2.16(a)). It is

notated by a rectangular shape with rounded edges.

2. Regular Activity Edge: a directed connection that shows the control flow between the dif-

ferent actions of an activity diagram (see Figure 2.16(b)). These edges can optionally have

conditions (guards) to constrain their flow.

3. Initial Node: a control node that initiates the execution of an activity/scenario (see Fig-

ure 2.16(c)). We restrict the activity diagrams to have only one initial node.

4. Final Node: a control node that shows the end of an activity/scenario (see Figure 2.16(d)).
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Figure 2.17: Cost of fixing bugs based on time of detection

5. Fork / Join: a control node that splits the execution flow into multiple threads to be executed

independently, and then synchronises them (see Figure 2.16(e)).

6. Decision / Merge: a control node that splits the execution of an activity into multiple alter-

nate flows with only one flow to be executed based on the guards for the outgoing activity

edges of the decision point (see Figure 2.16(f)).

2.8 Software Verification and Validation

The development of software consists of a number of activities including analysis of require-

ments, design, implementation, testing, deployment and maintenance ([L. Pfleeger 2010], page

24). These development activities are performed by software engineers (i.e., humans). Hence,

they are error-prone activities. These errors may result in undetected faults in the final product

and can consequently lead to significant failures in its behaviour. Thus, software verification and

validation are necessary, since its objective is to detect and resolve defects early in the development

life-cycle. In fact, it has long been established in software engineering that the early detection and

resolution of software defects saves time and money, especially for large projects [Boehm and

Papaccio 1988, Boehm et al. 1981]. Figure 2.17 [Boehm 1984] shows that fixing defects in large

projects early in the life-cycle can save up to a factor of 100 of the cost, whereas in small projects
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Figure 2.18: Software verification and validation (static category)

it can save a factor of four of the cost. Additionally, software verification improves the quality of

software products, since it ensures consistent and defect-free development. This section briefly

introduces some background knowledge about software verification.

Software verification is a software engineering processes that examine whether a software

and its associated products fulfil their specifications and whether it behaves as intended. The

recent IEEE Standard for System and Software Verification and Validation defines ‘verification’

and ‘validation’ as follows ([IEEE], page 11):

- Verification: the process of assessing the conformance of a software and its related products,

throughout its life-cycle activities, with the requirements of the intended system.

- Validation: the process of examining software and its associated products to determine

whether or not they satisfy the requirements at the end of each activity in the development

life-cycle, and also of checking that the software behaves as intended.

Software verification is commonly interpreted as the application of formal approaches to

software programs (e.g., model checking [Clarke et al. 1999]). In fact, there have been a number

of techniques proposed to help software engineers with the verification and validation processes.

These techniques range from formal techniques [D’Silva et al. 2008] to semi-formal techniques

[Cordeiro et al. 2009, Kececi et al. 2002, Stavely 1999] to informal techniques, such as desk-

checking ([Beizer 2003], Chapter 3) and inspections and walkthroughs ([Schach 2008], pages

148-153). Software verification and validation techniques fall into two categories: static tech-

niques and dynamic techniques ([Ghezzi et al. 2003], pages 269-274). The static category involves

analysing the documentation of the system-of-interest without executing it (see Figure 2.18), while
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the dynamic approaches require the execution of the system-of-interest since they experiment with

its behaviours (see Figure 2.19).

As Figure 2.19 shows, the dynamic software verification and validation techniques are con-

cerned with testing the behaviour of the system-of-interest and ensuring its conformance with

respect to the part of the system under test (the so-called target). The testing process encompasses

different levels and begins with unit testing (also known as module testing) ([Bourque et al. 2014],

Chapter 4). Unit testing ensures that individual software modules behave as per the design. The

next level is integration testing, which integrates all the modules into subsystems and tests whether

the integrated system behaves as per the overall design. Then, the integrated system is validated

as to whether it meets the functional and non-functional requirements at the system testing level,

which begins once all components have been successfully integrated and tested.

Conversely, as Figure 2.18 shows, the static approach analyses the development artefacts of

the system-of-interest without executing the system. For example, following the inspection tech-

nique, the inspectors walk through the design artefacts of the system-of-interest and ensure that

they correctly implement all requirements. The work proposed in this thesis focuses on verifica-

tion, especially on the static verification of software designs. Validation, by contrast, falls beyond

the scope of this thesis; it is often relevant to requirements and to approaches for checking their

completeness, feasibility and testability ([Sommerville and Sawyer 1997], pages 189-214).
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2.9 Related Work

This section discusses existing techniques for verifying software designs, in the context of general

software engineering and agent-oriented paradigms. We cover software verification in this broader

area (i.e., general software engineering) to show how the verification of agent-based systems fits

into this broader context. Section 2.9.1 serves as an introduction to the criteria for which a verifi-

cation process of software designs should aim. It also provides an overview of the two prominent

verification technique categories: manual and automated.

Techniques for detecting defects and inconsistencies in object-oriented designs using UML

notation have been studied more than the agent-oriented paradigm. Existing approaches to ver-

ifying object-oriented designs are discussed in Section 2.9.2. There have also been approaches

developed for assuring the correctness of agent-based designs as discussed in Section 2.9.3.

2.9.1 Software Design Verification

As mentioned in Section 2.8, the principal objective of statically verifying software designs is to

detect and resolve defects early in the development life-cycle and, hence, to save development

costs. Boehm [Boehm 1984] has identified four criteria for the verification process to look for

in the system-of-interest: completeness, consistency, feasibility and testability. Since the main

emphasis of this thesis is to check agent designs against specifications, the testability and fea-

sibility criteria will be omitted. This is because they do not strongly relate to the design of the

system of interest. Testability is more relevant to requirements than design. The criterion of testa-

bility is to ensure that the system of interest will meet its specifications through ensuring that

the requirements are specific and unambiguous [Boehm 1984]. The feasibility criterion is about

verifying that the system of interest can be developed such that it satisfies its functional and per-

formance requirements; thus, it is concerned with the management and financial aspects of the

intended system [Boehm 1984]. Given this, we only consider the first two criteria: completeness

and consistency. However, we redefine the consistency criterion to suite our approach, as we do

not ensure consistency within the same levels of artefacts; for example, requirements are consis-

tent with each other and design items are consistent with each other, whereas consistency is not

considered across boundaries. We check that a design is consistent with its specification, which
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means that the design is correct with respect to its specification. Thus, the consistency criterion of

our approach is, in fact, a correctness criterion.

Completeness is about ensuring that the system of interest does not neglect any part of its

specifications. In the context of this thesis, completeness means that the design fully covers the

specifications of the system of interest. Revisiting the running example in Section 2.4, one of the

functionalities of the system is to allow customers to process a refund request for a lost card. This

process is represented as a goal that needs to be achieved. A design that does not realise this goal

is considered incomplete.

Correctness is about ensuring that there is no conflict among the design artefacts of the sys-

tem of interest (i.e., of the agent-behaviour models with their specifications). Further, this criterion

considers traceability of the artefacts as a way of acquiring a consistent system. Traceability is

the ability to link all components in later phases of the development life-cycle to earlier phases.

Additionally, assuring that the design of the system of interest will result in correct behaviour with

respect to a part of the specifications is another approach for meeting this criterion (i.e., of consis-

tent behaviour). For example, the scenario ‘S1’ states that goal ‘G1’ happens first and then goal

‘G2’. A design that has the plan to realise ‘G2’ before realising ‘G1’ is inconsistent with respect

to scenario ‘S1’.

2.9.2 Correctness Assurance in Object-Oriented Designs

In the object-oriented paradigm, techniques for detecting defects at the design stage have been

extensively studied compared to the agent-oriented paradigm. These techniques range from man-

ual techniques, such as reading techniques including inspections and walkthroughs [Fagan 2001,

Travassos et al. 1999], to automated techniques [Usman et al. 2008].

To this end, the main focus of the existing automated software verification approaches is

to analyse the correctness of software programs (i.e., their source codes) using methods such as

model checking, bounded model checking and abstract static analysis [D’Silva et al. 2008], with

little attention to design documents. One of the reasons behind this lack of attention to design

documents is that design notations are inexpressive and imprecise and, hence, they cannot be

verified. However, there have been efforts in this direction (i.e., towards verifying design artefacts)
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through the creation of new modelling notations, such as Alloy notations for designing object-

oriented software [Jackson 2002]. Additionally, there have been attempts to constrain existing

modelling notations, such as the de-facto standard modelling notation UML, so that they can

be automatically verified [Rumbaugh et al. 2004]. This thesis focuses on verifying agent-based

design models; hence, we do not discuss the automated checking techniques in the object-oriented

paradigm because they have been developed specifically for that paradigm. Therefore, they are

not applicable to the agent-oriented paradigm, as each paradigm has different design concepts that

need to be considered.

Although the manual techniques can be generalised to agent-based systems, there are many

different design aspects in the agent-oriented paradigm that must be addressed. In the context of a

BDI model of agency, systems are specified in terms of goals that are achievable by agents. These

agents are then designed in terms of events, goals, actions, percepts, data sets and plans with their

relationships. Manual techniques are costly and suit small projects, while large software projects

need automatic aid for their verification. In what follows, we discuss some of these manual tech-

niques.

Manual design verification techniques

As their name indicates, manual techniques are to be employed by humans and do not involve

any automation. However, the manual label should not imply a lack of computer-aided software

that assists in the verification process [Macdona et al. 1995, Anderson et al. 2003]. Manual tech-

niques are often considered informal since they rely on human subjectivity and not on mathemat-

ical formalisms. However, these techniques should be applied using well-structured approaches

under formal guidelines, such as the inspection technique [Bush 1990, Parnas and Lawford 2003].

Many techniques have been proposed in this context: (1) the audit technique that assesses the

development of products according to the plans, policies, procedures, standards, and guidelines of

the intended system ([William 2006], page 26); (2) the desk-checking technique, which comprises

an intensive analysis of the software documentation to ensure its correctness, completeness, con-

sistency and clarity [Beizer 2003]; (3) the walkthroughs technique ([Schach 2008], page149); and

(4) the inspection technique [Fagan 2001].

Walkthrough and inspection techniques are types of reviews ([Sommerville 2009], page 663)
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that detect and document faults in the software documentation and ensure their correctness. How-

ever, unlike walkthroughs, inspections are formalised processes that use checklists to guide team-

work to reveal defects in the documentation of the intended software design. Inspections are some

of the most cost-effective and commonly used manual techniques for detecting defects in software

documentations.

Inspections are usually conducted by a team of three members—a moderator, a reader and

a recorder—each of whom are responsible for managing the inspection process and leading the

team ([Schach 2008], pages150-152). The inspection process begins with the planning phase. At

the planning phase, the participants are selected and the materials are prepared. The inspection

technique involves five steps: overview, preparation, inspection, reworking and follow-up. The

overview comprises an informal meeting where a summary of the design and its documentation

including the inspection agenda are distributed to members of the team. In the preparation phase,

each member of the inspection team carefully reviews the documentation provided to them in the

overview meeting. The moderator then plans and manages the inspection meeting. The moderator

presents the system of interest and the inspection process to the inspection team. The inspection

team is also provided with the necessary checklists to be used in the inspection. The objective of

this phase is to count defects in the system of interest without fixing them. At the end of this phase,

the moderator prepares a report that logs the defects identified by the inspection team and that is

to be distributed among the team. In the reworking phase, the design team attempts to resolve the

defects reported while documenting their responses. During the follow-up phase, the moderator

works through the changes made by the designers in the previous phase and ensures that they do

not introduce new problems.

Although inspection is an effective technique for revealing defects in software documen-

tations, it is a costly process, as it requires manual investigation by a number of investigators.

The inspection process becomes particularly tedious when the system of interest is large. In this

case, there is a need to support the inspection process with a computer tool. A number of tools

have been developed to improve the inspection process, such as Collaborative Software Inspection

(CSI) [Mashayekhi et al. 1993] and Scrutiny [Gintell et al. 1993]. Macdonald et al. [MacDonald

et al. 1996] designate the areas in which inspections need to be automated as document handling,

individual preparation, meeting support and metrics collection. They list and compare five tools
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that support the inspection process.

2.9.3 Correctness Assurance in Agent-Based Designs

In terms of agent-design methodologies, there has been little research into how to ensure the

correctness of agent-design artefacts. There is a large body of work on verifying BDI-agent sys-

tems using formal verification, such as model checking (e.g., [Dastani et al. 2010, Bordini et al.

2003; 2006b, Dennis et al. 2012]) and theorem proving (e.g., [Shapiro et al. 2002]). While these

approaches can provide a higher level of assurance than the work proposed in this thesis, they

assume the existence of either a formal model that abstracts the behaviour of the system or a sys-

tem implementation. In contrast, the approach propsoed in this thesis aims to detect defects in

semi-formal models without requiring source code.

Similarly, researchers have investigated specific methods for the run-time testing of multi-

agent programmes [Nguyen et al. 2012; 2007], including BDI agents [Padgham et al. 2013, Miller

et al. 2010], assertion-based verification with static analysis [Sudeikat et al. 2006], automatic

analysis of agent behaviour through software comprehension [Bosse et al. 2006, Lam and Barber

2005] and run-time debugging of agent interaction [Botı́a et al. 2004, Padgham et al. 2005b].

Clearly, testing or verifying the implementation of the system of interest provides some level of

verification of the corresponding design; however, there is clear value in the ability to detect design

defects before implementing a design.

Further, there is an entire body of work in formally verifying interactions between agents in

multi-agent open systems [Baldoni et al. 2010; 2009; 2006; 2005]. For example, the ISLANDER

tool, which supports the specification of the norms and protocols in electronic institutions, pro-

vides a verification module [Esteva et al. 2002]. The ISLANDER tool allows software engineers

to define the specification of the sought electronic Institute system formally via a textual language.

The verifying module in ISLANDER verifies four properties in the specification of the system:

Integrity, liveness, protocol correctness and norm correctness. The tool checks the integrity of

the specification of the system by ensuring that each referenced element in the specification is

defined. Regarding the liveness property, the tool guarantees that deadlock will not exist in the
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system. Although the ISLANDER verification module validates the correctness of protocols and

norms, these checks are not applicable to the BDI style agent methodologies, such as Prometheus.

The module assures that the graph representing the specified protocol is connected. Also, the tool

verifies that the protocol is correctly typed as per the backus-naur form (BNF) grammar. Finally,

the verification module in ISLANDER tool verifies that agents in the system can perform the

actions defined in a norm.

This section provides some insights into existing work that seeks to ensure the correctness

and completeness of agent-based models in three areas:

1. Automated consistency and correctness checking

2. Traceability

3. Automatic design propagation mechanisms

(1) Automated consistency and correctness checking:

Despite the fact that most AOSE methodologies offer development environments through

their supported tools [Pokahr and Braubach 2009], many do not provide a framework for fully

verifying their produced design artefacts. Although some of the AOSE methodologies partially

support the verification of agent designs, they do not provide any support for verifying agent-

behaviour models against requirements models. In what follows we discuss the methodologies

that offer some support for design-time verification.

The Tropos methodology: Tropos provides partial support for requirement verification. It offers

two frameworks, each including tool support, for (i) validating formal requirement specifications

using the T-Tool [Fuxman et al. 2001] and (ii) reasoning with formal goal models using the GR-

Tool [Giorgini et al. 2005].

The T-Tool takes a specification for the system of interest and builds its equivalent automa-

ton, which exhibits all possible execution traces that satisfy the constraints of that specification.

The tool then verifies the expected behaviours based on the assertion and possibility properties

specified. It also checks the consistency of the specifications by ensuring that there is at least one

scenario in the system that respects all the constraints enforced by the requirement specifications.
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The GR-Tool enables forward and backward reasoning for goal models. Forward reasoning en-

tails forward propagation of the initial values that have been assigned to some goals in the model

to all other goals, according to a set of rules, to determine the satisfiability and dependability of

the goals and, consequently, to reveal possible conflicts. Backward reasoning is concerned with

finding, through the conducting of a backward search, desired assignments for the goal model

when provided with various input values. Although Tropos ensures the validity of the requirement

models of the system-to-be, it does not support the verification of the agent-behaviour models

(i.e., low-level agent designs) against these requirement models.

The INGENIAS methodology: The IDK [Gómez-Sanz et al. 2008] supports the INGENIAS method-

ology. The IDK integrates a tool called the ACLAnalyser [Botı́a et al. 2004] for analysing the in-

teractions between agents at the design phase, when executing the system and logging the run-time

interactions [Botı́a et al. 2006].

The ACLAnalyser tool consists of four components: the sniffer agent, the relational database,

the monitor and the analyser. The sniffer agent is responsible for acquiring a copy of all messages

exchanged in the system of interest. Messages are then deposited into a relational database for

additional manipulations. The monitor component is in charge of visualising the processing of

the sniffer agent. The analyser interacts with the rational database and analyses the logs result-

ing from the execution of the interactions. In the context of INGENIAS, the ACLAnalyser tool

uses the JADE automatic code-generation module to generate templates for agents in the JADE

platform, with the aim of compiling and executing these templates. While the agents are being

executed, the sniffer agent logs information about the interactions. These logs are then used by

the analyser component to report the outcomes of the interactions to the designer.

Even though ACLAnalyser tool gives feedback about the defined interactions at the design

phase, it relies on their implementation. It uses the JADE code-generation module and, hence,

the agent templates will not be generated if the models are lacking certain information. Although,

through the ACLAnalyser tool, the IDK provides valuable feedback about the interactions spec-

ified in the design phase, it does not provide any support for verifying agent-behaviour models

against requirement models.
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The O-MaSE methodology: The O-MaSE methodology offers a development environment for

developing agent-based systems through AgentTool III (aT3) [DeLoach and Garcia-Ojeda 2010].

The aT3 tool provides a verification framework that maintains consistency between related

models. The check is conducted based on a set of predefined rules that rely on the static relation-

ships between design entities. For example, there is a rule that constrains the goal diagram to the

form of a tree and, hence, if a goal node does not appear in a tree format, an error is triggered by

the framework. Such checks do not ensure the conformance of agent-behaviour models against

any point-of-reference artefacts in the process, including requirement models and interaction pro-

tocols.

The Prometheus methodology: Early versions of the PDT [Padgham et al. 2008] offered limited

static consistency checking of the design for warnings, such as events that are not handled and

messages that should be sent/received according to a protocol. Unlike aT3, this way of check-

ing does not rely on a set of rules that a designer can enable and disable based on their context.

On the contrary, it relies purely on the static associations between different design entities. It is

worth noting that what we are proposing in this thesis goes beyond these simple static consistency

checks, as our proposal considers the dynamic behaviour of a system.

The PASSI methodology: PASSI offers the PASSI Toolkit (PTK) to aid software engineers in de-

veloping an agent-based system. Similar to PDT, the PASSI Toolkit (PTK) ensures consistency

among the various diagrams by automatically constructing parts of several models and conducting

checks on changes made by the designer to verify their correctness with respect to the other parts

of the design [Cossentino 2005]. PTK does not support the verification of low-level designs by

comparison with top-level artefacts. The work in this thesis, in contrast, assesses the dynamic

behaviour of designs.

The Gaia methodology: The Gaia methodology provides agent engineers with a graphical environ-

ment for developing agent-based systems, such as the Gaia4E [Cernuzzi and Zambonelli 2009].

This tool does not offer any framework for verifying and validating the agent design artefacts.

However, there has been an attempt to transform Gaia role models into business process models
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with the aim of validating their liveness formulas [Mitakides et al. 2015].

Role models are defined in the analysis phase of the methodology to identify the possible

roles agents must fulfil within the intended system. As mentioned in Section 2.5, roles consist

of four attributes including responsibilities. Responsibilities can be considered the key attribute,

since they define the functions of the system. The responsibilities attribute has two properties:

liveness and safety. Liveness properties describe— through a liveness model—the activities an

agent must accomplish in specific environmental states. A liveness model connects the activities

of an agent with Gaia operators using formulas [Zambonelli et al. 2003].

Mitakidis et al. in [Mitakides et al. 2015] propose an algorithm with tool support—using the

Liveness2XPDL tool—to transform the liveness formulas into XML process definition language

(XPDL) [Palmer 2009], which can then be converted to business process modelling notations

(BPMN). Following this, the BPMN can be simulated using existing simulation platforms, such

as Signavio3. Such simulation mainly allows for validating the non-functional requirements of

the system of interest, such as its delivery time. Designers need to define scenarios for the simu-

lations and each scenario should have its parameters: its role resources, its activity duration and

its frequency of role executions. Although the Liveness2XPDL tool fully supports the automatic

transformation of liveness formulas into XPDL, the method is limited to role interactions (i.e.,

to message flows between different activities), since it cannot automatically determine the flow of

messages. Moreover, the approach in [Palmer 2009] is more concerned with verifying the analysis

models and does not consider the agent-behaviour models of the proposed system.

The MaSE methodology: The AgentTool aids software engineers in documenting the MaSE method-

ology’s activities in terms of design artefacts [DeLoach 2001]. The tool supports the automatic

verification of conversations between agents [Lacey and DeLoach 2000]. As mentioned earlier

in Section 2.5, MaSE uses FSM diagrams when modelling conversations. The AgentTool then

automatically converts these FSM diagrams into the formal modelling language Promela to be

checked via the Spin model checker [Holzmann 1997]. AgentTool then graphically visualises the

errors detected by Spin.

Although Spin can detect many errors, AgentTool supports the following types: deadlocks,

3Web-based process modelling platform (http://www.signavio.com/bpm-academic-initiative).
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non-progress loops, unused states, unused messages and mislabelled transitions. Despite the fact

that AgentTool adopts a formal approach to verify the conversations, which offers a higher level

of assurance, it does not consider the agent-behaviour models in such verifications.

(2) Traceability:

Traceability is helpful not only because it enables designers to maintain a correct design with

respect to any changes in the requirements, it also ensures consistency between various design

models and their completeness regarding missing design entities.

Castro et al. in [Castro et al. 2002] suggest the adoption of requirement traceability tech-

niques in the agent-oriented paradigm. In particular, they present a way that the AOSE method-

ologies could embed the general-purpose traceability technique described in [Toranzo 2002]. This

traceability approach rests on the inclusion of a meta-model that defines the parameters for the

traceability and the reference models and that facilitates the construction of traceability models.

In further work, Castro et al. [Castor et al. 2004] integrate the traceability approach mentioned

above with the Tropos methodology. In their work, they propose three activities to assist in gen-

erating the traceability models—information gathering, information structuring and construction

of the traceability matrices—to be integrated with the Tropos phases: early requirements, late

requirements, architectural design and detailed design. By adopting this approach, designers can

trace the life of a requirement in both forward and backward directions and, hence, are able to

ensure the quality of the system of interest. However, the authors do not mention the applicability

of their approach to the agent-behaviour models; they only show how it works to address archi-

tectural design. Further, the approach does not consider the inconsistencies caused by entities

irrelevant to the requirement models.

Cysneiros and Zisman [Filho and Zisman 2008] introduce a rule-based traceability approach

grounded in the Prometheus methodology and the JACK platform. The approach automatically

generates traceability relations for verifying the models (the agent designs and the JACK code)

and checking their completeness by identifying missing elements. Although such an approach is

useful in ensuring the completeness of the system of interest, it requires significant implementation

compared to the work in this thesis, where we ensure the validity of the design models prior to

their implementation.
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Thangarajah et al. in [Thangarajah et al. 2011] propose a mechanism that facilitates the

traceability between requirements (via scenarios) and other design entities, which is used to sup-

port test case generation. The proposed approach extends the existing scenario structure of the

Prometheus methodology by three parts: the I/O sequence list, a parameter-based test descriptor

and traceability links. The latter part (the traceability links) introduces three relationship links

between the scenario steps and four design entities: goals, actions, percept and events. The work

of Thangarajah et al. [Thangarajah et al. 2011] is complementary to the approach proposed in this

thesis, as it contributes to the consistency assurance of design models.

(3) Automatic Design Propagation Mechanisms:

Another way of ensuring the correctness of agent designs with respect to point-of-reference

artefacts is through automatically propagating these artefacts to lower-level designs without in-

volving designers in the process. In the context of AOSE, there has been little research into prop-

agating top-level information down into the low-level design artefacts. Although most AOSE

methodologies offer limited information-propagation features across their phases as a conse-

quence of their tool support, they do not support the sufficient propagation for a complete design.

For example, Prometheus propagates the actions and percepts identified in the analysis overview

into the detailed designs of the agents. However, it does not propagate full scenarios with the plans

to realise them.

The Tropos methodology has many tools to support the methodology process and help with

generating methodology artefacts [Morandini et al. 2007]. One of these tools is Tropos agent-

oriented modelling (TAOM4e), which enables the designer to model the intended agent-based

system. This tool has a code-generation feature that takes a detailed design and provides a skeleton

code in the JADE programming language. The tool proposes a number of generators that facilitate

the production of a skeleton code, which targets the JADE and Jadex agent platforms based on the

detailed design artefacts or the goal model. The UML2JADE generator is used to generate a JADE

agent code with respect to the agent interaction diagrams. The JADE agent code is generated by

the transformation of the interaction diagrams’ meta-model to the JADE meta-model, leading

to the creation of an XML metadata interchange (XMI) file that helps to produce the capability

files [Penserini et al. 2006]. The agent-interaction diagrams are propagated directly as a skeleton
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implementation code without considering the later phases of design that preclude the designer

from being able to modify and control the protocol elements at a design level; for example, a plan

that sends a particular message in a protocol may perform other tasks that need to be modelled at

the design level.

In our previous work in [Abushark and Thangarajah 2013], we propose an approach for au-

tomatically propagating interaction protocols into agent-behaviour models. We present a mecha-

nism, supported by algorithms, to automate and support the generation of detailed design artefacts

with respect to the developed set of interaction protocols. Even though our preliminary evaluation

showed that automatic propagation produces an error-free design, this approach seems infeasible,

since more than 21 unique algorithmic cases were developed only for one construct (alternative).

In addition, this approach does not consider scalability issues in cases where the intended design

has multiple protocols. Furthermore, automation may affect the maintainability of the design, as

it is normal for designers to alter their initial designs.

There have been proposals for automating the transformation between models in agent-

oriented modelling [Bresciani et al. 2001, Perini and Susi 2005, Garcı́a-Magariño et al. 2009].

These proposals support methodologies that adopt model-driven architecture (MDA) concepts

and standards [Mellor 2004]. They require meta-models for both the target and source models, as

it is essential in MDA to define the meta-models of source and target modelling notations based on

a standard and also to state the transformation mechanisms between meta-model parts. In [Perini

and Susi 2005], the authors propose a mechanism to automatically transform a Tropos plan de-

composition model into a UML 2.0 activity diagram. Although such a transformation can ensure

that the activity diagram in the detailed design phase is correct with respect to the plan decompo-

sition model, it does not guarantee that the plan decomposition model is correct in the first place.

Moreover—and similar to the propagation approach in Prometheus—such transformations may

affect the maintainability of the design since software designers often use the model provided as

a starting point, rather than as a final artefact.

In summary, existing approaches for verifying agent-based systems address different arte-

facts of the system of interest and apply verification automation at various levels. None of these

approaches enforces a complete, nor automated, mechanism for verifying the internals of agents
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(i.e., agent-behaviour models) with respect to the point-of-reference artefacts (i.e., requirements

and interaction protocols) at the design stage and without requiring source code. The approach of

this thesis overcomes the limitations mentioned above.
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CHAPTER 3
Conceptual Framework

This thesis proposes a verification framework that enables the early detection of defects in agent

designs. This chapter describes the concepts and methods of our verification framework. We be-

gin by explaining the design units considered in the framework (see Section 3.1). We ground our

approach in Prometheus and we outline the design components of the Prometheus-based agents

that are considered in our framework. Section 3.2 presents the overall architecture of the frame-

work developed in this thesis. Section 3.3 highlights the types of defects that our approach can

detect in agent designs. In Section 3.4, we discuss the concept of design coverage. In Section 3.5,

we provide an overview of the technical method developed in this thesis.

3.1 Agent Design Units

The purpose of the verification framework is to verify agent designs against two point-of-reference

artefacts: (1) scenarios and (2) interaction protocols. In Prometheus, agents are modelled such

that they fulfil their roles in the scenarios and in terms of the protocols specified early in the

development life-cycle. As mentioned in Section 2.4, scenarios in Prometheus represent basic

runs in the desired system; each scenario includes a sequence of steps; these steps can be of

different types (actions, percepts and goals). Interaction protocols show the legal interactions

between many agents exchanging events (percepts, actions and messages).

Traditional software systems based on the common object-oriented paradigm have classes

and objects as their core units. However, BDI-agent systems are designed in terms of agents, with
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Figure 3.1: Design components of a Prometheus-based agent

each one having its own goals to achieve. In Prometheus, agents are modelled using plans, events

and datasets. Goal realisation is achieved through plans that are triggered by events. Additionally,

agents, when necessary, can store their beliefs in datasets. Figure 3.1 illustrates the design units of

an agent that has been developed following the Prometheus methodology. These units are common

to most agent designs that follow the BDI model of agency mentioned in Section 2.2.

This section discusses the three design units mentioned above (plans, events and datasets)

and their verifiable features. Note that our verification framework considers the design-level view

of the system-to-be—that is, it does not require implementation. Therefore, we make assump-

tions about the interpretation of some design concepts (e.g., choice in agent designs) because the

framework lacks essential details (i.e., the implementation-level view) required for accurate inter-

pretation.

Events

There are four types of events that a Prometheus-based agent can capture; namely, percepts,

actions, internal events and messages. Percepts are external events that are received by an agent

from the environment and need to be reacted to. Actions are the events to be posted by an agent to

the environment that may affect that environment. Internal events are posted by the agent to itself
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Plan 1

Event 3

Event 2Event 1

Figure 3.2: A plan with one event to process

to trigger sub-tasks or realise other goals. Message events are used to exchange information be-

tween different agents. These event types, excluding the internal events, have a direct link to the

point-of-reference artefacts considered in the proposed approach (i.e., scenarios and interaction

protocols). In fact, percepts, actions and goals represent the basic units in scenarios. In addition

to percepts and actions, protocols can also capture messages through their structure. Even though

internal events are not directly linked to the point-of-reference artefacts, they may represent the

realisation of goal steps in scenarios or ensure the flow of communications between agents. There-

fore, all four types of event are included as basic design units in our approach.

Plans

Plans are step-by-step recipes that allow agents to achieve their goals (see Section 2.2). A

plan must have only one triggering event that initiates its execution. However, Prometheus allows

plans to handle multiple events, with the triggering event to be processed first. In some cases, plans

need to wait for inputs other than their triggers (e.g., messages) that help such plans to achieve

their assigned goals. Plans may also post multiple events: internal events to trigger other tasks,

messages to capture communication and actions to affect the environment.

Figure 3.2 shows that ‘Plan 1’ is triggered by ‘Event 1’ (shown by a dashed arrow from the

event to the plan), processes ‘Event 2’ (shown by a solid arrow from the event to the plan) and

posts ‘Event 3’ (shown by a solid arrow from the plan to the event). As per the figure, ‘Plan 1’, at

some point in its execution, waits for ‘Event 2’ to be processed; however, it is certain that ‘Event 1’

will be handled before ‘Event 2’ is processed. The plan also posts ‘Event3’, but the order between

handling ‘Event 2’ and posting ‘Event 3’ cannot be determined.
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Figure 3.3: Event/plan relationships

Events can be associated with plans forming four different control fragments: sequential,

choice and parallel and loop (see Figure 3.3). The sequential control fragment is formed when an

event is handled by a single plan that posts only one event (see Figure 3.3 (c)).

An event can be a trigger for multiple plans where only one plan is to be executed, based on

the context conditions of the plans, forming the choice control fragment. As shown in Figure 3.3

(a), ‘Event 1’ is handled by two plans (‘Plan 1’ and ‘Plan 2’), but only one plan is to be executed.

Assumption 1 (choice in agent designs). If an event is handled by multiple plans, we assume

choice between these plans.

A plan can post multiple events and the framework of this thesis assumes that such events

are to be posted in parallel. ‘Plan 1’ in Figure 3.3 (b) posts ‘Event 2’ and ‘Event 3’ in unspecified

order. Thus, ‘Event 1’ can be posted before ‘Event 2’, or ‘Event 2’ before ‘Event 1’. Although

at the implementation level and through selection statements (e.g., if/then/else) a programmer can

implement a choice between these events, we permit any behaviour consistent with interleaving

parallelism in this case, since we are considering a static view of the system-to-be.

Assumption 2 (parallelism in agent designs). If a plan posts multiple events, we assume a parallel

relationship between these events.
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Figure 3.4: Plan descriptor

The loop-control fragment captures the interactions between plans where a plan posts an

event that is handled by one of its ancestor plans, as illustrated in Figure 3.3 (d). Because of the

lack of implementation-level details, we cannot identify the number of iterations a loop should

make. Thus, we consider only one iteration of any loop-control fragment.

Assumption 3 (loops in agent designs). If a plan posts an event that is handled by one of its

ancestor plans, then a loop fragment is formed (i.e., a cycle between the plan and its ancestor).

As a consequence of the lack of the implementation-level details, loops are assumed to iterate

only once and, hence, all cycles are eliminated from agent-behaviour models. This assumption

approximates the number of times a loop-control fragment can iterate. We exclude cases when

the loop iterates zero times, as here the design under investigation captures the fragment and this

implies that the loop is implemented in the design. Given this, our approximation is sound but

incomplete.

Each plan in Prometheus has a descriptor that allows designers to specify the goal/s (i.e.,

the steps in the scenarios) to be realised. Figure 3.4 depicts part of the descriptor of ‘Plan 1’ in

Figure 3.2. As can be seen from Figure 3.4, ‘Plan 1’ is responsible for realising goal ‘G1’. As the

framework considers the design-level view of the system-to-be, it cannot be determined whether

the intended plan was successfully executed. In other words, we cannot determine whether the

goals assigned to the plan have been achieved. Thus, we do not assume that plans achieve their

assigned goals. Instead we assume that goals are realised by plans.

Assumption 4 (goals at design level). Since we do not have access to the implementation of

the system-to-be, we cannot judge its execution. Hence, we do not assume the achievement of

goals in our approach. Instead, we assume that goals are handled by plans at a design level. This

assumption is consistent with the description of goals in the Prometheus methodology [Padgham

and Winikoff 2005].
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Percept 1 Plan 1 DataSet 1 Event 1 Plan 2

Figure 3.5: Datasets processing example

Datasets

Datasets are design units that represent the agent’s beliefs (see Section 2.2). Agents manip-

ulate their beliefs by having plans that insert, update and delete data. As shown in Figure 3.5,

agents can write to datasets (shown by a solid arrow from the plan to the dataset) and read from

datasets (shown by a solid arrow from the dataset to the plan).

In Prometheus, a dataset can perform actions based on certain changes in its status. For

example, the insertion of a new record into an agent’s belief may automatically post events that

activate other plans. In Figure 3.5, ‘Data-Set 1’ may post the internal event ‘Event 1’, which

triggers ‘Plan 2’. In the approach proposed by this thesis, datasets are considered only when they

post events. This is because such datasets directly contribute to the behaviour of agents, whereas

datasets that do not post events are concerned with writing and reading data—procedures that our

approach does not check.

3.2 The Conceptual Model

The verification framework proposed by this thesis takes into account two main design artefacts:

point-of-reference artefacts and low-level agent-behaviour models. In the context of Prometheus,

the point-of-reference artefacts considered in our approach are scenarios and protocols.

Since each step in a scenario is associated with a role to realise that step, the role-grouping

model of the system-to-be is considered part of the point-of-reference artefact. Further, the goal-

overview diagram of the system-to-be is taken into account as an input, as scenarios may include

goal steps. Given this, the framework takes scenarios as primary artefacts, whereas it takes the

goal-overview diagram and the role-grouping model of the system-to-be as complementary arte-

facts to scenarios. The low-level agent-behaviour models considered in our approach are repre-
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Figure 3.6: Static verification conceptual framework

sented by the agent detailed design overview diagrams.

The framework uses these artefacts to produce a set of traces from both the point-of-reference

artefact and the agent-behaviour models to be automatically checked and verified. The output of

this verification framework is a report that logs the potential defects in the agent-behaviour models

with respect to the specified point-of-reference artefact.

Figure 3.6 depicts a general overview of the proposed verification framework. The framework

accepts one point-of-reference artefact at a time (i.e., one scenario or one protocol at a time)

as an input, allowing software engineers to focus on performing checks for the artefact under

development. In fact, the Prometheus methodology provides systemic and structured support for

the iterative/incremental development approach [Perepletchikov and Padgham 2005]. Note that,

since it is possible for the designer to test the design at any incremental stage, the less complete

the agent design, the more defects may be identified.

As Figure 3.6 shows, any Prometheus-based design has four core elements: scenarios, a

goal model, protocols and agent-behaviour models. In this section, we define these elements.

Further, we explain what it means for agent-behaviour models to conform to the specified point-

of-reference artefact.
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3.2.1 Point-of-Reference Artefacts

Our verification framework considers two point-of-reference artefacts—scenarios and protocols—

to which the agent-behaviour models must conform. Thus, we assume the correctness and com-

pleteness of these point-of-reference artefacts.

Assumption 5 (point-of-reference artefacts). We assume that the point-of-reference artefacts—

the scenarios, the protocols and the goal model—are correct and complete.

Scenarios

A scenario is a sequence of steps that the agents in the system-to-be need to realise (see

Figure 3.7). These steps can be one of the following types: percept, action or goal. Each step in a

scenario must be associated with an agent role, which is the entity responsible for the step. These

roles are then linked to the agents in the system-to-be (see Figure 3.8).
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Although a scenario is a single sequence of steps, there may be different ways to realise the

same scenario. This is because, when there are goal steps, the goals may also be realised through

their sub-goals from the goal-overview diagram.

The goal-overview diagram is a goal tree, whose nodes are the goals that need to be pursued.

The branches in the goal-overview diagram show the relationship between goals, including how

goals are decomposed into sub-goals. As discussed in Section 2.4 of Chapter 2, there are three

decomposition types. The first is the ‘OR’ decomposition, which implies that a parent goal is

realised if one of its children is realised.

Assumption 6 (OR goal-decomposition). We assume that the OR-decomposition is an exclusive

OR. This means that one—and only one—child of an OR-decomposed goal step needs to be

implemented to realise the step. For example, the design that implements both children ‘G1’ and

‘G2’ in Figure 3.9 is considered a defective design because it achieves the goal ‘G’ twice.
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Figure 3.11: Simple interaction protocol

The second from of decomposition is the ‘directed-AND’ (meaning that a parent goal is

realised if all its children are realised in a specified order). The third form is the ‘AND’ decom-

position (meaning that a parent goal is achieved if all its children are realised in any order). For

example, the goal step ‘G1’ of the scenario in Figure 3.7 can be realised through the step in the

scenario itself (see Figure 3.10 (a)). Alternatively, it can be realised by the step with its children

in any order (see Figure 3.10 (b)), or just by the children, (‘G2’ and ‘G3’) in an unspecified order

(see Figure 3.10(c)).

Since we need to consider relevant information from the goal tree to a goal step within a

scenario S, this scenario may result in a set of requirement traces, denoted by [[TS]]. Specifically,

[[TS]] is a set of sequences that includes the original sequence of steps comprising the scenario and

its alternatives, as per Example 1.

Example 1. The scenario in Figure 3.7 yields:

[[TS]] = { 〈G0, A0 〉, 〈G0, G1, G4, A0 〉, 〈G0, G1, G2, G3, G4, A0 〉, 〈G0, G1, G3, G2, G4, A0 〉,

〈 G1, G4, A0 〉, 〈 G1, G2, G3, G4, A0 〉, 〈 G1, G3, G2, G4, A0 〉, 〈 G2, G3, G4, A0 〉,

〈 G3, G2, G4,A0 〉 }

A design that captures any sequence in [[TS]] would realise the scenario in Figure 3.7. For

example, a design that implements the original sequence 〈 G1, G4, A0 〉, which belongs to [[TS]],
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realises the scenario. Further, a design that captures the sequence 〈G2, G3, G4, A0 〉 also achieves

the scenario, as the goal step G1 in the scenario can be realised through its children (G2 and G3)

from the goal tree.

Protocols

Our approach is grounded in the Prometheus methodology; therefore, it assumes that proto-

cols are specified using AUML-sequence diagrams (see Section 2.4). AUML-sequence diagrams

specify the allowable sequences of messages between agents. Protocols may capture many execu-

tion flows through capturing different constructs (see to Section 2.3.2).

For example, the interaction protocol in Figure 3.11 results in three possible flows because it

has an alternative construct with two executable regions.

Example 2. Given the above, let [[TIP]] be the set of sequences resulting from the protocol in

Figure 3.11. Then:

[[TIP]] = { 〈 Give Price 〉, 〈 Give Price ,Agree 〉, 〈 Give Price ,Re f use 〉 }

Unlike the goal steps in a scenario, each sequence of [[TIP]] in Example 2 is an execution flow,

whereas the traces of [[TS]] in Example 1 are alternative ways to accomplish a single execution flow

in a scenario. In other words, a design that fully covers the protocol in Figure 3.11 must implement

all the three sequences in [[TIP]]. However, a design that implements more than one sequence from

[[TS]] is considered a repetitive design (i.e., a defective design). Note that we do not assume that

designs need to fully adhere interaction protocols; however, we do offer a method for checking

their compliance.

3.2.2 Agent-Behaviour Models

To verify an agent design against a particular point-of-reference artefact, we compare all possi-

ble behaviour runs that may be exhibited by the agents in the system-to-be at run time with the

specified point-of-reference artefact.

The agent-behaviour models comprise entities that are captured by both scenarios and proto-

cols (i.e., percepts, actions, goals and messages) in addition to plans. Plans are the executable units
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Figure 3.12: Agent-behaviour models of the protocol in Figure 3.11

Figure 3.13: Graph of the plans in Figure 3.12 (note that the graph has two paths)

in the agent-behaviour models; hence, they generate the agents’ behaviour. Thus, a behaviour run

is a sequence of plans.

In the context of agent design, a plan is defined in terms of its trigger, a set of inputs and a

set of outputs. The trigger for a plan and its inputs can be any design entity except actions, while

its output set can contain any design entity aside from percepts. Thus, a plan is a tuple where

p = {N, I,O,Tr}, in which N is a unique name that identifies the plan within the design; I is a

set of input events for the plan to be processed and must not include actions; O is a set of output

events that a plan can post, which must not include percepts; Tr is the trigger of the plan where

Tr ∈ I and each plan must have a trigger (i.e. ∀ p ∃!Tr | Tr /∈ actions).
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Plans are linked with each other through their outputs, forming a graph of plans. For ex-

ample, the ‘Send Price’ plan shown in Figure 3.12 is initiated by the ‘Trigger’ event and posts

the ‘Give Price’ message (i.e., its output set has only one element). The ‘Give Price’ message is

the trigger for two plans: the ‘Price Agree’ and the ‘Price Reject’ plan. The ‘Price Agree’ plan

sends the ‘Agree’ message to be handled by the ‘Agree Handler’ plan, whereas the ‘Price Reject’

plan sends the ‘Refuse’ message to be handled by the ‘Refuse Handler’ plan. As can be seen

from the example, all five plans in Figure 3.12 are linked by their outputs. Figure 3.13 shows

the graph based on the associations between the five plans in Figure 3.12. Recalling the different

relationships between events and plans as discussed in Section 3.1, graphs of plans can capture

four control fragments: sequential (SEQ), choice (ALT), parallel (PAR) and loops:

1. Sequential (SEQ): SEQ(p1, . . . , pn) denotes that the plans within this fragment are to be

executed sequentially.

2. Alternative (ALT): ALT (p1, . . . , pn) denotes that only one of the plans within this fragment

is to be executed.

3. Parallel (PAR): PAR(p1, . . . , pn) denotes that the plans within this fragment are to be exe-

cuted in parallel. In other words, this control fragment indicates that all the plans are active

at the same time, and hence, their execution will be interleaved.

4. Loop (cycles): Cycles are specified by the posting of another event by the plan that handles

an initial event and that will also handle the subsequent, new event that it has just posted

(p1 → e1 → p1). However, as mentioned earlier in Section 3.1, we treat cycles as having

one iteration.

Given the above, if PG denotes the graph in Figure 3.13, then this graph is textually described

as follows:

PG = SEQ(Send Price, ALT (SEQ(Price Agree, Agree Handler), SEQ(Price Re ject,

Re f use Handler)))

While a plan is being executed, it processes its input design entities and produces its out-

put design entities. Thus, we can obtain possible behaviour runs in terms of sequences of design
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entities (i.e., events, messages, percepts, actions and goals) by substituting plans with the sets of

events for their inputs and outputs. For example, by substituting the plans in PG above with their

input and output sets, we obtain the following set of traces (i.e., behaviour runs without plans)

denoted by [[Br]]:

Example 3. [[Br]] = { 〈 Give Price ,Agree 〉, 〈 Give Price ,Re f use 〉 }

Since plans in an agent design may form the aforementioned four control fragments, it is intu-

itive that a given design may capture many behaviour runs. For example, the graph in Figure 3.13

captures two possible execution runs, as it illustrates an alternative control fragment.

3.2.3 Checking the Conformance of Agent Designs

Agent designs are graphs that show the relationships between plans. In our approach, we check

the correctness of these designs, ensuring that the set of behaviour runs (e.g., [[Br]] in Example 3)

form a subset of the set of the traces (e.g., [[TIP]] in Example 2). Conceptually, a behaviour run is

said to conform to a trace if the run contains the exact elements of the trace in the same order.

Property 1 (correctness). An agent design is said to be correct concerning the specified point-

of-reference artefact iff [[Br]] ⊂ [[TS]], where [[Br]] is the set of behaviour runs from the agent-

behaviour models and [[TS]] is the set of traces of the specified point-of-reference artefact.

Considering the first run of [[Br]] in Example 3, which has two tokens: ‘Give Price’ and

‘Agree’, the run matches the second trace, or sequence, of [[TIP]] in Example 2. Thus, we can say

that the run is valid concerning the trace. Similarly, the second run in [[Br]] conforms to the third

trace of [[TIP]]. However, if the first token in the second run (〈 Give Price ,Re f use 〉) is ‘Refuse’

instead of ‘Give Price’, then the run will not conform to any trace of [[TIP]], as the tokens are not

in the same order. Since all the runs in [[Br]] appear in [[TIP]] (i.e., [[Br]] ⊂ [[TIP]]), the designs in

Figure 3.12 conform to the protocol in Figure 3.11.
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Failure (matching with the point-of-reference
traces)

Cause (in the design)

1 The behaviour run is completed, while the
trace involved in the comparison is not en-
tirely completed (i.e. traces have more to-
kens to compare with).

1. The run contains fewer design entities
(i.e. steps or messages) than it should, rela-
tive to the point-of-reference artefact.

2 The behaviour run is not fully completed,
while the trace involved in the comparison
is completed.

2. The behaviour run contains more de-
sign entities (i.e. steps or messages) than
it should, relative to the point-of-reference
artefact.

3 The behaviour run is relevant to the traces,
but it did not match any trace.

3.(a) The design entity (i.e. a step or a mes-
sage) in the run that needs to be matched
with the current token in the trace is miss-
ing; or
3.(b) The ordering between design entities
(i.e. steps or messages) within the run is in-
consistent with the point-of-reference arte-
fact.

Table 3.1: Categorisation of causes for failures

3.3 Types of Defects in Agent Designs

Our approach marks a run as ‘passed’ if and only if the tokens in the run are consistent with the

tokens for a trace from the point-of-reference traces. Otherwise, the run is recorded as ‘failed’. To

provide informative feedback about the agent-behaviour models, we identify a cause for a failure.

Table 3.1 lists all possible failures and their causes. We use the scenario in Figure 3.7 (see [[TS]]

in Example 1) and its possible designs as shown in Figure3.14 to explain these failures.

The causes in Table 3.1 indicate the possible types of defect that our framework can detect in

an agent design. We now consider the three cases of failure:

Case 1: run misses design entities — The first failure occurs when the entire run is consumed

(i.e., all the tokens in the run are used in the comparison), while no match with any trace

from the point-of-reference traces is reported. This failure indicates that the design misses

the entity that is supposed to be realised according to the specified point-of-reference arte-

fact. For example, the design in Figure 3.14 (b) results in a single run: 〈G1,G4 〉. However,

all sequences in the set of traces [[TS]] have the action step ‘A0’ as a token. Thus, for the run

to pass the comparison it has to have that action step (‘A0’). This failure, based on the pre-
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Figure 3.14: Examples on defects in agent-behaviour models

vious example, highlights that the design element that is relevant to the point-of-reference

under investigation misses the action step ‘A0’ in the scenario.

Case 2: run has more design entities than it should — In this case, the failure is because the

run has more tokens than it should. This means a design entity appears in the same run mul-

tiple times, whereas the specified point-of-reference artefact requires such entities to appear

only once. For example, the plans ‘G1 Handler’ and ‘G4 Handler’ in the design shown in

Figure 3.14 (d) post the action ‘A0’. Since both plans interleave (i.e., both are executed), the

action ‘A0’ is posted twice. Hence, all runs capture ‘A0’ twice (e.g., 〈 G1,G4, A0, A0 〉),

while none of the traces in [[TS]] has ‘A0’ twice. Comparing the run with its relevant traces,

the run matches the trace until it consumes the first instance of ‘A0’. Then, the trace is also
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entirely consumed, while the run still has another instance of ‘A0’ to consume.

Case 3: mismatch between the run and its relevant traces — The failure, in this case, occurs

when the comparison operation between a run and its relevant traces is obstructed because of

a mismatch between the tokens of both the run and the traces. This mismatch indicates either

that the entity is missing from the design or that the ordering between design entities in the

run is erroneous with respect to the point-of-reference artefact. For example, the design in

Figure 3.14 (c) results in the following run: 〈 G4, G1, A0 〉. Even though the run includes

the correct design entities with respect to the fifth sequence in [[TS]] (〈G1, G4, A0 〉), it does

not match the occurrence order of the tokens captured by the trace; hence, it is marked as a

failed run.

The missing design entities, in this case, are different from those in Case 1. In Case 1, the

run is consumed, while the trace still has further tokens to be compared. However, in this

case, the run is not fully consumed; however, the comparison process is obstructed because

the current token of the run does not match the token of the trace. Unlike in the case of

miss-ordering, the token is not in the run. For example, let us assume that the run extracted

from the design in Figure 3.14 (a) is 〈 G1, A0 〉. According to the first token in the run, this

run should be compared with the fifth trace in [[TS]] (〈 G1, G4, A0 〉). The first token in the

run (‘G1’) matches the first token in the trace. However, the second token in the run is ‘A0’,

which does not match the second token in the trace (‘G4’). As a result, the run is marked

as failed. As per the example, the comparison process is obstructed because of a mismatch

between the particular token of the run and the token of the trace. However, the run misses

‘G4’.

3.4 Checking for Design Coverage

Our framework does not only provide the ability to detect potential defects in a design concerning

the specified point-of-reference artefact, it also checks whether the design fully covers that artefact.

A design that faithfully conforms to its point-of-reference artefact is not necessarily complete with

respect to that artefact.
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Figure 3.15: An interaction protocol and its equivalent design

Property 2 (completeness). A point-of-reference artefact is said to be fully covered by the agent-

behaviour models under investigation iff [[Br]] ⊆ [[TS]], where [[Br]] is the set of behaviour runs of

the agent-behaviour models and [[TS]] signifies the set of traces of the specified point-of-reference

artefact.

As stated earlier in Section 3.2.1, a point-of-reference artefact results in a set of traces. Such

a set contains sequences of entities (steps in a scenario or communication constructs). These

sequences are usually alternative ways to realise the same execution. However, in some cases,

these sequences represent execution flows and, hence, the design needs to cover them all to be

a complete design. For example, the protocol in Figure 3.15 (a) captures two execution flows as

follows: 〈M1, M2, M3 〉 and 〈M1, M3 〉. The design of this protocol (in Figure 3.15 (b)) captures

only one behaviour run: 〈M1, M3 〉. By comparing this run with the two traces of the protocol, the

outcomes will produce a 100% passing rate, as the run conforms to the second trace. Although it

is clear from the designs shown in Figure 3.15 (b) that ‘M2’ is missing, no defects will be flagged

in the design, since the set of runs for the design is a subset of the set of traces.

Similarly, when the point-of-reference artefact is a scenario, a design may fully conform to

it, but may miss a variation—for example—an execution flow in that scenario.
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Figure 3.16: A protocol with PAR construct and its equivalent design

The framework does not flag the lack of coverage, if it exists, as a defect. Instead, it reports

it as a warning that may require the designer’s attention, as the designer may choose not to im-

plement the entire point-of-reference artefact. This coverage check ensures the completeness of

the relevant parts of the design to the point-of-reference. In other words, it verifies that all execu-

tion flows—and not the possible alternative flows—of the specified point-of-reference artefact are

covered by the design. For example, the protocol in Figure 3.16 (a) results in six sequences as a

result of the interleaving between the two regions of the parallel construct (we denote the set of

traces by [[TPAR]]):

[[TPAR]] = {〈M1, M2, M3, M4 〉, 〈M1, M3, M2, M4 〉, 〈M1, M3, M4, M2 〉, 〈M3, M4, M1, M2 〉,

〈M3, M1, M2, M4 〉, 〈M3, M1, M4, M2 〉 }

The sequences in [[TPAR]] form possible alternative ways to execute the parallel construct in the

protocol. Thus, a design with all its runs matching these six sequences in [[TPAR]] (i.e., the set of

runs is a subset of [[TPAR]]) is said to conform to the protocol. In other words, our approach consid-

ers only one form of interleaving and not all possible forms of interleaving in the cases of parallel

control fragments. For example, the designs illustrated in Figure 3.16 (b) result in a single run

and, hence, the set of runs (denoted by [[Br]]) contains only one sequence: 〈M1, M2, M3, M4 〉.
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Figure 3.17: Static verification framework (PR: point-of-reference artefact, PN: Petri net)

Since the set of runs is actually a subset of the set of traces (see Property 1), then it can be said

that the design in Figure 3.16 (b) conforms to the protocol in Figure 3.16 (a).

3.5 Technical Method Overview

This section summarises the technical aspects of our verification framework for implementing the

conceptual framework described in this chapter. Figure 3.17 depicts the overall architecture of

the proposed verification framework. As Figure 3.17 demonstrates, the framework encompasses

four modules, each of which is responsible for generating a component according to the specified

point-of-reference artefact as follows:

1. Requirement specification to activity diagram transformer (see Chapter 4). This module is

responsible for automatically constructing an activity diagram from the specified scenario

as well as the goal-overview diagram of the system-to-be.

2. Point-of-reference to Petri net converter (see Chapter 5). This module is responsible for

translating the point-of-reference artefacts into Petri nets to act as executable models to
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obtain the possible traces (i.e., [[TS]]) .

3. Behaviour runs extractor (see Chapter 6). This module produces the set of all possible

behaviour runs with respect to the specified point-of-reference artefact (i.e., [[Br]]).

4. Behaviour runs checker (see Chapter 6). The previous modules result into two verifiable

components, namely: the point-of-reference’s Petri net and a set of behaviour runs. This

module is responsible for checking each behaviour run against the point-of-reference Petri

net by executing the run over the Petri net and reporting any discrepancies. In other words,

this module checks the validity of Property 1 and also checks the completeness of the agent-

behaviour models as concerns the specified point-of-reference artefact (i.e., Property 2).

Summary

This chapter introduced the concepts and methods of the verification framework proposed

by this thesis. The framework checks the agent-behaviour models against two point-of-reference

artefacts: scenarios and interaction protocols. The framework considers one point-of-reference

artefact at a time along with the agent-behaviour models as inputs and generates a text-based

report on the potential defects of the agent-behaviour models with respect to the specified point-

of-reference artefact.

Conceptually, the framework checks that the set of behaviour runs emerging from the agent-

behaviour models is a subset of the specified point-of-reference traces. The framework translates

the point-of-reference artefact to a Petri net to act as an executable model. Then, it extracts all pos-

sible behaviour runs out of the agent-behaviour models and executes each behaviour run against

the point-or-reference artefact Petri net, logging any discrepancies in the execution of the Petri net.

A failure in executing a behaviour indicates an inconsistency between the design and the point-of-

reference. Three types of defects are identified in our framework, which may affect agent-based

designs as follows: missing entities, wrong ordering between entities and unnecessary repetitions

of entities. Further, the framework ensures that the part of the design that is relevant to the speci-

fied point-of-reference artefact is complete.
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CHAPTER 4
Requirements Specification via Activity

Diagrams

The verification framework proposed in this thesis aims to check the conformance of the detailed

plan structures of agents to two point-of-reference artefacts: scenarios and interaction protocols.

In Prometheus (see Chapter 2, Section 2.4), the requirements of the system are specified via sce-

narios and goals. A scenario is similar to a use case in the object-oriented paradigm [Jacobson

et al. 1992] and describes a particular run of the system as a sequence of steps. These step types

include percepts1, actions or goals. Goals can be decomposed into sub-goals, using a goal model.

The combination of the scenarios together with the goal trees, forms part of the requirements for

the system.

There are three limitations in the current representation of requirements in Prometheus:

1. Scenarios only capture a sequence of steps, which means that steps that should be performed

in parallel cannot be specified.

2. Variations to the scenario are captured informally as English text.

3. The scattered nature of the requirements between scenarios and the goal model requires in-

creased mental effort from designers to check for coverage of the requirements and can lead to

potential design errors.

1Events that represent inputs into the system from the environment
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To overcome these limitations, we propose the use of an activity diagram to complement the

process of specifying requirements in Prometheus. It is important to note that our proposal can be

generalised to any agent-oriented methodology that shares the same concepts as Prometheus.

This chapter walks the reader through our proposal of using UML-activity diagrams as

more structured representations of requirement specifications to complement the process of the

Prometheus methodology. Scenarios and goal-trees form an integral part of the Prometheus

methodology. Hence, our proposal is not to replace these design artefacts, but to complement

them with activity diagrams as a way of overcoming their current limitations. We do this by tak-

ing a scenario and its corresponding goal-trees2 and generating an equivalent activity diagram (see

Section 4.1). The activity diagram generated represents and models the flows of only one scenario

at a time. Section 4.1.2 details our implementation of this generation process.

By using activity diagrams, we can ensure that the executable model of the requirements is

complete, as they overcome the limitations Prometheus has when specifying requirements. Our

proposal allows designers to illustrate which steps in the specified scenario can be attempted in

parallel or to specify that the ordering does not matter. Further, activity diagrams permit designers

to specify variations to a given scenario in a structured manner. Section 4.2 justifies our proposal

and outlines the potential benefits of activity diagrams and how they overcome the limitations of

the current approach in Prometheus.

We also performed a series of evaluations on 15 participants, who were tasked with inter-

preting and modifying two different sets of requirements one with an activity diagram and one

without measuring their performance and asking for qualitative feedback (see Section 4.3). The

reason for conducting this user study is to measure the impact an activity diagram has on the abil-

ity of a software engineer to understand and maintain requirement models. The results presented

in Section 4.4 demonstrate that the participants were able to complete the tasks more correctly

and more quickly using an activity diagram and that they unanimously preferred the addition of

activity diagrams.

There have been a number of proposals to use activity diagrams when specifying require-

ments for the agent-oriented paradigm. Section 4.5 provides some insights into what has been

achieved in this context.

2That is, the goal-trees involving the scenario’s goal steps.
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Figure 4.2: Goal-overview diagram for the trading-agent system

4.1 Constructing Activity Diagrams

In this section, we present our approach for automatically constructing an activity diagram from

a scenario and a goal-overview diagram. We use the trading-agent system described3 in what

follows as a running example.

The trading-agent system models the processes that take place in a sales transaction and

includes three agents: the seller, the buyer and the banker. The seller agent send the list of products

to the buyer agent after receiving a ‘store opening’ percept. The buyer agent then selects a product.

After that, the seller agent sends the buyer the price of the chosen item. The buyer agent may then

proceed with the payment through the banker agent. The banker agent processes the payment and

notifies both the seller and the buyer about the payment process outcomes (whether the transaction

has been approved or denied). The order of these notifications is not important (e.g., whether—

seller first and buyer second or the other way around). In the case of an approved payment, the

seller must send the item to the buyer.

3The description here is very brief, and we refer the reader to the literature for a full description [Padgham and
Winikoff 2005]
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In Prometheus, system analysts translate the problem that the intended system needs to solve

based on the user requirements of the system specification phase. The primary output of this phase

is a set of scenarios and a goal-overview diagram (see Chapter 2, Section 2.4). The description of

the trading-agent system in Figure 4.1 shows one scenario that the system-to-be needs to address

and Figure 4.2 depicts the goal-overview diagram of the system.

As stated in Section 2.4, even though a scenario in Prometheus forms a single sequence

of steps, there may be different ways to realise the same scenario. This is because, when there

are goal steps, the goals may also be realised (and, hence, the requirements specified) through

its children from the goal overview diagram. For example, the goal step Notify Participants in

Figure 4.1 could be implemented through the step itself, the step with its children or just the

children: (Notify Buyer and Notify Seller see Figure 4.2).

The construction process of the intended activity diagram involves two phases:

1. Step-wise activity diagram generation: this phase takes one step of a given scenario at a time

and construct its equivalent activity diagram structure. Then, it concatenates the different

structures to form a complete activity diagram corresponding to the specified scenario.

2. Activity diagram reduction: the generation phase results in an activity diagram with dupli-

cate nodes. This phase intends to reduce these duplicates, if possible, while preserving the

semantic of the original activity diagram.

4.1.1 Step-wise Activity Diagram Generation Phase

The purpose of this phase is to construct an activity diagram from the specified scenario and the

relevant information to that scenario from the goal-overview diagram. This section explains the

transformation of the steps in a given scenario into activity diagram control fragments.

Since the proposed approach is grounded in the Prometheus methodology, it assumes scenar-

ios include four types of steps: actions, percepts, goals, and sub-scenarios. We transform every

step into a control fragment of an activity diagram based on the type of step. The first two types

(actions and percepts) are transformed into sequential control fragments. The goal steps are trans-

formed into a combination of alternative, parallel, and sequential control fragments, depending on
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the decomposition of these goal steps in the goal-overview diagram. We flatten the sub-scenario

steps by including those in the main scenario.

Each control fragment in the activity diagram includes action nodes that represent the steps

in the scenario considered. Note that action nodes in activity diagrams model the execution of

behaviour, such as operation invocations. However, we are using activity diagrams as part of

requirement specification and so an activity diagram with a certain sequence of steps represents a

requirement that the subsequently designed system must fulfil. Specifically, where a goal step in

a scenario appears as a corresponding action node in an activity diagram, it does not denote the

execution or achievement of the corresponding goal, but signifies a requirement that the designed

system be able to achieve the goal. This distinction is important because the design process may

end up refining the goals. For example, consider a scenario S that has a single step, Goal1. This

yields an activity diagram with one action node in a sequential control fragment. This does not

mean that Goal1 is executed, but indicates that the design needs to be able to achieve Goal1. In

the case that Goal1 has children goals, a designer may choose to design a system that does not

implement Goal1 directly, but rather, achieves its children.

Therefore, when mapping the goal steps in a given scenario to an activity diagram, we take

into account the goal hierarchy (as depicted in the goal-overview diagram). The reason is that the

process of designing a system relative to a given scenario may focus on parent or children goals

of the scenario’s goal steps. For example, Step 7 in the sale-transaction scenario (see Figure 4.1)

is Notify Participants. It is possible that the design realises this step by including the goal itself

in the design. However, it is also possible that the design refines the scenario into more detail and

that, instead of including the goal Notify Participants, the goal’s two children —Notify Buyer and

Notify Seller—are included, which will realise the parent goal (Notify Participants) as desired.

This means that, when mapping a scenario to an activity diagram, a goal step may be mapped

to a process that combines the goal with its parent or children. In developing the rules for this

mapping, we follow the underlying principle that the scenario specifies design decisions and that

must be honoured.

An example is where a goal G has two children—G1 and G2—that are OR-refined. In this

case, if we replace a scenario step G1 with G, then we risk losing the information that the scenario

designer chose to use G1 rather than G2.
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Another example is a variant of the scenario in Figure 4.1 that replaces Notify Participants

with Notify Buyer followed by Notify Seller. The scenario specifies an order for these two goals.

If we allow the design process to replace these two goals with their parent, then subsequent re-

finement might reintroduce the two sub-goals, but without the ordering constraint specified by the

scenario, which fails to be consistent with the scenario’s constraint on the order.

We now proceed to define the rules for mapping the goal steps in a scenario to an activity

diagram, guided by the above principle.

Goal step merging rules

The reason for this merging process is to provide designers with various ways to realise

goal steps in their design by considering the information from the goal hierarchy that is relevant

to these goal steps. This information depends on the level of abstraction a designer wants their

design to capture. For example, a designer may opt to realise a goal step through the goal itself.

Alternatively, if the designer considers the goal step in a scenario to be of too low-level and too

detailed, then they may realise the step through its parent goal. Conversely, if a designer considers

the goal step to be of too high-level, then they may refine the goal and realise it in their design in

terms of the goal step’s descendants.

Recall that we consider a goal in an activity diagram to represent a requirement that must be

realised in the subsequent design, rather than through the achievement of the goal. This means

that the presence of a goal’s children does not subsume the goal itself. For example, consider a

goal G with three AND-refined children, G1, G2 and G3. One possible design would have a plan

for achieving G that makes use of sub-goals G1 to G3, each with their own plan.

Let us first consider the possibility of realising a goal step G in a given scenario through

its descendants from the goal-overview diagram. If instead of designing (and including) G, we

design its children from the goal-overview diagram, then the constraints that are captured by the

scenario are not violated. To see this we consider three cases, corresponding to the decomposition

type in the goal overview-diagram. There are three different decompositions captured by the goal

overview-diagram (OR, SEQ and AND):

1. Disjunctive decomposition (OR): If a goal step G has, in the goal hierarchy, as children
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Figure 4.3: Activity diagram control fragments equivalent to the goal step transformation

G1 OR G2, we can realise this step by either realising G1 or G2 (perhaps deciding which at

run-time), or we can make a design time decision to select one of them and use, for example,

only design G2. Either option is fine; if either G1 or G2 is included, then G is known to be

realised as desired. In this case, the transformation is to an alternative fragment between4

the goal step G, the goal step G with (any) one of its children in sequence and each of the

children of the goal step G (see Figure 4.3 (a)).

2. Directed-conjunctive decomposition (SEQ): If a goal step G has, in the goal hierarchy as

children G1 SEQ G2, then realising G1 f ollowed by G2 will realise G. In this case, the

transformation is to an alternative fragment between the goal step G; the goal step G with

all of its children in the sequence specified; and all of its children in the sequence specified

(see Figure 4.3(b)).

3. Undirected-conjunctive decomposition (AND): If a goal step G has, in the goal hierarchy

as children, G1 AND G2, then a detailed design that includes the children (either in parallel

or in a specified order) will realise G. In this case, the transformation is to an alternative

fragment between the goal step G, the goal step G followed by all of its children as a parallel

4We include the option of having both the goal as well as its children because in the case where the design targets
a BDI platform one typically posts the parent goal, which leads to the posting of the children (or for an OR, one of the
children) goals, so both parent and children are possible.
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fragment and all of its children as a parallel fragment (see Figure 4.3 (c)).

We now consider the possibility of realising a goal in terms of its parent. We consider four

cases: where the goal G being realised is an ‘only child’ (i.e., its parent P satisfies children(P) =

〈G〉), and where it has siblings, in which case there are three sub-cases, corresponding to the

decomposition of the parent goal P in the goal-overview diagram (OR, AND and SEQ).

Case 1: G is an only child — In this case, if we replace G with P and the detailed design sub-

sequently refines this replacement, then because P only has G as a child, the only possible

refinement is a return to G, which is consistent with the scenario. Therefore, it is safe to

replace G with P in this case (see Figure 4.4 (a)).

Case 2: G has OR siblings — In this case, if we replace the step G with P the subsequent refine-

ment of P at the detailed design stage could choose to replace G with one of its siblings.
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This is inconsistent with the scenario, since realising P implies the realisation of one of the

children, which may not necessarily be the one specified in the scenario. Thus, we cannot

replace G with P in this case (see Figure 4.4 (b)).

Case 3: G has AND siblings — Suppose that G has a parent P and a single sibling G′ and that

the scenario includes G as well as G′. If we replace G and G′ with P, then subsequent

refinement may end up violating the order specified in the scenario. Therefore, we cannot

replace G and G′ with P in this case (see Figure 4.4(c)). Note that the order specified in the

scenario may not be significant: it may only be there because the scenario must specify an

order. However, the point is that we do not and cannot know whether the order of G and G′

is significant.

Case 4: G has SEQ siblings — Suppose that G has a parent P, which is SEQ decomposed into

G followed by G′. As per Case 3, we assume that the scenario includes both G and G′ as

steps, and further, that G and G′ appear in the scenario in an order that is consistent with

their SEQ decomposition. If we replace G and G′ with P, then any subsequent refinement

will reintroduce G and G′ in the correct order and, therefore, will be consistent with the

scenario. In this case, we can allow for mapping the goal step G in terms of its parent under

three conditions:

1- The scenario includes all its siblings.

2- The siblings appear contiguously in the correct order (with respect to the goal overview

diagram).
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3- We map all children of P as an option to design the parent goal P instead (see Fig-

ure 4.4(d)).

Since our approach processes the scenario one step at a time, we address this case by simply

pre-processing the scenario, finding consecutive goals in the scenario that are SEQ siblings

in the goal-overview diagram and replacing them in the scenario with their parent. Consid-

ering the scenario description in Figure 4.5 (a), ‘G1’ and ‘G2’ are consecutive goal steps.

Since these two goals are only children for ‘G’ in the goal model in Figure 4.5 (c) and

they appear in the correct order, we can replace them with their parent without violating the

scenario. Figure 4.5 (b) demonstrates the processed version of the scenario. As the figure

shows, both ‘G1’ and ‘G2’ were replaced by their parent goal ‘G’ in the goal model.

To summarise, when a goal step in a scenario is a parent goal in the goal-overview diagram,

the scenario should, in some cases, include the children as alternatives. This is because such goal

steps can be realised through the children. Similarly, under certain situations, a goal step can be

realised in terms of its parent goal.

We note here that, while there are subtle variations to these cases that do indeed comply with

the scenario, our aim is not to provide the designer with all possible cases, but rather to present

some intuitive variations that they can work with.

Formalising The Generation Approach

We now formalise the merge and the transformation process of the goal steps in a given sce-

nario, since the transformation of other steps is straightforward as discussed in Section 4.1.1. A

scenario comprising steps S1 . . .Sn is translated to a sequence of activity diagram control frag-

ments, where each step is the translation of the corresponding Si, for i in 1 . . . n.

Action and percept steps are transformed into sequential fragments. However, goal steps are

transformed into different fragments, based on their different decompositions in the goal-overview

diagram.

Let G be the goal corresponding to the goal step being mapped, let P denotes its parent,

children(G) denotes its children as a sequence of labels (where the order is the order of execution

for a directed-AND decomposition, and is otherwise arbitrary) and let decompose(G) denotes the

decomposition type of the children of G— that is, one of the following:
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Figure 4.6: Goal tree decomposition types

1. Disjunctive decomposition (OR): G has children G1 OR . . .OR Gn (see Figure 4.6 (a)).

2. Directed-conjunctive decomposition (SEQ): G has children G1 SEQ . . . SEQ Gn (see Fig-

ure 4.6 (b)).

3. Undirected-conjunctive decomposition (AND): G has children G1 AND . . .AND Gn (see Fig-

ure 4.6 (c)).

4. Leaf: G is a Lea f if it has no children (see Figure 4.6 (d)).

For brevity we also define a simple abstract notation for depicting activity diagram control

fragments: we use seq(a1, . . . ,an) to denote the action nodes within the activity diagram where the

ai are joined sequentially; par(a1, . . . ,an) to denote the action nodes within the activity diagram

where all the ai are triggered to run in parallel; and alt(a1, . . . ,an) to denote the action nodes

within the activity diagram where there is a decision point: exactly one of the ai is selected. Each

outgoing activity edge from the decision point is guarded to ensure that only one flow has been

selected. These guards are formed during the generation process based on what is included in

each flow. For example, suppose the goal step G being mapped is the only child of its parent P

and it has one child G′. This goal step can be realised through its parent followed by the goal step

G followed by the child G′, and hence the activity diagram should capture this as one of the flows

that realises G. To restrict the selection of this flow, a guard such as [Flow = Parent . Step .Child]

should be placed on the outgoing activity edge from the decision point that belongs to that flow. It
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is worth noting that activity diagrams are meant to be processed by designers (human beings) and

not by machines. Thus, guards are not in the formal notation.

We transform a scenario S, consisting of steps named S1 . . .Sn to the activity diagram de-

scription denoted by seq(Ŝ1, . . . , Ŝn). We use Si to denote a step in a scenario, and Ŝi to denote the

corresponding action node in the activity diagram.

First, we pre-process the scenario and substitute any SEQ decomposition siblings that appear

in the scenario with their parents, as discussed in Case 4 above:

seq(S1,Gi, . . .G j,Sn) =


seq(S1,G,Sn) if children(G) = 〈Gi, . . . ,G j〉

∧ decompose(G) = SEQ

seq(S1,Gi, . . .G j,Sn) otherwise

in which Si is a scenario step.

Next, we analyse each step and in some cases, realise goals with parents or children. If Si is

the name of a goal step then Ĝ depends on the decomposition type of G, formalised as:

Ĝ =



seq(G) if G is a Lea f

alt(G,seq(G,alt(M)),alt(M)) if DG = OR

alt(G,seq(G, par(M)), par(M)) if DG = AND

alt(G,seq(G,seq(M)),seq(M)) if DG = SEQ

where DG = decompose(G)

and 〈G1, . . . ,Gn〉= children(G)

and M = Ĝ1, . . . , Ĝn

We define the auxiliary function G, which merges the goal itself, G, with its parent P, to

obtain the sequence seq(P,G) when it is permissible to do so (see the earlier discussion), and

leaves all other goals as they are. The goal step G is to be merged with its parent P if—and only

if—the goal step G has no siblings.
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Figure 4.7: Activity diagram that merges the scenario in Figure 4.1 with the goal tree in Figure 4.2
(F:Flow, S:Goal Step, Ch: Children, P: Parent)

Figure 4.8: Example of a non-reducible sub-graph

Figure 4.9: Example of merging the two repeated nodes in Figure 4.8

G =


seq(G,P) if children(P) = 〈G〉

G otherwise

where P = parent(G)

By applying the merging rules the trading-agent system (see Figures 4.1 and 4.2) results in

the activity diagram shown in Figure 4.7.

As the figure depicts, all the action nodes are prefixed with a unique identifier to ensure

that the repeated nodes inhabit different incoming and outgoing vertices and are not merged. For

example, consider the activity diagram in Figure 4.8. If the two A2 nodes are represented as a
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single node (see Figure 4.9) on the printed graph, then the sequence A1,A2,A5 would be permitted,

which is not part of the intended semantics. However, this causes duplicates in the graph, which

we discuss further in the following section.

4.1.2 Activity Diagram Reduction Phase

In Figure 4.7, the diagram includes several duplicate nodes, and in some cases, duplicate sub-

graphs, which affects its readability. Duplicate nodes are semantically equivalent —that is, they

refer to the same event, but are prefixed with unique identifiers; for example, in Figure 4.7, nodes

a19 Notify Seller and a20 Notify Seller refer to the same event, but the prefixes are unique. As

noted above, this is conducted so that the nodes are not merged as one node by the graph-drawing

tool, which in many cases, would alter the semantics of the activity diagram. The reduction mech-

anism that we present merges some nodes (in fact, some sub-graphs) by removing the prefixes in

a sound manner, such that the semantics of the original diagram are maintained.

In this section, we briefly describe how to simplify the original activity diagram generated by

the merging rules to improve the readability, while maintaining the same semantics. Our approach

is a set of rules to eliminate, if possible, repeated action nodes in the diagram.

The following specifies the reduction mechanism as a set of rules for activity diagrams. These

rules do not reduce the nodes that have predecessors, successors or both, as that would change the

semantics of the original activity diagram. For instance, the activity diagram in Figure 4.8 can

not be reduced. This is because merging the two ‘A2’ nodes changes the semantics of the activity

diagram as per Figure 4.9. Thus, we make no claims as to the completeness or optimality of the

approach; however, the rules have worked to simplify the models on which they have been applied

in our case studies.

In the following, we use the notation S1 ≡ S2 to note that two sub-graphs are semantically

equivalent; that is, they refer to the same set of events, but have different prefixes on the nodes; for

example, a19 Notify Seller ≡ a20 Notify Seller are unique, but semantically equivalent actions.

Rule 1. Remove duplicate prefixes in alt: This rule removes duplicate sub-graphs at the start of

an alt fragment in the activity diagram. A duplicate sub-graph prefix S2 is removed by merging
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Figure 4.11: Example on activity diagram reduction (Rule 2)

the sub-graph with its semantic duplicate S1, and then inserting an alt fragment immediately after

S1. Formally:

alt(seq(S1,Sm), alt(seq(S1,

seq(S2,Sn), =⇒ alt(Sm,Sn)),

Sr) Sr)

in which S1 ≡ S2, and Sm, Sn, and Sr are (possibly-empty) graphs.

As an example, consider the activity diagram in Figure 4.10 with duplicate node A1.

Rule 2. Remove duplicate suffixes in alt: This rule removes duplicate sub-graphs at the end of an

alt fragment in the activity diagram. It is essentially the reverse of Rule 1. A duplicate sub-graph

suffix S2 is removed by merging the sub-graph with its semantic duplicate S1, and then inserting

an alt fragment immediately before S1. Formally:

alt(seq(Sm,S1), alt(seq(alt(Sm,Sn)),

seq(Sn,S2), =⇒ S1),

Sr) Sr)

in which S1 ≡ S2, and Sm, Sn, and Sr are (possibly-empty) graphs.

As an example, consider the activity diagram in Figure 4.11 with duplicate node A4.
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Figure 4.12: Example on activity diagram reduction (Rule 4)

Rule 3. Remove unnecessary alts: This rule removes alt fragments that have only one option.

Formally:

alt(S1) =⇒ S1

This rule is useful after an application of Rule 1 in which all children nodes of the decision

point are the same. For example, consider the example of Rule 1 above, but in which the third

option containing only A2, was not in the original activity graph. Applying Rule 1 would result

in a graph in which the first decision point had only one option: A1. Rule 3 would remove the

unnecessary decision point.

Rule 4. Remove embedded duplicate sub-graphs: This rule removes duplicate sub-graphs (typi-

cally sequences) that occur after a decision point, with the duplicate occurring after a subsequent

decision point.

alt(seq(Sm,alt(S1,Sn)), alt(seq(Sm,alt(S1,Sn)),

S2, =⇒ S1,

Sr) Sr)

in which S1 ≡ S2, and Sm, Sn, and Sr are (possibly-empty) graphs.

Note here that the only difference between the left- and right-hand sides of this rule is the

replacement of S1 with S2. While abstractly, there are still two nodes represented, these will be

drawn as a single node. As an example, consider the activity diagram in Figure 4.12 with duplicate

node A2.

It may not be immediately obvious as to whether Rule 4 would be so useful. However, these

structures occur regularly as a consequence of the OR-decomposition rule defined in Section 4.1.1.

For example, as in the example above, A1 is a parent goal and A2 and A3 are children nodes.
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Figure 4.13: Refined activity diagram from Figure 4.7(F: flow, S: goal step, Ch: children, P:
parent, M: merge)

In summary, the reduction process is performed by identifying repeated sub-graphs, and

merging them by applying the aforementioned rules. For example, in Figure 4.7 the nodes a11 and

a6 are followed by the portions of the graph that are identical to each other in terms of structure,

and the labels of nodes (ignoring the numerical prefix on the labels). Figure 4.13 shows the refined

version of the original activity diagram in Figure 4.7.

Soundness

We now prove that the four reduction rules defined above are sound. That is, they preserve the

semantics of the original activity diagram. In proving this we make use of the following notations

and concepts.

Given two sequences, s = 〈s1, . . . ,sn〉 and t = 〈t1, . . . , tm〉 we use s · t to denote the result of

concatenating the two sequences, i.e. s · t = 〈s1, . . . ,sn, t1, . . . tm〉. We extend the concatenation

operator to also apply to sets of sequences: S · T = {s · t | s ∈ S∧ t ∈ T}. For example, let

S = {〈 s1, s2〉 〈 s3, s4〉} and T = {〈 t1, t2〉}. Then, S.T = {〈 s1, s2, t1, t2〉, 〈 s3, s4, t1, t2〉}.

We use [[S ]] to denote the meaning of S, which is the set of all traces specified by activity

diagram diagram S. Specifically, [[S ]] is a set of sequences. Let R be a sub-graph in the activity

diagram S. The activity diagram S, as explained earlier in this chapter, is specified in terms of

the constructs seq(. . .), par(. . .) and alt(. . .), and that the semantics satisfies the following two
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properties:

[[alt(R1,R2) ]] = [[R1 ]]∪ [[R2 ]]

[[seq(R1,R2) ]] = [[R1 ]] · [[R2 ]]

In other words, the semantics of alt(. . .) is the union of the semantics of each of the alternatives

and the semantics of seq(. . .) is the concatenation of the semantics of the components. Since the

reduction rules do not consider the parallel constructs (i.e., par(. . .)), we do not need to specify

[[ par(R1,R2) ]]. We now proceed to prove soundness.

Theorem 1. Reduction rules 1-4 are sound, ie. for each rule of the form L⇒ R we have that

[[L ]] = [[R ]].

Proof. For Rule 1, consider the following:

[[alt(seq(S1,Sm),seq(S2,Sn),Sr) ]]

= [[seq(S1,Sm) ]] ∪ [[seq(S2,Sn) ]] ∪ [[Sr ]]

= ([[S1 ]] · [[Sm ]]) ∪ ([[S2 ]] · [[Sn ]]) ∪ [[Sr ]]

(since S1 ≡ S2)

= ([[S1 ]] · [[Sm ]]) ∪ ([[S1 ]] · [[Sn ]]) ∪ [[Sr ]]

(since (S ·T )∪ (S ·R) = S · (T ∪R))

= ([[S1 ]] · ([[Sm ]]∪ [[Sn ]])) ∪ [[Sr ]]

= [[seq(S1,alt(Sm,Sn)) ]]∪ [[Sr ]]

= [[alt(seq(S1,alt(Sm,Sn)),Sr) ]]

Similarly for rule 2:

[[alt(seq(Sm,S1),seq(Sn,S2),Sr) ]]

= [[seq(Sm,S1) ]] ∪ [[seq(Sn,S2) ]] ∪ [[Sr ]]

= ([[Sm ]] · [[S1 ]]) ∪ ([[Sn ]] · [[S2 ]]) ∪ [[Sr ]]

(since S1 ≡ S2)

= ([[Sm ]] · [[S1 ]]) ∪ ([[Sn ]] · [[S1 ]]) ∪ [[Sr ]]

(since (T ·S)∪ (R ·S) = (T ∪R) ·S)

= (([[Sm ]]∪ [[Sn ]]) · [[S1 ]]) ∪ [[Sr ]]
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= [[seq(alt(Sm,Sn),S1) ]]∪ [[Sr ]]

= [[alt(seq(alt(Sm,Sn),S1),Sr) ]]

This shows soundness for Rule 2. For Rule 3 soundness is trivial, as it eliminates the alternative

control fragments that have only one operand. For Rule 4 soundness is also trivial, since the only

change is replacing S2 with S1 when S1 ≡ S2

Prototype implementation

We have implemented the mapping from the scenario and the goal-overview diagram to the activity

diagram as an Eclipse plug-in that integrates with the PDT. The tool takes the agent design file in

XML format and tokenises all scenarios as well as the goal-overview diagram out of the design file.

The tool applies the merging rules on the specified scenario to generate the abstract description.

Then, it uses the abstract description to generate a DOT Graph source script5, which can be used

to generate a graphical depiction of the activity diagram (the Graphviz tool creates an automatic

layout of nodes). We used this prototype implementation to generate the activity diagrams for the

user study we conducted (see Section 4.3).

4.2 Benefits of The Activity Diagrams

The aim of the approach presented in this chapter is to provide diagrams that act as coherent struc-

tures that merge given scenarios with their related goal decomposition trees. This transformation

has a number benefits besides enhancing the analysis of scenarios, since graphical notations tend

to better support tasks that involve a comprehension of the overall structure [Bratthall and Wohlin

2002, Tilley and Huang 2003]. This section discusses some of the benefits of complementing

scenarios and goal-overview diagrams with activity diagrams. In fact, the usefulness of supple-

menting the requirement specification process with activity diagrams has been studied previously

[Bolloju and Sun 2012, Gross and Dörr 2009]. However, in this section we show the advantages

that the activity diagrams—as a complementary artefact—have over the existing requirement spec-

ification approach of Prometheus.

5See http://www.graphviz.org/Documentation.php.
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Figure 4.14: Activity diagram for the scenario in Figure 4.1 with variation

Structured representation of scenario steps and their variations

A scenario is a sequence of steps that describe a particular run of the intended system. In some

cases, based on the context of a given scenario, there may be a need to go beyond a sequence of

steps. Approaches for specifying scenarios in Prometheus limit the ability to include additional

information, such as variations, in a structured way. For example, Prometheus scenarios do not

support parallel steps, and variations are specified through natural language description. Using

UML-activity diagrams provides a more structured way to visualise and specify control fragments

in requirement models.

Returning to the running example, consider the following variation to the scenario in Figure

4.1: ‘after the buyer agent receives the item list (step 2) from the seller agent, it may select a

product (step 3) or show its disinterest’. Thus, the flow of this scenario should branch after

posting the second step (‘Send Item’) into two choices: (1) posting ‘Select Item’ or (2) posting

‘Show Disinterest’. A natural linguistic description of this may faithfully capture the semantics,

but interpreting this in the context of the goal-overview diagram is non-trivial, as it requires some

mental effort. However, an activity diagram can capture this in a straightforward and unambiguous

manner, such as the solution provided in Figure 4.14.

The existing approach (text-based) does not offer a structured way to specify parallel steps.

Consider the following requirement from the trading-agent System: ‘The banker agent then pro-

cesses the payment and notifies both the seller and the buyer about the payment process outcomes

(approved or denied)’. Based on the specification, the banker agent needs to send notifications
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to both the buyer and the seller agents, but the order of posting these two notifications is not

important. In Prometheus, this can be modelled by including a parent goal in the scenario and

then specifying two children nodes with an undirected-AND. However, the variations introduced

by these may require some mental effort from a designer to conceptualise on the part of a de-

signer. Constructing an activity diagram to represent this through fork/join nodes can assist in

such conceptualisation.

This structured representation of scenario steps and their variations enables our verification

approach to generate a complete executable model that represents the specified scenario. The

executable model will include the basic flow of the scenario, its variations and any steps that need

to occur in parallel. Additionally, it will capture the possible ways to realise the goal steps in the

scenario, as activity diagrams merge the goal steps with their relevant information from the goal

model.

Understandability

In Prometheus, the specification of the intended system is distributed across two artefacts: the sce-

narios and a goal-overview diagram. The merged activity diagram provides a holistic view of how

to design a given scenario, and enabling a more straightforward understanding of the behaviour

of the system in the context of a particular scenario. Importantly, the activity diagram explicitly

represents the possible alternate sequences of the two models. For example, the activity diagram

in Figure 4.14 has seven possible execution runs after posting the ‘Send Item Price’ step, which

requires more mental effort to ascertain from the scenario (see Figure 4.1) and the goal-overview

diagram (see Figure 4.2). According to the experiments we conducted (see Section 4.4), partici-

pants were quicker at eliciting possible alternatives for a given step using the activity diagram than

they were using the existing approach (the scenario and goal overview).

Maintenance

Scenarios may evolve throughout and after the analysis phase. For instance, a designer may intro-

duce a variation that includes new goals. For example, the variation to the scenario in Figure 4.1

mentioned earlier in Section 4.2 introduces‘Show Disinterest’as a new goal.
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Based on the user study we conducted (see Section 4.4), incorporating newly introduced goals

by considering text-based variation requires more mental effort from designers than the activity

diagram. The activity diagram provides designers with a context that helps them to associate goals

with existing goal trees.

4.3 User Study

In this section, we outline a controlled experimental evaluation to measure overheads and also to

gauge the usefulness that a complete activity diagram has for a software engineer when analysing

a Prometheus goal model and scenario. We recruited 15 participants with varying levels of expe-

rience in Prometheus and gave them several tasks to complete on simple requirements documents,

while measuring aspects of their performance.

We were primarily interested in evaluating the activity diagrams for understandability—that

is, how much the presence of an activity diagram impacts a person’s ability to understand the

requirement models—and maintainability—that is, how straightforward a design is to maintain

using an activity diagram. In addition, we measured the overheads incurred by software engineers

when introducing activity diagrams in the Prometheus methodology.

4.3.1 Experimental Design

We recruited a total of 15 participants in the experiment6. A pre-evaluation questionnaire7 consist-

ing of nine questions was used to measure their experience with software engineering in general,

as well as with AOSE and the Prometheus methodology. All participants were familiar with in-

telligent agents (researchers or practitioners in a related area) and most had some experience in

requirement analysis; eleven participants had experience in the Prometheus methodology and all

but one had experience using some agent-oriented methodology, including Prometheus. Fourteen

of the participants were experienced software developers, with the remaining participant holding

a degree in computer science.

6Refer to Appendix A for the ethics approval.
7Refer to Appendix A
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1 2 5 3 2 2 3 4 11-20 11-20 No
2 4 4 4 4 3 3 4 1-5 1-5 No
3 4 4 3 4 4 4 3 6-10 1-5 No
4 2 5 4 3 2 2 4 11-20 1-5 No
5 4 4 3 3 3 3 3 11-20 1-5 No
6 3 3 2 3 3 3 2 6-10 1-5 Yes
7 4 4 1 4 4 5 4 30+ 11-20 Yes
8 3 4 1 4 3 4 4 30+ 1-5 No
9 5 4 3 5 5 5 3 11-20 1-5 Yes
10 4 5 5 4 3 3 5 1-5 6-10 No
11 4 4 1 4 4 5 1 11-20 1-5 No
12 5 3 3 5 3 4 2 30+ 1-5 No
13 4 4 4 5 5 5 3 11-20 1-5 No
14 3 4 4 4 3 2 4 1-5 1-5 No
15 5 4 3 5 4 5 3 21-29 0 No

Table 4.1: Summary of the pre-evaluation questionnaire outcomes (refer to Appendix A)

Each participant was given several tasks to perform8. These tasks asked participants to in-

terpret, verify, and modify a set of requirement models for two simple systems. The presence

or absence of the additional activity diagram in the requirements provided was the independent

variable; this was the only difference: the remainder of the content in the requirement documents

did not change. It is worth noting that the activity diagram provided was automatically generated

from the scenario and the goal-overview diagram. After this, all the modifications were applied

manually to the activity diagram.

8Refer to Appendix A
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To mitigate the possibility of experience bias, for each participant, one of the requirement

documents contained an activity diagram. Thus, each participant was asked to complete three

tasks without the aid of an activity diagram for one system, and the same three tasks, as well as an

additional fourth task, with an activity diagram for the other system (see below for a discussion of

the tasks).

To mitigate the possibility of participant bias, participants were divided into two groups,

G1 and G2. G1 received system S1 with an activity diagram, and system S2 without, while G2

received system S1 without an activity diagram, and S2 with an activity diagram. Given this, we

had two versions for each system in the experiment.

As Table 4.1 shows, some participants were more familiar with UML behavioural models

(Q2.2)9 than Prometheus (Q1.3)10. To mitigate this familiarity bias, all participants were given

optional material to read prior to the experiment (see Appendix A). These two pages explain the

relevant parts of both Prometheus and the activity diagram to the experiment participants. Addi-

tionally, all the participants were given the opportunity to clarify any point of the optional material

prior to the experiment. The aim of this evaluation was to evaluate the benefits of supplementing

Prometheus with activity diagram, rather than comparing Prometheus to the use of an activity

diagram.

Finally, within each group, we balanced out in which order the participants received the

systems to avoid a potential bias whereby participants used their experience from the first system

to answer questions on the second. That is, half of the participants received the activity diagrams

with the first set of tasks and half received them with the second set.

We measured two dependent variables: time and correctness. For time we simply measured

the clock time from the start to the completion of each task as a proxy for both maintainability and

understandability; that is, how well does the activity diagram aid software engineers to come up

to speed with the semantics of the requirement models, and to modify them. There were no time

limits on tasks. For correctness, we assessed the participants’ answers to each task to determine

whether they had completed the task correctly. This was also used as a proxy for measuring

9participants were asked to rate their experience with UML behavioural models on a scale of 1-5, with 1 being
inexperienced and 5 being expert.

10participants were asked to rate their familiarity with Prometheus on a scale of 1-5, with 1 being very unfamiliar
and 5 being very familiar.
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maintainability and understandability; that is, how much impact does the activity diagram have on

the ability to understand and modify the requirement models correctly.

Once the tasks had been completed, participants were asked to complete a four question sur-

vey11 asking about their experience, and their perceptions of the usefulness of activity diagrams.

4.3.2 Tasks

Each participant was asked to perform the following tasks (see Appendix A for full details):

(1) To verify a set of five behaviour runs—assumed to be extracted from an execution of the

system—against the requirement models. The verification of a behaviour run means that its

conformance to the requirement models is determined.

(2) To specify any three valid behaviour runs with respect to the requirement models.

(3) To modify a goal-overview diagram based on a new requirement proposed by a stakeholder.

(4) To modify an activity diagram based on a new requirement proposed by a stakeholder (only for

the system for which an activity diagram was provided). The tool we developed for generating

the intended activity diagram is a prototype implementation that is not stable enough for ac-

cepting digital modifications to the diagram. Thus, we asked participants to manually modify

the activity diagrams (using paper and pen), as we did not want the prototype implementation

to interfere with the timing results.

The purpose of the first two tasks is to measure understandability of models, while the latter

two aim to measure maintainability. For example, ‘Task 1’ asked participants to verify whether

the following valid trace of the sale-transaction system was valid indeed:

Store Opening, Send Item List, Select Item, Send Item Price, Make Payment,

Validate Card, Notify Participants, Send Item.

‘Task 3’ asked participants to modify the goal overview diagram given the new requirement: ‘After

the buyer agent receives the item list event from the seller agent, it may select a product or may

show its disinterest’.

11Refer to Appendix A
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Scores (number as %) Mean Stdev Mean Stdev
Task AD 0 1 2 3 4 5 Score Score Time Time

T1 8 0% 0% 27% 7% 40% 27% 3.67 1.18 4:16 2:49
4 0% 0% 0% 0% 13% 87% 4.87 0.35 2:39 1:19

T2 8 27% 7% 27% 40% 1.8 1.26 3:04 0:48
4 0% 7% 7% 87% 2.8 0.56 2:50 1:01

T3 8 67% 33% 0.33 0.49 3:08 1:38
4 27% 73% 0.73 0.46 2:18 1:08

T4 4 0% 100% 1.0 0.00 1:17 1:04

Table 4.2: Task analysis results (AD = Activity diagram)

In practical terms, these tasks were small, in that each task took only a few minutes to com-

plete. However, while small, they were not trivial—as indicated by the results, a significant pro-

portion of the participants made mistakes.

4.4 Results

In this section, we present and discuss our experiment results.

Task analysis results

Table 4.2 presents a breakdown of the results for each task. Numbers in each cell for columns

labelled zero to five represent the percentage of participants who scored that number. Scores refer

to the number of traces correctly identified. ‘Task 1’ had five identified traces, while ‘Task 2’ had

three identified traces; for example, for ‘Task 1’ performed without the activity diagram (‘8’),

27% of the participants scored two out of five. With regard to ‘Task 3’ and ‘Task 4’ a score of

zero meant that the task was not achieved, while a score of one meant that the task was achieved.

The mean and standard deviation for scores and completion time are presented in Table 4.2. These

results show a clear trend that participants scored higher on tasks if they had the help of activity

diagrams.

Understandability Recall that tasks 1 and 2 aim to measure the understandability of require-

ments models with and without activity diagrams. Our results provided the following observa-
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tions:

The average scores for ‘Task 1’ and ‘Task 2’ are one point or more greater than those of the

other tasks when aided by an activity diagram—and there are only a total of three points in ‘Task

2’. Further, with the aid of an activity diagram, almost all of the participants addressed all sub-

tasks correctly for ‘Task 1’ and ‘Task 2’, compared to the few participants who addressed these

sub-tasks correctly without the use of an activity diagram.

Participants completed ‘Task 1’ on average two minutes faster with an activity diagram than

without and with less variation. Completion times for ‘Task 2’ were slightly faster with the activity

diagram.

The reason for these results seems clear: with an activity diagram, the specified behaviour of

the system can be easily inferred. With only a goal-overview diagram and scenario, the interplay

between the two models can introduce subtle variations in behaviour that are not obvious. Adding

an activity diagram helps to remove much of the ambiguity related to these variations.

However, the standard deviation in time for ‘Task 1’ was large as a result of one participant

taking over six minutes to complete the task. Further, this participant took the longest out of all

the participants in all four tasks using the activity diagram. This participant also took longer to

complete ‘Task 1‘ and ‘Task 3’ with an activity diagram than without, as the participant was using

both the activity diagram and the scenario with the goal tree, instead of the activity diagram alone,

as was required by the task. However, this participant acted as an anomaly and therefore does not

indicate that the addition of an activity diagram may not always be useful.

Maintainability tasks 3 and 4 aim to measure the maintainability of requirement models with

and without activity diagrams. From the outcomes of the user study the following observations

have been made:

For ‘Task 3’, the percentages and average scores show that, when aided by an activity dia-

gram, participants were able to correctly modify the goal overview to consider new requirements

more often than without the activity diagram. In addition, the average time taken to complete the

tasks was 50 seconds faster with an activity diagram.

Interestingly, in ‘Task 3’, one participant did not even commence the task for the system

without the activity diagram, despite having completed ‘Task 3’ with the aid of the activity diagram
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(a) Scores (out of nine: “Task1” = 5 scores,
“Task2” = 3 scores and “Task3” = 1 score)

(b) Time (minutes)

Figure 4.15: Box-plots for total scores and total time

previously for the other system. The participant commented that they just did not know where to

start.

These results add evidence to our hypothesis that activity diagrams are useful aids when

maintaining/modifying requirement models. We mostly attribute this to the fact that the partic-

ipants had a solid understanding of the specified behaviour, as was also demonstrated by ‘Task

1’ and ‘Task 2’. However, ‘Task 3’ asked participants to modify the goal-overview diagram, so

the results provide evidence that the activity diagram is not just useful for characterising specific

behaviour traces in the requirement models, but also for considering sets of behaviours, which is

what participants were required to do to update the goal-overview diagram.

‘Task 4’ asked participants to modify the activity diagram, so there is no comparison to

be made. To assess the correctness of this, we checked whether the updated activity diagram

captured the two additional traces and only those two additional traces. Our conclusion for ‘Task

4’ was based on the fact that all participants were able to correctly modify the activity diagram as

instructed. The results here clearly support that maintaining the activity diagrams does not add a

large amount of complexity to the task.

Figure 4.15(a) shows a box-plot of the scores (out of nine) for all tasks, except for ‘Task 4’.

These nine scores are the total scores for the first three tasks. ‘Task4’ was excluded from this

total, as it is about maintaining activity diagrams, and hence, it is not in the non-activity version.
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Qst SD D N A SA Mean Stdev

Q1 0% 0% 7% 20% 73% 4.67 0.62
Q2 0% 0% 0% 53% 47% 4.47 0.52
Q3 0% 0% 0% 47% 53% 4.53 0.52
Q4 0% 0% 0% 40% 60% 4.6 0.51

Table 4.3: Post-evaluation questionnaire (Responses: [SD] Strongly Disagree=1, [D] Disagree=2,
[N] Neither=3, [A] Agree=4, [SA] Strongly Agree=5), see Section 4.3.1 for the questions.

These plots demonstrate that participants did better in the activity-based approach with a median

value equals to nine (the maximum score), compared with a median of six for the non-activity

approach. Further, the minimum score for the activity-based approach is greater than the median

score for the non-activity approach (7 > 6). With respect to the time taken for each approach (see

Figure 4.15(b)), the activity-based approach takes less time than the non-activity approach. All

the minimum, median and maximum values (4:37, 7 and 15:25 respectively) of the time taken to

complete the activity-based approach are less than those for non-activity approach (5:06, 10:30

and 22:14 respectively).

Post-evaluation questionnaire

Table 4.3 shows the results for the post-evaluation questionnaire. We asked participants to

rank their experience by agreeing or disagreeing with the following four statements:

Q1. The activity diagram enables an easy extraction of a possible behaviour path relative to a

particular scenario.

Q2. The time taken to grasp what the entire activity diagram shows is reasonable.

Q3. It is easy to maintain activity diagrams (and easy to incorporate changes including: adding,

removing and modifying entities).

Q4. Activity diagrams would be useful in designing the agents for a particular scenario.

The results here demonstrate a strong preference for the inclusion of activity diagrams; they

show that participants felt the diagrams were useful for understanding behaviour, were straight-

forward to use, and would aid with the design process.

In addition to the four statements above, we asked participants to answer an open-ended

question. The question asked the study participants about the approach they most preferred and to
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Activity Diagam Non-Activity

Participant ID
Scores

(out of 9)
Time

(in minutes)
Scores

(out of 9)
Time

(in minutes)

1 9 15:25 8 8:15
2 9 7:33 4 11:35
3 9 8:41 8 22:14
4 8 8:35 4 5:06
5 8 11:36 7 13:30
6 9 11:34 6 13:33
7 8 5:10 3 7:00
8 9 4:37 8 10:17
9 9 5:38 4 12:15

10 7 5:51 8 7:27
11 9 7:21 5 12:33
12 9 7:24 3 6:24
13 8 4:19 7 10:04
14 7 8:54 5 10:17
15 8 6:05 7 6:49

Mean 8.4 7:55 5.8 10:29
CI 0.373 1:41 0.96 2:20

Upper confidence bound 8.77 9:36 6.76 12:49
Lower confidence bound 8.02 6:13 4:84 8:08

Table 4.4: Summary of the total results for each participant in both approaches (CI: confidence
interval value at a confidence level of 95%)

justify why preferred it. The answers to the open-ended question also further confirm the results

obtained from the post-evaluation questionnaire in Table 4.3:

“The approach with the activity diagram is preferable. While I prefer (I think) to de-

sign agents using the goal overview, analysing possible interactions between agents,

sequence of actions etc. is made easier with the activity diagram. Design flow would

be easier to find through analysis of activity diagram, as you have a single line to

follow rather than multiple goal trees.” —Study Participant 1.

Some participants noted that it was not the activity diagram itself that was useful, but the

activity diagram in combination with the goal overview-diagram:

“The one with activity diagram is more helpful, but it is not a substitute for goals.

It just makes the trace analysis easier because the sequence of events is integrated
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regardless of the agent by whom they are caused.” —Study Participant 7.

Three other participants noted that the usefulness of activity diagrams is not limited to un-

derstanding behaviour; it may also facilitate the communication between the system analyst and

the stakeholders.

“I would prefer to use the approach that uses activity diagram, because it was very

useful to understand the behaviour of the system in simple way that could help the

requirements analyst to share it with the stakeholders which will help to mitigate the

problem of communicating the requirements with clients.” —Study Participant 12.

Statistical Significance

The two measures taken were the (correctness and time). Table 4.4 lists the scores, times, and

the means of the scores (out of 9) as well as the time taken for all the participants in the first three

tasks using each approach and the confidence intervals at 95%. Note that we excluded the fourth

task using the activity-based approach from this comparison, as it does not have an equivalent task

using the other approach.

Given the estimated range of the scores of the activity-based approach (8.02≤mean≤ 8.77)

and the non-activity approach (4.84 ≤ mean ≤ 6.76), it is noted that these intervals do not over-

lap; therefore, we can conclude that the results for the scores are significant with a 95% level of

confidence.

It is clear that the participants took less time using the activity-based approach on average,

compared to when using the non-activity approach. However, the confidence intervals for these

samples overlap, so further analysis is required.

The sample under analysis is a paired sample, as all 15 participants undertook both ap-

proaches. Using a Shapiro test [Royston 1995], we concluded that the data was not normally

distributed. Thus, we used the Wilcoxon-signed-rank non-parametric test [Hollander et al. 2013]

for our samples. The null hypothesis (H0) is that there is no difference between the times in the

activity-based approach and the non-activity approach, while the alternative (H1) is that there is a

significant difference.

We ran the test in R with a significance level of 95% (α = 0.05). The resulting p-value was

0.044 (p-value ≤ 0.05), so we rejected the null hypotheses (H0). Thus, there is a significant dif-
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ference between the times in both approaches.

Threats to validity

The main threat to the external validity of our experiment is the scale of the designs used.

The size of the system used in the study was comparable to those in industry-level projects. In fact,

it was larger than the systems in the industry-level projects used for our evaluation in Chapter 7.

We did not use industry-level projects in this study because they are not as easy to understand

compared with the system we have employed. However, much larger systems may result in a more

complicated activity diagram that requires more time to understand than the original approach.

Thus, further experimentation on larger systems is needed.

Since the first two tasks require participants to deal with behavioural runs, maturation is

an internal threat to the validity of the experiments. The first task asks participants to validate

behavioural runs, while ‘Task 2’ requires them to specify possible behavioural runs given the

same scenario and goal tree. Thus, participants may use their experience from ‘Task 1’ to achieve

‘Task 2’ and, hence, the correctness of and the time taken to complete ‘Task 2’ may be affected.

As a result, the experiments need to distinguish ‘Task 1’ from ‘Task 2’, by either varying the goal

tree or the scenario to obtain more reliable results. However, we distinguished these two tasks

by rearranging the choices (see appendix A). We observed that all participants tackled both tasks

independently (i.e., they did not seem to rely on their experience from ‘Task 1’ in achieving ‘Task

2’). In fact, all participants specified different behavioural runs in ‘Task 2’ than those used for

‘Task 1’.

4.5 Related Work

In the context of AOSE, there has been a strong focus on models for requirements, but little re-

search into the relationships between these models. The six AOSE methodologies mentioned in

Chapter 2 each supports the requirement gathering and analysis process. Further, most of the

methodologies share similar requirement specification elements [DeLoach et al. 2009]. Such pro-

cesses result in a variety of artefacts and, hence, the information is scattered across these artefacts.

Despite the fact that these methodologies offer development environments through their supported
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Comments.

Prometheus 4 8 8 8 There is an attempt for structured specifica-
tion of variations ([Thangarajah et al. 2011])

Tropos 4 8 8 8 There is a proposal to transform the early re-
quiremnts model in the secure Tropos into
use-case models ([Alam et al. 2015])

MaSE 4 8 8 8 —

INGENIAS 4 8 8 8 —

Gaia 4 8 8 8 there is an attempt to extend the methodology
through in- corporating the AUML modelling
notations including sequence diagram and ac-
tivity diagrams ([Duran-Faundez et al. 2015])

ROADMAP 4 P 8 8 —

PASSI 4 8 4 8 Activity diagrams are used in specifying the
capabilities of each agent, and not to specify
the requirements of the system-to-be.

Prometheus + Our Approach 4 4 4 4 Our approach complements the require-
ments specification process in the Prometheus
methodology.

Table 4.5: Features supported by the seven AOSE methodologies considered in this thesis con-
cerning requirements specification (4: feature is supported, 8: feature is not supported, P: feature
is partially supported)

tools, they do not offer the ability to merge information from the different artefacts into one cohe-

sive structure (see Table 4.5). Further, some of them, such as Prometheus and ROADMAP do not

provide a structured approach for specifying variations to the requirements, while other, such as

MaSE, do provide such an approach.
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In [Al-Hashel et al. 2007], a comparison between three methodologies (ROADMAP, Prometheus,

and MaSE) is conducted. The comparison shows that all these methodologies share the same no-

tions of goal hierarchy and use cases when specifying requirements. However, they provide little,

if any, support for the structured specification of variations or for merging different artefacts into a

single representation. As shown in our evaluation, this single representation enhances the capacity

for understanding and maintaining the requirements.

MaSE uses sequence diagrams to represent the textual use-case scenarios. However, the

methodology does not consider the goal hierarchy in this process [DeLoach et al. 2001]. More

importantly, the tool support (the agent tool [DeLoach 2001]) of the methodology does not auto-

matically generate the sequence diagram equivalent to a given scenario that may be error prone.

There has been an attempt, extending Prometheus, to enhance the approach to specifying

requirements. In [Thangarajah et al. 2011], the authors proposed a more structured way for spec-

ifying requirements in Prometheus. Their focus was on generating scenario-based test cases for

the run-time testing of agent systems. They provided a means for specifying variations in terms

of actions and percepts and showed how scenarios may be traced to the detailed design of the

agents for coverage. Future work would involve investigating a similar traceability approach to

the activity diagram based approach presented in this work.

the scenarios of ROADMAP/AOR [Sterling and Taveter 2009] already support the structures

considered in our work, including sequences, branching and parallelism. The notation used is

tabular rather than graphical, but it can be used to specify traces in a similar ways to activity

diagrams. However, the methodology does not support the concept of a single coherent structure

representing both scenarios and goal models.

With respect to Gaia, there has been an attempt to extend the methodology by incorporating

the AUML modelling notations, including by the use of sequence diagrams and activity diagrams

[Duran-Faundez et al. 2015], which has been presented through the development of a flexible

manufacturing control system following the Gaia methodology. As stated in Chapter 2, in Gaia

the roles (functions) of the intended system are specified as role models forming an initial step.

Then, the interaction models are used to model the interactions between agents and the dependency

between these different roles. In [Duran-Faundez et al. 2015], AUML-sequence diagrams are used

to model the interactions. However, these diagrams are manually generated. Further, the authors
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use activity diagrams to manually model the internals of each agent based on its functions (roles).

Alam et al. in [Alam et al. 2015] propose guidelines by which to transform the early re-

quirement models of the secure Tropos into UMLsec12 use-case diagrams. Such transformation is

meant to show the dependency between the actors and the functionalities that require security in

the intended system. Thus, they provide a mechanism to elicit information from a larger model (an

early requirement model) into a cohesive model (a use-case diagram). They use the Kent Mod-

elling Transformation Language (KMTL) for the transformation; however, they do not indicate

whether this transformation is automatic or not. In addition, their proposed approach does not

allow designers to edit such models, and incorporate variations.

There is other relevant work on automating the transformation of use-cases into UML-activity

diagrams. Yue et al. [Yue et al. 2010] propose a sophisticated algorithm to automatically transform

use cases into UML-activity diagrams. The use cases supported in their approach must follow a

tabular format that includes the basic and the alternative flows. Yue et al. [Yue et al. 2010] adopt

different natural language processing techniques for analysing the free-text description of the use

cases. Thus, the use cases description must follow the RUCM template that has 26 well-defined

restriction rules [Yue et al. 2009]. However, the proposal in [Yue et al. 2010] does not consider

other artefacts than use cases, whereas our approach considers goal hierarchy.

Gutirrez et al. [Gutiérrez et al. 2008], developed an approach to automate the process of

generating an activity diagram out of a use-case scenario. They use the QVT-rational language

(query/view/transformation) for the model transformation and provide designers with a meta-

model that must be followed when specifying use-case scenarios. This meta-model allows design-

ers to specify the core elements of the intended scenario, including participants, pre-conditions,

post-conditions, the main flow of steps and any alternatives. Even though the meta-model pro-

vided in their work is similar to the structure of scenarios in Prometheus, it does not allow for

the specification of parallel steps, which is supported by Prometheus. Scenarios can implicitly

capture parallelism through having a goal step in the scenario that has children of the undirected-

conjunctive decomposition. Unlike our approach, the meta-model does not allow designers to

merge any relevant information to the specified use case scenario from other artefacts.

12UMLsec is an extension to UML notation to enable the development of secure systems [Jürjens 2002].

115 (August 14, 2017)



CHAPTER 4: REQUIREMENTS SPECIFICATION VIA ACTIVITY DIAGRAMS

Summary

In this chapter, we have proposed an approach that complements the current approach for

specifying requirements in the Prometheus methodology. The approach is to introduce activity

diagrams to be used as coherent structures that merge the steps of a given scenario along with

their related information from a goal-overview diagram. Although our approach is grounded in

Prometheus, it is applicable to any methodology that link the notions of goal hierarchies and use

case scenarios in the system specification phase.

We discussed the benefits our approach offers designers with respect to different design as-

pects and how it overcomes the limitations of the current approach of Prometheus. Our method

enables designers to specify more control fragments, such as parallelism and variations in a more

structured manner. Since we have a better structured representation, we can ensure that the ex-

ecutable model that represents the specified scenario covers all possible flows in the scenario,

including variations. For example, we transform activity diagrams in our approach, as discussed

in Chapter 5, into Petri nets.

Our user study showed that including activity diagrams leads to a better understanding of the

specification by the provision of a more holistic view on what the intended system is meant to

achieve and how it should behave and that it provides assistance when performing maintenance

on the system. More importantly, the results showed that the inclusion of activity diagrams as

an extra artefact does not have any significant overhead for designers. Participants in our exper-

iment unanimously agreed that the inclusion of the activity diagram improved their abilities to

understand the requirement models.
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Protocols in Prometheus are specified using AUML notation, namely AUML-sequence diagrams.

Similarly, scenarios are captured via structures akin to use case structures in the object-oriented

paradigm, with goals that are modelled using a goal model. Agents in Prometheus are designed in

terms of plans that are associated with each other through different entities (e.g., events, actions

and percepts). Such designs are considered semi-formal models. With this in mind, it is necessary

to transform these models into more general and executable models with precise semantics so they

can be used by our automated checking approach.

This chapter explains the technical aspects of transforming the semi-formal models in Prometheus

to executable models. These models are used for ensuring the conformity of all possible be-

haviour runs from the agent-behaviour models with specified point-of-reference artefacts (i.e.,

scenarios and interaction protocols). We have choosen the simple place/transition Petri nets (see

Section 2.6) to act as executable models, as they can model the essential control fragments (i.e.,

sequential, selection, loop and parallel) that are captured by both the point-of-reference artefacts

and the agent-behaviour models. Section 5.1 details the transformation of the point-of-reference

artefacts: (1) scenarios with a goal model (i.e., an activity diagram from Chapter 4) and (2) proto-

cols. Section 5.2 explains the transition from agent-behaviour models to executable models with

the aim of extracting all possible behaviour runs.
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Figure 5.1: Static verification framework (PR: point-of-reference artefact, PN: Petri net)

5.1 Executable Reference Models

Figure 5.1 outlines the modules of our verification framework. In this section, we concentrate

on the module that translates the point-of-reference artefacts to Petri nets (labelled ‘2.PR to Petri

net’ in Figure 5.1). As per Figure 5.1, the input to this module is either a protocol or an activity

diagram that merges a scenario with its relevant information from the goal overview diagram (see

Chapter 4). The module results in a place/transition Petri net that serves as an executable model

to the processed point-of-reference artefact (i.e., an activity diagram or a protocol).

Although there are many formalisms, such as statecharts [Harel 1987], which provide richer

semantics than Petri nets, we opt for Petri nets since they are simple to understand, and they fulfil

the needs of our approach. Further, there are existing algorithms proposed by Poutakidis et al. that

translate AUML-sequence diagrams into Petri nets [Padgham et al. 2005b].

Both activity diagrams and AUML-sequence diagrams may capture a single control fragment

or a combination of control fragments. There are five different control fragments that a point-

of-reference artefact can depict (see Section 2.3.2 and 2.7): sequential (SEQ), selection (ALT),
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Figure 5.2: An interaction protocol and its equivalent activity diagram with their Petri net

optional (OPT), parallel (PAR) and loop (LOOP). Each control fragment is then transformed to

its equivalent place/transition Petri net fragment. The concatenation of all the Petri net fragments

results in a net that represents the specified point-of-reference artefact.

For example, Figure 5.2 (a) depicts an AUML-sequence diagram that describes the interac-

tion between two agents. Briefly, the protocol organises a negotiation process between the ‘Seller’

and the ‘Buyer’ agents. The ‘Seller’ agent gives the price to the ‘Buyer‘ agent. Then the ‘Buyer’

agent alternatively either agrees on the given price or refuses it. The protocol captures two control

fragments: sequential and selection.

The AUML-sequence diagram in Figure 5.2 (a) is textually described as SEQ (Give Price,

ALT (Agree, Re f use)). The activity diagram in Figure 5.2 (b) models the same protocol. Similar to

the AUML-sequence diagram, the activity diagram is textually described as SEQ (Give Price, ALT

(Agree, Re f use)). Since both AUML-sequence diagrams and activity diagrams capture the same

control fragments and they both share the same textual description, their transformation to Petri

nets is the same from an abstract perspective.

Figure 5.2 (c) shows the equivalent Petri net that defines the semantics of the negotiation
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Figure 5.3: Simple AUML protocol with its states and its Petri net

protocol described above. The Petri net precisely matches the semantics of the AUML-sequence

diagram in Figure 5.2 (a) and in the activity diagram in Figure 5.2 (b). The Petri net captures

two fragments: sequential and selection. The ‘T0’ transition represents the sequential control

fragment, while the transitions ‘T1’ and ‘T2’ depict the selection control fragment. After the ‘T0’

transition fires, the ‘Sync Place0’ place will have a token, allowing only one of the transitions

‘T1’ and ‘T2’ to fire. The ‘Sync Place0’ place concatenates the two fragments to form the full

Petri net equivalent to the AUML-sequence diagram and the activity diagram (i.e., an interaction

protocol and a scenario). The ‘Start’ place is a special place that indicates the initial state of the

Petri net.

5.1.1 Point-of-Reference Artefacts to Petri Nets

Poutakidis et al. [Padgham et al. 2005b] have developed a debugging framework that ensures the

correctness of the interactions between Prometheus-based agents. The debugging is performed

by monitoring the system while it is in its running state. The framework compares the agent-

behaviours with the expected behaviours based on the design artefacts (i.e., the interaction proto-

cols) and then reports any discrepancies. Thus, the framework needs to process the design artefacts

to produce debugging components. Converting design artefacts to debugging components means

generating suitable machine interpreted components from the design artefacts.

The debugging approach of Poutakidis et al. uses AUML-sequence diagrams for mod-
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Figure 5.4: Interaction protocols with nested structures

elling interaction protocols. AUML-sequence diagrams are not precise enough to be interpreted

by machines. Hence, Poutakidis et al. have chosen to translate AUML-sequence diagrams to

place/transition Petri nets.

Poutakidis et al. have developed a translation algorithm for each control fragment of the

AUML-sequence diagram. It is important to note that we directly adopt these translation algo-

rithms in our approach. However, we modify the transformation of the parallel control fragment

as detailed in Section 5.1.2.

The translation considers an AUML protocol as a set of interaction states between partici-

pants. An interaction occurrence (e.g., a message being sent to another agent) causes the protocol

to advance from one state to another. For example, by posting ‘M1’ in Figure 5.3, the protocol

advances from state ‘S0’ to state ‘S1’. The protocol then progresses towards its final state ‘S2’

by sending ‘M2’. These transitions between the protocol states are modelled as a Petri net (see

Figure 5.3 (b)). Initially, the ‘S0’ place of the Petri net would have a token to indicate the be-

ginning of the protocol. The posting of the ‘M1’ message is indicated by placing a token into its

corresponding place in the Petri net. Then, the transition ‘T0’ is enabled and can be fired, as all

its input places have tokens. By firing the ‘T0’ transition, the Petri net advances to the ‘S1’ state,

which indicates an advancement from the ‘S0’ state to the ‘S1’ state in its corresponding protocol

in Figure 5.3 (a).
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Figure 5.5: A sequential control fragment with its Petri net

Note that AUML protocols can capture the nested structures of many control fragments.

An example of a nested structure is a selection control fragment inside another selection control

fragment (see Figure 5.4 (a)). Such structures are not necessarily of the same type (e.g., a selection

within a selection) they may also be of different types (e.g., a selection within a parallel), as per

Figure 5.4 (b).

In the following, we describe the translation approach to the control fragments captured by

both the AUML-sequence diagrams and the UML-activity diagrams:1

• Sequential (SEQ): the sequential control fragment indicates that the execution order of the

entities of the specified point-of-reference artefact (i.e., protocol or scenario) is by one entity

(i.e., a step or a message) after another. Figure 5.5 illustrates the sequential control fragment

and its equivalent Petri net. The protocol in Figure 5.5 (a) shows that the ‘a’ message must

be sent before the ‘b’ message and that both messages must be sent to satisfy the protocol.

Similarly, the activity diagram in Figure 5.5 (b) states that the ‘a’ step must be realised

before the ‘b’ step and that both steps must be realised before the activity diagram reaches

its final state.

The Petri net version of both the AUML protocol and the UML-activity diagram is shown

in Figure 5.5 (c). As can be seen from the figure, the Petri net enforces the execution flow

1The control fragments listed are shared in modelling protocols and scenarios. However, we refer the reader to
([Poutakidis 2008], Chapter 4) for a comprehensive list of the AUML-sequence diagram control fragments.
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Figure 5.6: A selection control fragment with its Petri net

captured by the behaviour diagrams in Figure 5.5 (a) and Figure 5.5 (b). The Petri net will

not reach its termination place (‘S2’) unless both the ‘T0’ and ‘T1’ transitions are fired in

sequence. Given this, place ‘a’ must receive a token first to fire the ‘T0’ transition and then

place ‘b’ should receive a token to enable the ‘T1’ transition to fire.

• Selection (ALT ): this control fragment is used to model alternative ways to realise the same

goal (i.e., a step or a communication). The protocol in Figure 5.6 (a) captures a selection

control fragment with two regions, where only one region is to be executed. As a result,

only one message out of the two messages (‘a’ and ‘b’) will be sent. Likewise, the activity

diagram in Figure 5.6 (b) starts with a decision point that splits the execution flow into two

branches, with only one branch to be executed (i.e., either the ‘a’ step or the ‘b’ step will be

performed).

The Petri net equivalent to the behaviour diagrams in Figures 5.6 (a) and 5.6 (b) is shown

in Figure 5.6 (c). As per the figure, the Petri net begins from state ‘S0’ to allow only one

transition to be fired (either ‘T0’ or ‘T1’). If the ‘a’ entity occurs, then the Petri net will

reach the ‘S1’ termination place. Alternatively, if the ‘b’ entity occurs, then the termination

place ‘S2’ will be reached.

• Optional (OPT ): in this control fragment, the entities (i.e., the steps or messages) within
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Figure 5.8: A loop control fragment with its Petri net

the fragment may or may not occur. The protocol in Figure 5.7 (a) has an optional control

fragment with only one message to be sent: ‘a’. Similarly, the activity diagram in Figure 5.7

(b) has a decision point with two branches. One branch indicates the ‘a’ step, while the other

directs the execution flow towards the merge point that combines the branches and to the

termination state of the activity diagram.

The Petri net equivalent to the behaviour diagrams in Figures 5.7 (a) and 5.7 (b) is shown in
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Figure 5.9: Petri net for a loop control fragment with one iteration

Figure 5.7 (c). As per the figure, the Petri net begins with the ‘S0’ state, allowing either the

‘T0’ or the ‘T1’ transition to be executed. The execution of the ‘T0’ transition means that

the optional control fragment is executed, whereas firing the ‘T1’ transition means that the

optional control fragment is discarded.

• Loop (LOOP): the loop-control fragment enables its enclosed entities (i.e., its steps or mes-

sages) to occur multiple times. Since our approach considers a static view of the system-to-

be, it cannot determine the number of iterations a loop-control fragment undergoes. Thus,

we assume that a loop control fragment iterates only once (see Assumption 3 on page 63).

The AUML protocol in Figure 5.8 (a) enforces that the messages ‘a’ and ‘b’ can be sent

multiple times. In Figure 5.8 (b), the activity diagram states that steps ‘a’ and ‘b’ can be

executed multiple times.

The Petri net version, based on Poutakidis’ transformation approach to the loop-control

fragment is shown in Figure 5.8 (c). The Petri net starts with the ’T1’ transition and ends

with the ‘T2’ transition. However, the Petri net also has the ‘T3’ transition that enables the

execution of the Petri net multiple times, as ‘T3’ can be treated as ‘T1’. This is because the

termination place of the Petri net (‘S2’) is linked to the ‘T3’ transition of the ‘a’ place. For

example, the following sequence of entities would result into two iterations: 〈 a, b, a, b 〉.

However, recall that we treat loops as a cycle with one iteration; therefore, these two entities

(i.e., ‘a’ and ‘b’) should occur only once. Therefore, we eliminate the ‘T3’ transition, which

consequently eliminates the repetitions (see Figure 5.9).
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Figure 5.10: A parallel control fragment with its Petri net

• Parallel (PAR): this control fragment consists of multiple interleaved segments (i.e., regions

in a protocol or branches in an activity diagram). The protocol in Figure 5.10 (a) has a

parallel control fragment with two regions. Each region has one message: the ‘a’ message

and the ‘b’ message. These two messages can be sent in an unspecified order. Either the

‘a’ message first and the ‘b’ message second or the ‘b’ message first followed by the ‘a’

message. Similarly, the activity diagram in Figure 5.10 (b) starts with a fork that splits the

execution flow into two interleaved branches, which indicates that the two branches can be

executed in any order. Considering the two branches in Figure 5.10 (b), the ‘a’ step may

be performed before ‘b’ or the other way around. These forked branches are then joined,

through a join UML-control entity, with the main execution flow.

The equivalent Petri net to the parallel control fragment, based on Poutakidis’ transforma-

tion approach [Padgham et al. 2005b], is shown in Figure 5.10 (c). The Petri net implements

an intermediate level through two states (‘S0′ ’ and ‘S0′ ’). This intermediate level allows

the two entities (‘a’ and ‘b’) to occur in any order. For example, if ‘a’ occured, then the

Petri net will be in the ‘S0′ ’ state, allowing ‘b’ to occur before terminating the execution.

Conversely, if ‘b’ occurred first, then the ‘T1’ transition would be fired, leaving the Petri net

at the ‘S0′ ’ state to allow ‘a’ to occur before reaching the termination place ‘S1’.
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Figure 5.11: Original parallel control fragment transformation algorithm

5.1.2 Parallel Construct Translation

We directly adopt the translation approach outlined in Section 5.1.1, except for the translation

of the parallel control fragment. Poutakidis’ transformation of the parallel control fragment (as

cited in [Padgham et al. 2005b]) is correct. However, the complexity of the current algorithm

is exponential. For example, the Petri net in Figure 5.10 (c) models a parallel control fragment

with two segments and each segment includes only one entity. Figure 5.11 (c) shows the Petri

net version of the diagrams in Figures 5.11 (a) and 5.11 (b). As can be seen from the figures, the

parallel control fragment has three segments, with only one entity in each segment. The additional

segment, compared with the parallel control fragment in Figure 5.10, results in more levels of the

Petri net (i.e., in a vertical increase). Further, the sequence of entities within each segment can

lead to more places for each level (i.e., a horizontal increase).

Poutakidis’ approach (as cited in [Padgham et al. 2005b]) can be problematic in the context

of our framework. In our method, particularly in the case of checking agent-behaviour models

against requirements, activity diagrams are usually complex. This is because requirements rep-
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resent steps from scenarios along with relevant information for the goal model. Specifically, the

parallel control fragment in these diagrams usually has more than two branches and it may in-

clude other control fragments (i.e., nested structures). Hence, if adopting Poutakidis’ (as cited

in [Padgham et al. 2005b]) transformation algorithm, the equivalent Petri nets to these diagrams

would be very large and costly to create. As a result, we have simplified the transformation of the

parallel control fragments so it suits the needs of our framework.

Instead of the eager approach used by Poutakidis (as cited in [Padgham et al. 2005b]), we use

lazy approach to transform the parallel control fragment. We modify the transformation algorithm

so it forks the interleaved branches via a fork transition and then joins them through a join transi-

tion. We create a separate Petri net for each segment in the parallel control fragment and then we

connect these nets by a fork and a join transitions. Figure 5.12 (c) depicts the modified Petri net

version of the parallel control fragment. As can be seen from the figure, each segment is modelled

as a separate net and these three nets are linked through two transitions. The ‘T0’ transition forks

the execution into three nets, while the ‘T4’ joins these three forked branches into one place (the

‘ST3’ place). Note that the Petri net in Figure 5.12 (c) is smaller in size compared with the one in

Figure 5.11 (c).
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5.2 Executable Behaviour Models

Agents are modelled so that they behave according to their corresponding point-of-reference arte-

facts (i.e., scenarios and interaction protocols). To verify these behaviour models against a given

point-of-reference artefact, we extract all possible behaviour runs from the agent-behaviour mod-

els and check them against the point-of-reference artefact. Often, a realisation of a given point-

of-reference artefact (a scenario or a protocol) is spread across multiple agents (i.e., in multiple

agent-overview diagrams). The steps of a scenario are associated with roles and these roles can

be assigned to multiple agents. For example, the scenario in Figure 5.13 has three steps, each of

which corresponds to a different role. Figure 5.14 shows the role-grouping model of the system-to-

be. The figure demonstrates that the roles ‘R1’ and ‘R2’ are linked to the ‘Seller’ agent, whereas

129 (August 14, 2017)



CHAPTER 5: STATIC MODELS TO EXECUTABLE MODELS

SearchAccountPayAuthorization CreditorNDebitor ReceiptPayCredit

Bank Agent Overview Diagram

PayAuthorization

MatchCustomerInfo

ReleaseKey

ConductPayment

Request

Receipt

EPO

Accept

Goods

ExitSystem

Quote

Load

DecryptionKey

EncryptProduct

Deliver

SayBye

Merchant Agent Overview Diagram

Legend
Event \ Message

Plan

ProductsAffordable

BrowseQuote

ChooseProduct

Shopping

Quote

EPO

Accept

Goods

ExitSystem

Request

DecryptionKey DecryptProduct

ProvideCreditCardInfo

AskForQuote

Customer Agent Overview Diagram

Event \ Message PlanLegend:

Legend
Event \ Message

Plan

Figure 5.16: Agent-behaviour models for the Net-Bill AUML protocol

the role ‘R3’ is linked to the ‘Buyer’ agent. Therefore, the scenario in Figure 5.13 is realised

through multiple agents (the ‘Seller’ and the ‘Buyer’).

Protocols often involve multiple agents, and thus, the realisations of such protocols are often

spread across the agents that are involved in these protocols. For example, the ‘Net-Bill’ protocol2

in Figure 5.15 models the interactions between three agents: ‘Customer’, ‘Merchant’ and ‘Bank’.

The ‘Customer’ agent optionally sends a ‘Request’ message to the ‘Merchant’ agent at the start

of the interaction. Then, the ‘Merchant’ agent responds by sending the ‘Quote’ message. After

that, the ‘Customer’ agent may refuse or accept the quote. In the case where the customer accepts

the quote by posting an ‘Accept’ message to the ‘Merchant’ agent, the delivery of the goods along

with the payment transaction takes place.

Figure 5.16 represents one possible design—specified using the Prometheus methodology—

that satisfies the protocol; the figure shows the behaviour models of the three agents, where the

plans that handle incoming messages and produce outgoing messages are specified.

To generate the set of all possible behaviour runs for a design over more than one agent, all

design entities (i.e., steps or communication constructs) in these agent-behaviour models that are

relevant to a point-of-reference artefact need to be located and organised into a single coherent

artefact. Thus, following Miller et al. [Miller et al. 2010], we construct a plan graph for represent-

ing the information relevant to a given point-of-reference artefact.

2This protocol models the transactions in electronic-commerce systems [Cox 1995].
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The generation of the set of runs is a two-step process: (1) the construction of the plan graph

(see Section 5.2.1); and, as explained in Section 5.2.3, (2) the transformation of that plan graph

to an executable model so we can extract the behaviour runs.

5.2.1 Behaviour Designs to Plan Graphs

Miller et al. [Miller et al. 2010] propose an approach to check the coverage of interaction protocol

test cases. They construct a plan graph for each protocol to define a set of coverage criteria for

the test cases of each protocol. The plan graph aggregates the relevant messages and their plans

from different participants into one structure. We have borrowed the concept of plan graphs to

act as coherent structures that merge multiple designs. However, plan graphs of our approach are

different from those proposed by Miller et al ([Miller et al. 2010]).

In our approach, we use plan graphs to allow for the extraction of all possible behaviour

runs from the agent-behaviour models. Miller et al. [Miller et al. 2010] define a plan graph

concerning an interaction protocol, so their plan graphs capture only the relationship between

plans and messages. In contrast, we are interested in the relationship between plans and actions,

percepts, messages, internal events and goals. This introduces many challenges as detailed in

Section 5.2.1 (page 133).

Plan graphs in our approach are structures that show holistic view of agents with respect

to the specified point-of-reference artefact. Each path through a plan graph represents one run

of the system and each of these runs should conform to the requirements specified by the point-

of-reference artefact under investigation. Formally, we define a plan graph as per Definition 1.

Definition 1. A plan graph is a directed bipartite graph PG = (P, T, D), in which the two types of

nodes are plans (P) and events (T ) and the relationships between plans and events are represented

by edges (D) where:

• P: is a set of plans P = { p1, p2, . . . , pn}.

• T: is a set of events T = { e1, e2, . . . , en}.

• D: is a set of ordered pairs D = { (p1, e1), (e1, p2), . . . , (pn, en), (en, pn+1)}.
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Figure 5.17: Control fragments that may be captured by a plan graph

Plan Graph Representation

Because of the links between events and plans (edges D in Definition 1), plan graphs can capture

four different control fragments as follows (see Figure 5.17):

(1). Sequential (SEQ): SEQ(p1, . . . , pn) denotes that the plans within this fragment are to be

executed sequentially.

(2). Alternative (ALT): ALT (p1, . . . , pn) denotes that only one of the plans within this fragment

is to be executed.

(3). Parallel (PAR): PAR(p1, . . . , pn) denotes that the plans within this fragment are to be exe-

cuted in parallel.

(4). Loop (cycles): cycles are specified by having a plan that handles an event post another event

that is also handled by the plan that handles the first event (p1 → t2 → p1).

Figure 5.18 shows the plan graph corresponding to the design of the ‘Net-Bill’ protocol (see

Figure 5.15). This plan graph effectively merges the designs of the three agents in Figure 5.16,

but includes information that is relevant to the specified protocol. It is important to note that

plan graphs may include entities that are irrelevant to the specified point-of-reference artefact.
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For example, the ‘Load’ event in the plan graph is irrelevant to the protocol. The plan graph in

Figure 5.18 captures three control fragments: alternative, parallel and sequential. The ‘Start’ node

is linked to two plans forming an alternative control fragment. The ‘MatchCoustomerInfo’ plan

and the ‘BrowseQuote’ plan must be executed in sequence. Since the ‘BrowseQuote’ plan posts

two entities (‘ExitSystem’ and ‘ProductAffordable’), it implements a parallel control fragment, as

all the entities interleave together.

Plan Graph Construction

The starting point for constructing a plan graph is the agent-behaviour models that consist of a

collection of plans. Each plan has a defined trigger, which can be a goal (i.e., an internal event), a

message or a percept. Plans can trigger sub-goals, send messages and perform actions. We create

a plan graph from the detailed design by beginning with the design entity that corresponds to the

first entity of the specified point-of-reference artefact and then by recursively traversing links in

the agent behaviour models (see Algorithm 1). These links may be spread over several agents;

for example, via the sending of a message. Therefore, the extracted plan graph is a subset of

the agent (merged) behaviour models. For example, to generate the plan graph in Figure 5.18,

the construction process starts with the plan that posts the first message in the protocol (either

the ‘Request’ message or the ‘Quote’ message). Then, it follows the links between the plans
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Algorithm 1 The algorithm for constructing a plan graph
Require: PoR (point-of-reference artefact: scenario or protocol.)
Require: DD (Agent detailed designs, i.e., agents’ behaviour models).

1: Initialisations:
2: node ← null # object of type Node with two attributes: (1) name and (2) list of type Node
3: f irstEntity ← PoR.getFirstEntity() # fetches the first entity out of the PoR.
4: planGraph ← Null # an object of type node that stores the starting node of the plan graph.
5: node.name ← DD.getNode( f irstEntity).getName # obtains the node name from the agents’ designs.
6: Begins:
7: planGraph ← ConstructPlanGraph(node.name)
8: Function ConstructPlanGraph
9: Pass In: nodeName:String

10: Pass Out: node:Node
11: if DD.getNode(nodeName).getLinkedNode = null then
12: return node
13: else
14: node.name ← DD.getNode(nodeName).getLinkedNodeName
15: node.list ←+ DD.getNode(nodeName).getLinkedNode
16: ConstructPlanGraph (node.name) # Recursively call the function
17: end if
18: EndFunction

throughout the behaviour models of the three agents.

There are five specific points that need to be addressed and that require a deviation from a

simple subset of the agent designs (i.e., [Miller et al. 2010]).

First, there may be multiple entities that correspond to the first entity of the specified point-of-

reference artefact. It is possible for protocols to have more than one initial message. For example,

the protocol in Figure 5.15 has two possible starting points, as it begins with an optional control

fragment. As a result, either the ‘Request’ message or the ‘Quote’ message is to be sent first. To

overcome this issue, we add a single dummy ‘Start’ message as the first node of the plan graph,

which is linked to all nodes that represent the protocol’s starting points. As can be seen from

Figure 5.18, the plan graph has its dummy ‘Start’ node linked to the two plans that can initiate the

protocol.

With respect to scenarios, if the first step in the specified scenario is an abstract goal, then a

subset of the goal’s descendants could commence the scenario, meaning there may be a number

of possible starting points for the scenario:

1. OR-composed children: In this case, the starting point is the goal or one of its children

(i.e., its sub-goals). The plan graph is derived by following links from each of the possible

starting points and then using these starting points as alternatives.
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Figure 5.19: Plan graphs for the three types of goal compositions

2. Undirected-AND children: In this case, the starting point is any of the sub-goals, but all

sub-goals must occur. The plan graph is derived by introducing a dummy plan that links to

all of the sub-goals and that dummy plan is triggered by the start of the process.

3. Directed-AND children: The first sub-goal in the sequence is the starting point for the plan

graph.

Figure 5.19 presents examples of each of these relationships and their corresponding plan

graphs, where G is the (abstract) goal that is the first step of the scenario being considered.

After we have dealt with beginnings, we must deal with actions. In agent-behaviour models,

an action is not followed by another step (it does not have any outgoing arcs) and, hence, it

terminates the plan graph. However, in point-of-reference artefacts, an action does not always

end the process. Thus, an action entity in the specified point-of-reference artefact creates a gap in

the plan graph relative to the point-of-reference artefact. For example, in the ‘RefundTransaction’

protocol in Figure 2.7 (page 26), the ‘ReleaseCash’ action creates a gap in its detailed design (see

Figure 2.9, page 28). This is because the action node is not linked to any entity in the design (i.e.,

it does not terminate the flow of the links in the design); however, the action does terminate the

protocol. Similarly, the ‘EnteredCredentials’ action in the ‘LostCard’ scenario (see Figure 2.5,

page 25) causes a gap in the detailed design of the agents, though this action does not indicate the

end of the scenario.

We overcome this issue through segmenting the point-of-reference artefact and then using
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Algorithm 2 The algorithm for segmenting the specified point-of-reference artefact
Require: PoR (Scenario description or AUML textual notation for a protocol) #array of entities.

1: Initialisations:
2: numberO f Entities ← PoR.getNumberO f Entities()
3: entity ← null
4: listO f Segments ← null
5: tempSegment ← null
6: entityPointer ← 0
7: Begins:
8: while numberO f Entities 6= 0 do
9: entity ← PoR.Entity[entityPointer] # get one entity at a time.

10: tempSegment ← entity
11: entityPointer = entityPointer+1 # move the array pointer one step forward.
12: numberO f Entities = numberO f Entities−1
13: if entity.type = ‘Action′ then
14: listO f Segments ← tempSegment
15: tempSegment ← null
16: end if
17: end while
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Figure 5.20: Ticketing Agent design overview diagram

these segments to bridge the gaps. Before construing the plan graph, we pre-process the spec-

ified point-of-reference artefact. This pre-process operation results in the segmentation of the

specified point-of-reference artefact into multiple pieces based on the action entities. For exam-

ple, the ‘LostCard’ scenario in Figure 2.5 (page 25) results into two segments. The first segment

includes the first step (the ‘LostRequest’ percept) and everything up to the ‘EnteredCredentials’

action step, whereas the second segment starts from the ‘AccountInfo’ percept and continues until

the ‘UpdateAccountData’ action step. After pre-processing the scenario, a plan graph for each

segment is constructed.

Figures 5.20 and 5.21 show a possible design for the ‘LostCard’ scenario on page 25. The
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Figure 5.21: Payment Manager design overview diagram
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Figure 5.22: Plan graph of the scenario without goal nodes

plan graph that is created based on the scenario above captures two sub-graphs, one for each

segment in the scenario (see Figure 5.22). The first sub-graph begins with the ‘LostRequest’

percept and ends with the ‘EnteredCredentials’ action node. The second sub-graph starts with the

‘AccountInfo’ percept and continues until the ‘UpdateAccountData’ action.

As stated earlier, we have rectified the gap issue by using the specified point-of-reference

artefact to bridge the gap. If an action is not the final step of the point-of-reference artefact, then

we use the entities defined in the point-of-reference artefact to determine the link to continue the

flow of the plan graph. For example, if the point-of-reference artefact specifies that an entity

following an action is a percept, then we use the percept as a continuation of the plan graph; if

it is a goal, then we use the goal. We add a dashed link from the action to the corresponding

continuation point. Considering the plan graph in Figure 5.22, we bridge the gap by linking—

shown via a dashed arrow—the ‘EnteredCredentials’ action node that terminates the first segment

with the ‘AccountInfo’ percept node that initiates the second segment in the ‘LostCard’ scenario.
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Plan Name Goal/s to be realised

StoreLostRequestInfo ExtractRequePG-reductionstInfo

AuthenticateUserCredentials VerifyCredentials

ObtainAccountDetails GetAccouintInfo

InformEndOfTransaction RefundOldCard

UpdateProviderServers UpdateServersWithLostRequest

Table 5.1: Goals to be realised based on the descriptors of the plans in Figure 5.20 and Figure 5.21
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Figure 5.23: The plan graph in Figure 5.22 after incorporating the goals in Table 5.1

Third, Prometheus does not allow for the explicit modelling of goal steps in agent-behaviour

models (i.e., for agents’ detailed design overview diagrams). Instead, agent-behaviour models can

have plans to realise these goal steps without the goal nodes appearing explicitly in the agent-

behaviour models. Table 5.1 lists the goals corresponding to each plan shown in Figures 5.20

and 5.21.

We use plan descriptors for extracting the goals from the agent-behaviour models. The ap-

proach for constructing the plan graph is the same as explained earlier in this section. However,
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Figure 5.24: Simple AUML protocol with dependent messages

we insert the goals, which are extracted from the descriptors of the plans in the plan graph. We

create a dummy plan to post the goal and tailor the plan that realises the goal step to handle it.

After inserting these goals into the plan graph in Figure 5.22, we end up with a plan graph with

all the relevant goals incorporated in it, as shown in Figure 5.23.

In the cases where the specified point-of-reference artefact is a scenario, it is possible for the

first step to be assigned to a role that is associated with multiple agents, meaning that multiple plan

graphs need to be considered. This is because multiple agents would realise the step. We consider

the detailed designs of all agents that are linked to that role, procuring multiple plan graphs and

positioning each plan graph as an alternative. Thus, the starting nodes of each plan graph will be

children of a single starting node, forming one large plan graph from all designs.

Fifth, Prometheus allows plans to handle multiple events, with only one event as a trigger,

meaning that the trigger occurs first. However, the other inputs and the output entities of such

plans can occur in an unspecified order. Our approach must address this situation, in particular

when there is a dependency between the entities of the specified point-of-reference artefact.

For example, the protocol in Figure 5.24 models the interaction between three agents: the ‘A’

agent, the ‘B’ agent and the ‘C’ agent. The flow of messages between these agents is as follows:

‘M1’ is sent first by the ‘A’ agent and then ‘M2’ by the ‘B’ agent. After the ‘C’ agent receives

both ‘M1’ and ‘M2’ in the same order, it responds by sending ‘M3’ to the ‘A’ agent. Given this,

‘M3’ depends on the delivery of ‘M1’ and ‘M2’ and, hence, the protocol in Figure 5.24 highlights

a dependency between its messages.

139 (August 14, 2017)



CHAPTER 5: STATIC MODELS TO EXECUTABLE MODELS

M3

Plan1

M1 M2

Legend
Message

Plan

Figure 5.25: Agent ‘C’ design for the protocol in Figure 5.24
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Figure 5.27: Using the protocol in Figure 5.24 to bridge the gap

Figure 5.25 depicts part of the agent-behaviour models with respect to the protocol in Fig-

ure 5.24, namely the ‘C’ agent. According to the design shown in the figure, the ‘C’ agent may

send ‘M3’ after receiving‘M1’ or it may send it after processing ‘M2’.

Figure 5.26 shows the plan graph constructed from the agent-behaviour models of the proto-

col in Figure 5.24. As per Figure 5.26, the plan graph captures a break in its flow (‘Plan 1’ forms

another graph). Therefore, the plan graph in the figure has two separate threads, as shown in the
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Figure 5.28: Bridging the plan graph through a dummy node

Figure 5.26. We cannot bridge this gap by linking these two threads via the sequence enforced by

the protocol, as explained in the second challenge of this section. By doing so, we will end up

with a plan graph that has two alternative paths, as shown in Figure 5.27. In fact, the plan graph in

Figure 5.27 has different semantics to those stated by the agent-behaviour model in Figure 5.25.

Our approach bridges such breaks so that the semantics of the behaviour models are pre-

served. The bridging should ensure that the trigger occurs first, whereas the other inputs and

output entities occur in an unspecified order. Therefore, we bridge such gaps in the flow via a

dummy event (‘Seq1’ in Figure 5.28). This dummy event is posted by the same plan that handles

the triggering event (see ‘Plan1’ in Figure 5.28). As a result, the input and the output entities

(‘M2’ and ‘M3’) of the plan (‘Plan1’) are posted in parallel.

5.2.2 Plan Graph Reduction

A plan graph represents a subset of the agent-behaviour models that is relevant to a given point-

of-reference artefact. It is not unusual for plan graphs to depict entities that are irrelevant to the

specified point-of-reference artefact. This is because the construction algorithm used relies on

the flow between entities across agent models and, consequently, all design entities within the

flow are included. For example, the plan graph in Figure 5.23 has irrelevant entities to the ‘Lost-

Card’ scenario (on page 25). The ‘LostRequestInfoStored’ event, the ‘AccountFetched’ event, the

‘RefundRequest’ message, the ‘AmountRefunded’ event and the ‘EndOfRefundTransaction’ mes-

sage are not steps in the ‘LostCard’ scenario. Bearing in mind the purpose of plan graphs, which

is to extract all possible behaviour runs from the agent-behaviour models concerning the specified

point-of-reference artefact, all irrelevant tokens (e.g., the ‘LostRequestInfoStored’ event) can be

filtered out from the runs.
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Since a plan graph can capture parallelism, the number of possible behaviour runs can ex-

ponentially grow, particularly as the plan graph expands. This increase in the size of plan graphs

may result from entities irrelevant to the specified point-of-reference artefact. Moreover, the par-

allelisms in such graphs can also be formed by irrelevant entities. Thus, reducing plan graphs by

eliminating irrelevant entities will have a positive impact on the complexity of plan graphs and,

consequently, will enhance the scalability of our approach.

In our work, we propose a bottom-up approach to reduce plan graphs. Our reduction approach

involves the following two steps:

1. The elimination of unnecessary plans.

2. The elimination of unnecessary events.

Formally:

• Let Pr be the set of events (percepts, actions, goals and messages) in the specified point-of-

reference artefact (i.e., scenario or protocol).

• As per Definition 1, a plan graph PG is ( P, T, D ).

• Let TIR = { t | ( p, t ) ∈ D ∨ ( t, p) ∈ D } \ Pr.

• Let PIR = { p | ( p, t ) ∈ D ∧ t ∈ TIR }.

• Let Ev = { t | ( t, p ) ∈ D ∧ p ∈ PIR}

Rule 1. Eliminate the unnecessary plans. We pre-process the intended plan graph to eliminate

the plans whose output set is irrelevant to the specified point-of-reference artefact. Formally:

DIR = ( D \ ( { (t, p) | (t, p ) ∈ D ∧ t ∈ TIR } ∪ { (p, t) | (p, t ) ∈ D ∧ t ∈

TIR } ) ∪ ( Ev × Pl) )

Here:

• DIR is the set of edges of the reduced plan graph.
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Figure 5.29: Example on the first reduction rule
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Figure 5.30: Reducing a plan graph with ALT control fragment

It is important to note that this phase only eliminates the plans that have their output set of

events irrelevant to the specified point-of-reference artefact and not the plans that handle these

events. As a result, the new plan graph will have two segments. For example, let us assume

that the ‘N1’ event in Figure 5.29 (A) is irrelevant to the specified point-of-reference artefact.

Therefore, the plan ‘P2’ in the plan graph has its output set (i.e., ‘N1’) irrelevant to the specified

point-of-reference artefact. According to Rule 1, this plan should be eliminated—a procedure that
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will divide the plan graph into two segments (see Figure 5.29 (B)). As shown in Figure 5.29 (C),

the plan graph is bridged by linking the event ‘E1’ with the plan ‘P3’.

After eliminating the unnecessary plans, we start examining the output and input sets of each

plan from the bottom of the plan graph and commence removing the events that are irrelevant to

the specified point-of-reference artefact (PR). It is important to note that if the irrelevant event

is associated with an ALT control fragment (i.e., more than one plan to handle the same entity),

then, to preserve the structure of the plan graph, the entity is not eliminated. Considering the plan

graph in Figure 5.30a, let us assume that the ‘N1’ event is irrelevant to the specified point-of-

reference artefact. Since ‘N1’ is associated with an ALT -control fragment, we cannot eliminate

the event, as that would imply the removal of the plans that form the control fragment. Instead,

we must keep the ‘N1’ event so that the structure of the original plan graph is preserved, as shown

in Figure 5.30b.

Rule 2. Eliminate the unnecessary events. We eliminate the entities that are the irrelevant to the

specified point-of-reference artefact and the plans that handle them. Formally:

DIR = ( D \ ( { (p, t) | (p, t ) ∈ D ∧ t ∈ TIR } ∪ { (t, p) | (t, p ) ∈ D ∧ t ∈

TIR ∧ | { S } | = 1 }∪ ( Pl × Ev) ))

Here:

• S = { (t, p) | (t, p ) ∈ D ∧ t ∈ TIR }

• DIR is the set of edges on the reduced plan graph.

Unlike Rule 1, the Cartesian product in Rule 2 is Pl × Ev. This is because we eliminate the

plans that handle the irrelevant entities, whereas, in the first rule, we eliminate the plans that post

them. Additionally, we constrain Rule 2 not to eliminate the events that are associated with more

than one plan. This is achieved by restricting the cardinality of the set that contains pairs (t, p) to

one (| {S} |= 1).

Considering the ‘Net-Bill’ protocol in Figure 5.15, the plan graph in Figure 5.18 captures

three irrelevant messages: ‘ProductAffordable’, ‘Load’ and ‘CreditorNDepitor’. Since the ‘Load’

and ‘CreditorNDepitor’ messages are the only outputs for their plans, they are eliminated as a
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Figure 5.31: Reduced version of the plan graph in Figure 5.23
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Figure 5.32: Reduced plan graph of the plan graph in Figure 5.18

consequence of removing their plans through the application of Rule 1. Based on Rule 1, all of

these plans must be eliminated, as their output sets irrelevant to the protocol. Figure 5.31 shows

the reduced version of the plan graph in Figure 5.23 after eliminating the unnecessary plans.

Conversely, the ‘ProductAffordable’ message in Figure 5.18 is not the only output for its plan
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Run ID Runs out of the PG Runs / irrelevant entities Unique runs out of the PG Runs out of the RPG
1 〈1,2,3,4,5,6,7,8,9,10,11,12〉 〈1,2,3,5,7,8,9,11,12〉 〈1,2,3,5,7,8,9,11,12〉 〈1,2,3,5,7,8,9,11,12〉
2 〈1,2,4,5,6,7,8,9,10,11,12,3〉 〈1,2,5,7,8,9,11,12,3〉 〈1,2,5,7,8,9,11,12,3〉 〈1,2,5,7,8,9,11,12,3〉
3 〈1,2,4,3,5,6,7,8,9,10,11,12〉 〈1,2,3,5,7,8,9,11,12〉 〈1,2,5,3,7,8,9,11,12〉 〈1,2,5,3,7,8,9,11,12〉
4 〈1,2,4,5,3,6,7,8,9,10,11,12〉 〈1,2,5,3,7,8,9,11,12〉 〈1,2,5,7,3,8,9,11,12〉 〈1,2,5,7,3,8,9,11,12〉
5 〈1,2,4,5,6,3,7,8,9,10,11,12〉 〈1,2,5,3,7,8,9,11,12〉 〈1,2,5,7,8,3,9,11,12〉 〈1,2,5,7,8,3,9,11,12〉
6 〈1,2,4,5,6,7,3,8,9,10,11,12〉 〈1,2,5,7,3,8,9,11,12〉 〈1,2,5,7,8,9,3,11,12〉 〈1,2,5,7,8,9,3,11,12〉
7 〈1,2,4,5,6,7,8,3,9,10,11,12〉 〈1,2,5,7,8,3,9,11,12〉 〈1,2,5,7,8,9,11,3,12〉 〈1,2,5,7,8,9,11,3,12〉
8 〈1,2,4,5,6,7,8,9,3,10,11,12〉 〈1,2,5,7,8,9,3,11,12〉 〈2,3,5,7,8,9,11,12〉 〈2,3,5,7,8,9,11,12〉
9 〈1,2,4,5,6,7,8,9,10,3,11,12〉 〈1,2,5,7,8,9,3,11,12〉 〈2,5,7,8,9,11,12,3〉 〈2,5,7,8,9,11,12,3〉
10 〈1,2,4,5,6,7,8,9,10,11,3,12〉 〈1,2,5,7,8,9,11,3,12〉 〈2,5,3,7,8,9,11,12〉 〈2,5,3,7,8,9,11,12〉
11 〈2,3,4,5,6,7,8,9,10,11,12〉 〈2,3,5,7,8,9,11,12〉 〈2,5,7,3,8,9,11,12〉 〈2,5,7,3,8,9,11,12〉
12 〈2,4,5,6,7,8,9,10,11,12,3〉 〈2,5,7,8,9,11,12,3〉 〈2,5,7,8,3,9,11,12〉 〈2,5,7,8,3,9,11,12〉
13 〈2,4,3,5,6,7,8,9,10,11,12〉 〈2,3,5,7,8,9,11,12〉 〈2,5,7,8,9,3,11,12〉 〈2,5,7,8,9,3,11,12〉
14 〈2,4,5,3,6,7,8,9,10,11,12〉 〈2,5,3,7,8,9,11,12〉 〈2,5,7,8,9,11,3,12〉 〈2,5,7,8,9,11,3,12〉
15 〈2,4,5,6,3,7,8,9,10,11,12〉 〈2,5,3,7,8,9,11,12〉 - -
16 〈2,4,5,6,7,3,8,9,10,11,12〉 〈2,5,7,3,8,9,11,12〉 - -
17 〈2,4,5,6,7,8,3,9,10,11,12〉 〈2,5,7,8,3,9,11,12〉 - -
18 〈2,4,5,6,7,8,9,3,10,11,12〉 〈2,5,7,8,9,3,11,12〉 - -
19 〈2,4,5,6,7,8,9,10,3,11,12〉 〈2,5,7,8,9,3,11,12〉 - -
20 〈2,4,5,6,7,8,9,10,11,3,12〉 〈2,5,7,8,9,11,3,12〉 - -

Table 5.2: Behaviour runs out of the plan graph in Figure 5.18 and its reduced version in Fig-
ure 5.32 (refer to Table 5.3 for decoding the runs)

(the ‘BrowseQuote’ plan) and, hence, the plan cannot be eliminated. Instead, the ‘ProductAfford-

able’ message and its handler (the ‘ChooseProduct’ plan) are removed (according to Rule 2).

Then, the event that is posted by the eliminated handler (the ‘Accept’ message) must be linked to

the plan that posts the event that has been removed (the ‘BrowseQuote’ plan). Figure 5.32 depicts

the reduced version of the plan graph in Figure 5.18. As per the figure, the original plan graph

shown in Figure 5.23 is reduced in depth (from a depth of 13 to a depth of 8).

We have evaluated our plan graph reduction mechanism and the outcomes demonstrate that

the original plan graph is equivalent to its reduced version. Both graphs result in the same set

of behaviour runs after excluding the irrelevant entities from the runs in the original plan graph.

For example, considering the original plan graph of the ‘LostCard’ scenario in Figure 5.18 and its

reduced version in Figure 5.32, these graphs result in the set of behaviour runs listed in Table 5.2.

As per Table 5.2, the original plan graph results in 20 behaviour runs. The filtration of the

irrelevant entities reveals in six repeated runs (e.g., run 14 and run 15 in Table 5.2). Thus, the

original plan graph captures 14 unique behaviour runs and the reduced plan graph also captures

14 unique behaviour runs.

We evaluated the effectiveness of the reduction algorithm for 10 designs. Relatively ex-
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Message Code Message Name
1 Request
2 Quote
3 ExitSystem
4 ProductAffordable
5 Accept
6 Load
7 Goods
8 EPO
9 PayAuthorization
10 CreditorNDepitor
11 Receipt
12 DecryptionKey

Table 5.3: Coding for the messages in the Net-Bill protocol in Figure 5.16

Original Plan Graph Reduced Plan Graph Depth Reduction Parallelism Reduction
Design ID Depth #PAR Depth #PAR Percentage (%) Percentage (%)
1 26 7 17 5 34.6 28.5
2 10 1 8 0 20 100
3 20 4 14 1 30 75
4 15 1 8 0 46.6 100
5 14 2 7 0 50 100
6 24 8 17 4 29.2 50
7 12 2 9 1 25 50
8 11 2 7 1 36.4 50
9 19 1 8 1 57.9 0
10 17 9 16 7 6 22.2

Table 5.4: Plan graph vs. reduced plan graph

perienced developers developed these designs based on the Prometheus methodology. We also

included an industry-level project: an air-traffic management system (Case 10). This project was

designed by following the Prometheus methodology.

We generated the full plan graph for each design according to its corresponding point-of-

reference artefact. We logged the depth of each plan graph and the number of parallel control

fragments that each plan graph captured. Then, these plan graphs were reduced as per the reduc-

tion rules explained earlier in this section. Similarly, the depth of each reduced plan graph and

the number of its parallelisms it has was also logged. We considered plans in counting the depth

of both plan graphs and their reduced versions, as they are the executable entities in these graphs.

With regard to the number of parallel control fragments, we counted the number of plans that
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posted more than one entity.

Table 5.4 lists all of the 10 cases considered in our evaluation. Our results show that the

reduction algorithm is effective in reducing plan graphs. In the some cases, the algorithm reduces

plan graphs to half (e.g., in cases 5 and 9). Further, the reduction in many incidents eliminated

half, if not all, of the parallelism from the plan graphs (e.g., in cases 2 and 3). Reducing a plan

graph means less runs to be extracted and, hence, less execution time. Thus, the reduction of plan

graphs enhances the scalability of our approach, as will be discussed in Chapter 6 (page 162).

5.2.3 Plan Graph to Petri Net

Plan graphs are structures that provide static view of agents with respect to a particular point-of-

reference artefact. Each path through a plan graph represents a possible sequence of plans and cor-

responding entities (i.e., steps or communication constructs) for the specified point-of-reference.

Considering the plan graph in Figure 5.32, the sequence of plans—‘Start, MatchCustomerInfo,

Quote, BrowseQuote, ExitSystem, SayBye’—is part of a possible path for the plan graph and rep-

resents an instance of the dynamic behaviour of the system. Two sequences of messages result

from evaluating the plans in the aforementioned sequence: ‘Request, Quote, ExitSystem, Accept’

and ‘Request, Quote, Accept, ExitSystem’. These behaviour runs should conform to the require-

ments specified by the interaction protocol in Figure 5.15.

Because of the non-deterministic nature of BDI-agent frameworks3, plan graphs must be

traversed to extract all possible behaviour runs. In our method, we assume that parallelism rep-

resents the non-deterministic interleaving of both plans and other design entities, as this would

accord with the observable behaviour demonstrated by most BDI frameworks. Consequently, a

simple depth-first-traversal is not sufficient for extracting runs.

To extract behaviour runs, we must translate our plan graphs into marked Petri nets [Murata

1989]. We choose this formalism because Petri nets are expressive enough to model the semantics

of our plan graphs and because our plan graphs are syntactically similar to Petri nets. Further, we

can make use of existing theories for analysing the generated Petri nets.

3Plan choices are dependent on their context at the time of deliberation.

148 (August 14, 2017)



SECTION 5.2: EXECUTABLE BEHAVIOUR MODELS

Start LostRequest

DummyTransition

ExtractRequestInfo

GoalPoster1

VerifyCredentioals

GoalPoster2

EnteredCredentials

AuthenticateUserCredentials

AccountInfoGetAccountInfo

LinkT1

RefundOldCard

GoalPoster3

UpdateServersWithLostRequest

GoalPoster4

UpdateAccountData

GoalPoster5

UpdateProviderServers Legend:

Place

Transtion

Figure 5.33: Petri net equivalent to the plan graph in Figure 5.31

Definition 2. A marked Petri net is a tuple M = {P,T, I,O,µ}, in which P is a finite set of places,

T is a finite set of transitions, such as P∩T = /0, I is an input function, O is an output function,

and µ is the marking of the Petri Net defined as an n-vector, µ = {µ1,µ2,µ3, ....,µn}, in which

n = |P| and each µi ∈ N, i = 0,1.

Translating the plan graph into a Petri net is straightforward: plans are mapped to transitions,

and other node types are mapped to places. Edges between nodes are mapped across. However,

there are a few exceptions. First, dashed edges, which bridge the gaps in the plan graphs, are han-

dled by creating a new transition node, which lies in between the two place nodes (e.g., ‘LinkT1’

in Figure 5.33).

Second, if the first node in the plan graph is a plan, then we create a start node (a place)

that links to it. However, if the first node is not a plan, then we create a start node (a place) that

connects to a new transition called StartT that links to the first node. As noted earlier, there can

also be cases where there are a number of possible alternative starting nodes. In this case, we

create—for each possible starting point that is not a plan—a corresponding transition and the start

place node links to each of these transitions.

When a plan posts multiple entities (e.g., goals, actions or messages), the order is not speci-

fied in the design. In particular, with goals, actions and messages, the ordering of the steps to re-
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Figure 5.34: Petri nets’ control fragments equivalent to plan graphs’ control fragments
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Figure 5.35: Petri net equivalent to the plan graph in Figure 5.31

alise these entities may be interleaved. Therefore, we treat the steps of a plan as though they were

executed in parallel to allow for the different possible interleaving. That is, we create a separate

asynchronous process for each step. The synchronisation fragment in Figure 5.34 (c) represents

this process. Without this fragment, the steps will not be executed concurrently and, hence, all the

behaviour runs will capture the same order between the respective steps. For instance, without the

synchronisation fragment in Figure 5.35, a token would be simultaneously deposited on ‘Accept’

and ‘ExitSystem’, resulting in all runs with this order, whereas the plan graph does not specify
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such an order.

Finally, we exclude the plans that handle the last entities in the plan graph as they do not

affect the run (both scenarios and protocols do not include plans) and would result in transitions

without output places. Figure 5.35 shows the Petri net resulting from the translation of the plan

graph of Figure 5.32.

Summary

In this chapter, we have presented an approach for transforming semi-formal, agent-based models

to executable models. These models are then used to facilitate the automated correctness checking

offered by our approach. To check the agent designs (i.e., the detailed structure of plans within

agents), we compare all possible behaviour runs of the agent designs against the desired traces

specified by the point-of-reference artefact. We transform the design models from Prometheus-

specific, semi-formal models into Petri nets, which has two benefits. First, it generalises the

approach, making it applicable to other methodologies; second, it allows us to leverage existing

tools and techniques. Specifically, we transform the specified point-of-reference artefact (a sce-

nario with a goal model or a protocol) into Petri nets and also translate agent-behaviour models

into Petri nets. The Petri net equivalent of the agent design allows us to extract all possible be-

haviour runs. The Petri net of the point-of-reference artefact enables us to automatically check the

conformity of the behaviour runs obtained from the agent-behaviour models against the specified

point-of-reference artefact. We detail this checking process in the next chapter.
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Our verification framework aims to check the conformity of all possible behaviour runs derived

from the agent-behaviour models against the specified point-of-reference artefact. The previous

chapters detailed the technicalities of producing verifiable components from the semi-formal agent

models. Specifically, we explained the transformation of both the point-of-reference artefacts and

the agent-behaviour models to Petri nets. The next step in our verification process is to extract all

possible behaviour runs from the agent-behaviour models. Then, we will examine the validity of

these runs against the Petri net of the specified point-of-reference artefact.

This checking process involves three phases:

(1) The extraction of the behaviour runs from the Petri net equivalent to the agent-behaviour

models.

(2) The execution of these behaviour runs against the Petri net for the specified point-of-reference

artefact.

(3) The reporting and logging of any discrepancies in the execution phase.

Figure 6.1 illustrates the modules of our verification framework with the black/dark parts

representing the contributions of this chapter. Section 6.1 provides an explanation of the first two

phases above (the ‘extraction and execution phases) and Section 6.2 details the reporting phase.

Section 6.3 explains the coverage check that determines whether the agent-behaviour models cover
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Figure 6.1: Verification framework (PR: point-of-reference artefact, PN: Petri net)

the specified point-of-reference artefact or not. We discuss the tool support for our verification

framework in Section 6.4.

6.1 Conformity Check of The Agent-Behaviour runs

In Chapter 5, we showed how the parts of the agent-behaviour models that are relevant to the

specified point-of-reference artefact are merged into a plan graph; then, the plan graph is trans-

formed into a Petri net to extract its runs. In this section, we focus on the modules that extract and

check the behaviour runs from the agent-behaviour models (Labelled ‘Extract Behaviour Runs’

and ‘Check Behaviour Runs Against the PR PN’ in Figure 6.1). The extraction module considers

the Petri net that is equivalent to the plan graph as its input. Algorithm 3 details how both the

extraction and the checks are performed through our approach.

Behaviour Runs Extraction

To obtain the behaviour runs, we calculate the reachability graph of the Petri net, which is a

transition relation that defines the states and the transitions of the Petri net that is equivalent to

the plan graph under consideration (see Section 2.6, page 37). Each path of the reachability graph
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S0 S1

S2

S3

S4

S5

S6

S7

S8

S9
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S11
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S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28

S30

S29 S31

S0={1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
S1={0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
S2={0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0}
S3={0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S5={0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
S6={0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S8={0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
S9={0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S12={0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S13={0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S16={0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}
S17={0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

S20={0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0}
S21={0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}

S24={0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}
S25={0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0}

S28={0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}
S29={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0}

S4={0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}

S7={0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0}

S10={0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0}

S11={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0}

S14={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0}
S15={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0}

S18={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0}

S19={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0}

S22={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0}
S23={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0}

S26={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0}
S27={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0}

S30={0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}
S31={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1}

Marking Vector={Start, Quote, Sync1, Sync2, Accept, ExitSystem, Goods, EPO, PayAuthorisation, 
Receipt, DecryptionKey, Request, Quote, Sync1, Sync2, ExitSystem, Accept, Goods, EPO, 
PayAuthorisation, Receipt, DecryptionKey}

Figure 6.2: The reachability graph of the Net-Bill’s Petri net in Figure 6.3

represents a possible execution of the Petri net from start to end. For example, the sequence

of states 〈 S0, S1, S3, S5, S8, S12, S16, S20, S24, S28 〉 from Figure 6.2 represents a possible

execution of the Petri net in Figure 6.3. Note that the Petri net in Figure 6.3 is equivalent to

the plan graph in Figure 5.31 on page 145. When the reachability graph is in the state S0, this

represents the marking

{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }.

Using the legend at the bottom of Figure 6.2, this means that a token is in the ‘Start’ place,

because the first slot in the marking is one, while there are no other places with tokens. When the

graph moves to the state S1, there is a token in the ‘Quote’ place (in the second column), indicating

that the message ‘Quote’ in the ‘Net-Bill’ protocol in Figure 5.15 (page 129) has been sent. By

analysing the changes in the markings between the transitions, we can infer which design entities

are realised and in which order, as defined in the plan graph (see line 20 of Algorithm 3).
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Algorithm 3 The algorithm for checking the conformity of the possible behaviour runs out of the
reachability graph
Require: RG (Reachability graph)
Require: S0 (Starting state in the reachability graph)
Require: PoR (Scenario description or AUML textual notation for a protocol) #array of entities
Require: legend (legend of the reachability graph)

1: Initialisations:
2: Set ST to object of RG states # Stack of objects of type reachability graph states.

3: Set marking to null String # A variable to store the marking vector corresponding to a state in reachability graph

4: Set run to null String # A variable to store the tokens extracted from the states in reachability graph

5: Set token to null String # A variable to store the token to be executed on the PoR Petri net.
6: Set outcome to false # This variable stores a boolean value of the execution outcomes.
7: Set s to state object # This variable stores an object of type sate.

8: Set position to zero # This variable stores the index of ‘1s’ within the sate’s marking vector.

9: Set runsCounter to zero
10: ST.push(S0)
11: Begins:
12: while ST is not empty do
13: s ← ST.pop()
14: if run is not empty then
15: run.truncate() #To remove the last token from the run with each pop operation so the run can be appended with the

next token without re-traversing the reachability graph
16: end if
17: if s.isVisited == f alse then
18: s.isVisited ← true # isVisited is a mutator that allows storing a boolean value in it.

19: marking ← s.getStateMarking()
20: for each 1 in marking do
21: position ← marking.getIndex() # getIndex is a method that returns the indices of 1s within a

marking vector.
22: token ← legend.getToken(position)
23: if token is in the PoR then
24: # The condition above is filtering out irrelevant tokens.
25: run.add(token)
26: outcome ← executeToken(token,run) # Refer to Algorithm 4 for the executeToken

method.
27: if outcome = false then
28: reportingModule(s, run) # Refer to Algorithm 5 for the reportingModule method.
29: ST.POP() # This to eliminate the erroneous state and its sub-graphs.
30: runsCounter++
31: break
32: end if
33: end if
34: end for
35: if outcome = true then
36: # The condition above is true if NONE of the ”executeToken” calls fail.
37: if RG.ad jacentEdges(s)=null then
38: ST.POP() # Indicates the end of the current run.
39: runsCounter++
40: end if
41: for all edges in RG.ad jacentEdges(s) do
42: ST.push(edges)
43: end for
44: end if
45: end if
46: end while
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Figure 6.3: Petri net equivalent to the plan graph in Figure 5.31 on page 145

We use a standard depth-first traversal for the reachability graph (see the loop in line 41) to

extract the set of all possible behaviour runs defined by the Petri net (and therefore its correspond-

ing plan graph).

As a final step, we exclude any entities not related to the specified point-of-reference artefact.

Specifically, we filter out of each execution run any elements that do not correspond to design

entities (i.e., internal events, percepts, messages and actions) in the specified point-of-reference

artefact (see Algorithm 3, line 23).

Considering the Petri net in Figure 6.3, the places added in the synchronisation fragment

(‘Sync1’ and ‘Sync2’) are filtered from the behaviour runs. After mapping the marking vectors

with the legend in Figure 6.2, the following behaviour run is generated:

〈 Start, Request, Quote, Sync1, Sync2, ExitSystem, Accept, Goods, EPO, PayAuthorization,

Receipt, DecryptionKey 〉.

We take both the ‘Sync1’ and ‘Sync2’ tokens out of the run because they are irrelevant to the

‘Net-Bill’ protocol in Figure 5.15 (page 129). Hence, the behaviour run that needs to be checked

for conformity against the point-of-reference artefact is as follows:

〈 Start, Request, Quote, ExitSystem, Accept, Goods, EPO, PayAuthorization, Receipt,

DecryptionKey 〉.
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Figure 6.4: The Petri net of the Net-Bill protocol in Figure 5.15 (page 129)

Behaviour Runs Execution

Each possible behaviour run is verified by checking that it is a valid execution trace of the point-of-

reference artefact Petri net (note: not the plan graph Petri net), using the entities of the behaviour

run as tokens on the Petri net for the specified point-of-reference artefact.

Plan graphs can capture parallelism (see page 133). As a result, some designs can result in an

explosive number of runs and, therefore, long execution times. To mitigate this problem, we have

developed the depth-first search that extracts and executes one token from the reachability graph

at a time. The method-call executeToken(token,run) on line 25 of Algorithm 3 implements such

an approach. This method is detailed in Algorithm 4.

Figure 6.4 depicts the corresponding Petri net that models the semantics of the ‘Net-Bill’

protocol described in Figure 5.15 (page 129). Considering the Petri net of the ‘Net-Bill’ protocol

in Figure 6.4, at the beginning, there is a token in the ‘Start’ place; the first message is taken

from the marking of the current state of the reachability graph and a token is put into the Petri net

place corresponding to that message. In the first iteration of the reachability graph in Figure 6.2,
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Algorithm 4 The algorithm for executing the run’s tokens
Require: Petri net (a Petri Net representing the specified point-of-reference artefact)

1: Initialisations:
2: transitionsStack← null # Stack of objects of type Petri net transitions.

3: previousRun← null # Variable of type list to store the previous run from the calling method.

4: backTrackController ← zero # Counter to count the number backtracks.
5: outcome ← f alse # The return value of this method.
6: executedTransition ← null # This is a static variable to store the transition being executed.

7: Function executeToken
8: Pass In: token:String, run:List # Method parameters.

9: Pass Out: outcome:Boolean # Method return value.
10: previousRun ← run
11: if run is a new run then
12: backTrackController ← run − previousRun
13: while backTrackController 6= 0 do
14: backTrackController = backTrackController−1
15: transitionStack.pop() #Implementing the execution backtracking.
16: end while
17: end if
18: place token in Petri net
19: executedTransition ← Petri net.getTransition() #Get the transition to be executed based on the token.
20: if Petri net.execute = f ail then
21: return f alse
22: else
23: return true
24: end if

S2

S4

S0 S1 S3

S6

S5

S9

S8

S13

S12

S17

S16

S21

S20 S24

S25 S28

Figure 6.5: Part of the reachability graph in Figure 6.2

the ‘Request’ token is developed from the marking of the S1 state; then, a token is placed in its

corresponding place in the Petri net, which is consequently executed. The transition ‘T1’ can fire

because its input places contain tokens and the result is a token in the ‘P0’ place. The process then

repeats for the next message in the run. In fact, in the second iteration, the run is appended with

the next token from the reachability graph (the ‘Quote’ token out of the S3 state). Hence, the run

is built gradually as its successful execution continues.

The gradual construction of behaviour runs allows for the determining of erroneous states

in the reachability graph. As a result, we can eliminate the sub-graph underneath such states
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Figure 6.6: Petri net execution with backtracking

and save the traversal time. For example, the token from the S9 state (‘Accept’) in Figure 6.5

failed to execute in the Petri net in Figure 6.4. This allows for the marking of the S9 state as

an erroneous state and, consequently, for the elimination of all the sub-graphs underneath the S9

state (see the dashed circles in Figure 6.5). However, in the worst-case scenario (where all runs

pass successfully), this strategy does not save any time. Additionally, the progressive construction

approach does not require the traversal to start from the beginning of the reachability graph each

time. Therefore, the gradual construction of the behaviour runs reduces the cost of traversing the

reachability graph.

The execution mechanism in our approach considers one token at a time, rather than execut-

ing the entire set of runs at once (see Algorithm 4). Therefore, the execution cost is reduced, as

the execution does not start from the beginning of the Petri net each time a run is executed. The

execution algorithm implements a backtracking mechanism. As a result, the execution of the Petri

net starts from its branching point in the previous execution.

Backtracking is implemented via a stack of objects that keeps track of the execution infor-

mation. As per lines 1 and 3 in Algorithm 4, this process is managed through a stack that contains

the visited transitions of the Petri net and an index (backTrackController) that tracks the run to

be executed. Since the extraction trims and appends to the previous run, this information is used
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for controlling the execution. As per line 11, the difference between the length of the original run

and the trimmed run is calculated to determine the number of the pop operations needed from the

transitionStack. Finally, the length of the trimmed run is assigned to the backTrackController

variable.

Figure 6.6 illustrates the process of the conformity check for a path out of the reachability

graph in Figure 6.2: 〈 S0, S1, S2, S3, S6 . . . 〉. According to the traversal and execution mechanism

of our approach, we extract and execute one token at a time (i.e., one state from the reachability

graph is processed at a time).

In Figure 6.6 (a), before the S1 state, the behaviour run ‘R’ has only one token (the ‘Start’

token), and the transition stack has one transition (‘T0’). After mapping the S1 state, the run

includes the ‘Quote’ token and, hence, the ‘T3’ transition is fired and pushed into the transition

stack.

As shown in Figure 6.6 (b), the status of both the run and the transition stack remain the same,

as the ‘Sync1‘’ and ‘Sync2’ tokens are irrelevant to the protocol and, hence, they are excluded

from the run. Considering the S6 state in Figure 6.6 (c), the Petri net successfully fires the ‘T17’

transition, as both the ‘P2’ and the ‘ExitSystem’ places have tokens. However, the Petri net fails to

execute concerning the S9 state, since it hits a termination place (‘P10’), while the S9 state maps

to the ‘Accept’ token (i.e., tries to execute the ‘T11’ or ‘T13’ transitions). Thus, the S9 state and

its descendant states are marked as erroneous (see the dashed circles in Figure 6.5).

The next iteration extracts and executes a new path from the reachability graph. The extrac-

tion does not start from the beginning of the reachability graph. Instead, we reuse the previous

path after truncating the irrelevant states and then we append the new states, forming another path.

For example, the path that was checked in our earlier example is: 〈 S0, S1, S2, S3, S6, S9 〉. After

marking S9 as an erroneous state, the graph traversal algorithm will backtrack to the S3 state, to

where the reachability graph branches. Since the traversal backtracks two states back, the S6 and

the S9 states are truncated from the path. The traversal then starts normally, by extracting the S5

state and appending it to the truncated path.

When executing the token corresponding to the S5 state, our execution mechanism calculates

the difference in length between the previous path and the new path. In our example, the length of

the last path is five, while that of the current path is four; thus, the difference in length is one. The
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Figure 6.7: Petri net execution with backtracking

execution uses this difference to determine the number of pop operations required on the transition

stack. By doing so, the execution algorithm implements the backtracking approach and does not

start from the beginning of the Petri net each time. Figure 6.7 shows that the previous path is

reused and appended by the S5 state and that the execution of the Petri net starts from the ‘T3’

transition.

Complexity Analysis

The complexity of our approach is exponential in the size of the resultant plan graphs. This

is because the approach rests on the extraction of the possible behaviour runs from these plan

graphs. The number of runs grows exponentially as the parallelism increases in the plan graph

and the plan graph expands (i.e., there is an increase in the depth of the plan graph). We derive a

formula that calculates how many runs a plan graph can have, based on the following parameters:

• A plan graph PG branches into b parallel branches (i.e., the breadth of the plan graph).

• d signifies the depth of the parallel branches. Note that we consider plans when determining

the depth of the branches.

Given the definitions above, the number of possible ways of merging the branches in the plan

graph PG is:

( b ∗ d ) ! / ( ( d ) ! ) b
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#Branches (b) Depth (d) #behaviour runs

Case 1 2 1 2
Case 2 2 2 6
Case 3 2 3 20
Case 4 2 4 70
Case 5 2 5 252

Case 6 3 1 6
Case 7 3 2 90
Case 8 3 3 1680
Case 9 3 4 34650
Case 10 3 5 756756

Case 11 4 1 24
Case 12 4 2 2520
Case 13 4 3 369600

Table 6.1: Exponential growth in number of runs as parallelisms and depth increase in plan graphs

Figure 6.8: Examples on the exponential growth of behaviour runs as plan graphs grow in size

To obtain an idea of the number of runs that can be derived from a plan graph that follows

the parameters above, a small study was undertaken. We synthesised a number of plan graphs

that were structured according to the parameters described above. Using the tool-support of our

verification framework (see Section 6.4), we recorded the number of all possible paths extracted

from each plan graph. Then, we analytically calculated the number of paths.

Table 6.1 shows how the number of behaviour runs grows exponentially as plan graphs grow

in size. Thus, the complexity is exponential in the branch factor and in the depth of the resulting

plan graphs. A particular example of this is when the number of parallel branches increases and
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Figure 6.9: An example of a valid execution on a Petri net

Algorithm 5 The algorithm for reporting the failures
Require: executedTransition (The transition that was executed from Algorithm 4)
Require: RG (The reachability graph)
Require: Initialisations:

1: nextState← null # Variable to store the next state to s state.
2: out putPlace← null # Variable to store the output place of the executedTransisiton.

3: report← null # Variable to store the debugging information.

4: Function reportingModule
5: Pass In: s:RG state, run:List # Method parameters.

6: Pass Out: report:String # Method return value.
7: out putPlace ← executedTransition.getOut putPlace()
8: if out putPlace is not a termination place then
9: if s.getNextState() = null then

10: reporting ←+ reportShortRun(execution.getInputPlace())
11: end if
12: if s.getNextState() != null then
13: reporting ←+ reportMismatch(execution.getInputPlace(),run.getLastToken())
14: end if
15: end if
16: if out putPlace is a termination place then
17: nextState ← s.getNextState()
18: if nextState != null then
19: reporting ←+ reportLengthyRun(execution.getInputPlace())
20: end if
21: end if

the plan graph expands (i.e., the depth of the plan graph increases). The plan graphs in Figure 6.8

depict Cases 12 and 13 from Table 6.1. The plan graph of Case 12 (see Figure 6.8) has four

parallel branches (i.e., b = 4) and a depth of two (i.e., d = 2); it generates 2520 behaviour

runs. By increasing the depth of the same plan graph to three (Case 13), the plan graph produces

369,600 behaviour runs. It is clear that the number of possible behaviour runs in a plan graph

increases exponentially as the plan graph grows in terms of depth and branching.
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Figure 6.10: Examples on Petri net’s execution failures

6.2 Fault Reporting

A behaviour run is reported as ‘passed’ if—and only if—the entire run is consumed and the ex-

ecution of the Petri net reaches a termination place (see Figure 6.9). Otherwise, it is recorded as

failed. To provide informative feedback about the agent-behaviour models, a cause for a failure is

identified (see Table 3.1, page 73). In this section, we provide concrete examples of the different

causes of failures.

As per line 28 of Algorithm 3, the reporting module is called when the outcomes of the

checking module in Algorithm 4 are false. The reporting module is detailed in Algorithm 5. As

per lines 9 to 21, our approach categorises the failures into three categories, as follows:

The first failure occurs when the entire run is consumed, while the execution of the point-of-

reference artefact Petri net is not at a termination place (see Figure 6.10 (a)). This failure indicates

that the design misses the entity that is supposed to be realised according to the specified point-
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of-reference artefact. For example, the Petri net in Figure 6.10 (a) is expecting the ‘S5’ token so

that the ‘T1’ transition can be fired, but the run is empty because the ‘S4’ token has already been

consumed by firing the ‘T0’ transition. This failure, based on the previous example, highlights

that the design part that is relevant to the point-of-reference artefact under investigation misses the

‘S5’ token.

The second type of failure happens when the run has more tokens than it should (i.e., failure

2 in Table 3.1, page 73). Such failures indicate that the design part that is relevant to the point-

of-reference artefact under investigation has repetitions that the point-of-reference artefact does

not require. Figure 6.10 (b) shows that the termination place ‘P2’ has a token, while the run has

an ‘S3’ token to be consumed. This means that the relevant part of the design for the specified

point-of-reference realises the ‘S3’ token twice, while the point-of-reference artefact, based on its

Petri net, captures the ‘S3’ token once.

The final failure occurs when the execution of the Petri net is obstructed because of a mis-

match between its current place in the Petri net and the current token from the run. This mismatch

indicates that either the token is missing or that the ordering of tokens is wrong with respect to

the point-of-reference artefact. For example, the failure to execute the Petri net in Figure 6.10 (c)

results from a mismatch between the current token from the run and the current place in the Petri

net. This is because the Petri net is expecting the ‘S2’ token, while the current token from the run

is ‘S3’. Since ‘S2’ is not present in the run, then it is clear that the relevant parts of the design for

the point-of-reference artefact miss the ‘S2’ token. However, in Figure 6.10 (d), although ‘S2’ is

present in the run, the execution of the Petri net is still obstructed because the current token is ‘S3’

followed by the ‘S2’ token. This wrong ordering usually occurs when there is one plan in the

agent-behaviour models that posts multiple entities, which are supposed to be posted sequentially.

In our reporting approach, we cluster the erroneous runs into the three categories mentioned

above. Hence, executing 100,000 erroneous runs will not be reported as 100,000 errors. Instead,

our approach groups the 100,000 errors into three categories (see Section 6.4). Further, to enhance

the usability of the report, the module does not list all the erroneous runs. Instead, it lists one run,

and reports how many runs capture similar errors (see Figure 6.13 in Section 6.4). This reporting

is performed by tracking the design entity from the plan graph, which obstructs the execution

and the final output place of the point-of-reference artefact Petri net. Then, the reporting module
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checks each faulty run and determines whether it is an instance of a previously-located fault.

6.3 Coverage Check

As explained in Section 3.4 (page 75), our verification framework allows software engineers to

judge how the specified point-of-reference artefact is covered by the relevant parts of the agent-

behaviour models. Our approach backtracks over the unvisited places of the Petri net for the

specified point-of-reference artefact. Then, it constructs and reports full paths that include these

unvisited places, indicating the percentage of coverage. This analysis assumes that the checking

process results in a 100% pass rate. This is to ensure that the unvisited places of the Petri net for

the specified point-of-reference artefact result from a lack of coverage and not from a defect in the

design.

The coverage check is achieved by extracting all possible paths from the point-of-reference

artefact Petri net using a traditional depth-first-search. It is important to note that this coverage

check is meant to check whether the design covers all paths, not traces, of the specified point-of-

reference artefact Petri net. A path is a set of places from the starting point of the Petri net to one

of its termination places. However, a trace is a set of places that results from executing the Petri

net. For example, a parallel fragment of two regions results in one path, whereas it results in two

traces.

Although the consideration of all traces is a possibility, it is prohibitively costly and is likely

to lead to many false-positives. Node/arc coverage is perhaps too easy, so the middle ground of

‘path’ coverage offers an apt trade off. Thus, in the case where the specified point-of-reference

artefact has parallel control fragments, the check does not ensure that all possible traces are cov-

ered by the design under consideration. Instead, it verifies all paths, starting from the initial place

and continuing until one of the termination places has been covered.

After extracting the paths out of the Petri net, our approach warns software engineers about

the paths that contain unvisited places. Additionally, it reports the coverage percentage by calcu-

lating the ratio between the paths that contain unvisited places and the paths overall.

Assuming the reachability graph in Figure 6.2 results in a 100% passing rate, the protocol

in Figure 6.4 has two possible sequences: one with the ‘Request’ message and the other without.
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Figure 6.11: The graphical user interface of the tool that verifies designs against interaction pro-
tocols

Figure 6.12: The graphical user interface of the tool that verifies designs against scenarios

Since the behaviours from the reachability graph cover both sequences, the coverage parentage of

the design parts relevant to the ‘Net-Bill’ protocol is 100%.

6.4 Tool Support

We have implemented an Eclipse plug-in1 that extends the Prometheus Design Tool (PDT) to

automate our approach (see Figures 6.11 and 6.12 for screenshots). The tool takes the PDT design

file as an XML file and generates the necessarily verifiable components. First, it transforms the

1https://tinyurl.com/PDT-verificationTool
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====Execution Summary====
Total Time Taken to Execute 4 is 0.013 Seconds
Number of Erroneous Runs is 4 out of 4
Percentage of Erroneous Runs is 100.0%
Number of Passed Runs is 0 out of 20
Percentage of Passed Runs is 0.0%

         << Errors Summary >>
Number of Errors Due To The Absence of a Message in a Run is : 0
Number of Errors Due To The Ordering Between Messages in a Run is : 0
Number of Errors Due To The Short Runs : 0
Number of Errors Due To The Long Runs : 4

         <<Details>>

The Execution hits a termination place ``P10’’ through sending `` ExitSystem’’ 
while the run has more messages to be sent 
<<Number of Runs That Capture The Same Error>> 1

The Execution hits a termination place ``P11’’ through sending `` ExitSystem’’ 
while the run has more messages to be sent 
<<Number of Runs That Capture The Same Error>> 1

The Execution hits a termination place ``P15’’ through sending  
``DecryptionKey’’ while the run has more messages to be sent 
<<Number of Runs That Capture The Same Error>> 1

The Execution hits a termination place ``P13’’ through sending  
``DecryptionKey’’ while the run has more messages to be sent 
<<Number of Runs That Capture The Same Error>> 1

Figure 6.13: Text-based verification report

specified point-of-reference artefact to a Petri net. Second, the tool generates a plan graph that

merges the relevant parts to the specified point-of-reference artefact from the agent-behaviour

models. Then, the conformity of the behaviour runs from the plan graph are checked against

the Petri net of the specified point-of-reference artefact. The output of our tool is a report that

provides:

1. Detailed logs of the erroneous runs, including their categorisation (see Table 3.1 on page 73)

2. An execution summary. The summary includes information such as the execution time, the

number of behaviour runs that passed and those that failed.

Figure 6.13 depicts a snapshot of the generated report for the checking process of the ‘Net-

Bill’ protocol. The 14 behaviour runs were extracted from the reachability graph. After executing

all the runs against the protocol’s Petri net, 14 out of 14 runs were erroneous. These errors fell into

two types of errors: (1) runs that contain more messages than they should; (2) incorrect ordering

between messages within runs.
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Summary

This chapter details the technicalities of checking the conformity of runs derived from the agent-

behaviour models with the specified point-of-reference artefact Petri net. First, our approach takes

the Petri net equivalent to the plan graph of the agent-behaviour models as an input. Then, it cal-

culates the reachability graph of the Petri net. Since the reachability graph captures all possible

ways of executing the Petri net, behavioural runs that cover all possible combinations can be ex-

tracted by traversing the reachability graph. Thus, we use a stranded depth-first-search algorithm

to extract all possible runs from the reachability graph.

The correctness check is performed by running the possible behavioural runs extracted from

the reachability graph over the point-of-reference artefact Petri net and logging any violations.

To maintain the computational complexity of the approach, especially in situations where the

reachability graph includes too many behavioural runs, the approach considers one token at a

time.

The output of our verification framework is a text-based report that documents information

about the design under investigation. We implement this verification approach as an Eclipse plug-

in that integrates with the Prometheus Design Tool (PDT).

170 (August 14, 2017)



CHAPTER 7
Evaluation

This thesis has proposed a method that uses design artefacts to verify agent-based designs. In

its application, both agent-behaviour models and the specified point-of-reference artefacts were

framed structurally as executable structures and compared against each other to identify incon-

sistencies. As such, this chapter presents the empirical evaluation of the verification framework

proposed in this thesis by:

1- Evaluating the verification framework with respect to its effectiveness for detecting defects

(see Section 7.2).

2- Analysing the scalability of the approach as the number of goals and plans in the design grows

(see Section 7.3).

7.1 Evaluation Objective

The goals of this evaluation are:

1. To assess whether the proposed mechanism can detect defects in agent designs with respect

to the specified point-of-reference artefact.

2. To determine the level of false positives generated by the proposed approach.
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Figure 7.1: Review scenario description

3. To determine whether the time taken to run experimental tools is reasonable1 considering

the complexity of the specified point-of-reference artefact and its agent-behaviour models.

7.2 Evaluating The Effectiveness

In this section, we empirically show the effectiveness of the verification approach proposed by this

thesis. We use the tool-support explained in Section 6.4 on page 168 to facilitate the evaluation.

Our tool-support accesses and tokenises the contents (i.e., the scenarios, protocols, goal models

and agent-behaviour models) of the specified design file. In evaluating the effectiveness of our

approach, we consider two sets of evaluations: (1) a mutation evaluation and (2) an empirical

evaluation of the implemented systems.

7.2.1 Effectiveness via Mutation

This section presents a preliminary assessment to validate our approach and its ability to detect

defects in a given design and to facilitate learning about the types of problems it cannot detect.

Method

We use the ‘conference-management system’ case study in this evaluation [Padgham et al. 2007].

This system helps to manage the different phases of the conference review process, including sub-

mission, review, decision and paper collection. In the submission phase, the system should be able

to assign a number to each submission and provide receipts to authors. After the specified submis-

1‘Reasonable’ is defined as performing a complete execution within 24 hours on an industry-scale system
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Figure 7.3: Detailed design for the ‘Review Manager’ agent based on the ‘Review’ scenario

sion deadline, the system assigns papers to reviewers, who review the paper. After receiving the

reviews, the system supports making decisions on whether to accept or reject each paper, notifying

the authors. Then, the system collects the accepted papers and prints them as conference proceed-

ings. Figure 7.1 shows a scenario for the conference-management system, while Figure 7.2 shows

the goal-overview diagram for the system.

We designed the ‘Review Manager’ agent involved in the ‘Review’ scenario (see Figure 7.3).

Then, using the tool support, we generated the plan graph equivalent to the agent’s behaviour

model (see Figure 7.4). Figure 7.4 shows the plan graph corresponding to the design of the Review

Manager agent, which fulfils the Review scenario.

Two external participants who were experienced in BDI-agent design were given the plan

graph in Figure 7.4. Each participant was asked to make several small changes (called mutations),

such as adding, removing, replacing and renaming entities. In total, we received 11 mutations.

Note that the mutations on the plan graphs were manually inputted (using paper and pen), as the
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Figure 7.4: Plan graph for the ‘Review Manager’ agent based on the ‘Review’ scenario

Category ID MS TS TL OE Def. Det.

ADD MA0 0 0 1 0 4 4
MA1 0 0 0 0 4 8
MA2 0 0 0 0 4 8
MA3 0 0 0 0 4 8
MA4 0 0 0 0 4 8

DEL MR0 0 1 0 0 4 4
MR1 0 4 0 0 4 4
MR2 0 2 0 0 4 4
MR3 0 0 0 0 8 8

REP MP0 0 0 0 0 8 8
MP1 0 0 0 0 8 8

Total 11 0 7 1 0 8 4

Table 7.1: Summary of potential problems raised by the plan graph mutation per mutations cate-
gory ( ID: mutation ID,MS: missing steps, TS: run too short, TL: run too long, OE: miss-ordering between
steps; Def.: modified design contains a defect with respect to the scenario from the mutator prospective;
Det.: the defect is detected.)

tool support provides a static digital view of plan graphs. We then digitally reproduced the design

as per each mutated plan graph version. The tool support assistance was applied to each design—

each of which was examined as to whether the introduced (known) defects were detectable.
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Results

Although the mutations may have fallen into more than three categories, for this study we coded

the mutations into three variations. First, the addition of new (irrelevant) entities (ADD). As an

example, one participant added a new goal between the Assign Reviewers and Collect Prefs steps.

Further, they made the plan that posts the ‘Assign Reviewers’ goal post a new goal: ‘Optimise

Allocation’. Subsequently, new plans were created to accommodate the ‘Optimise Allocation’

and the ‘Assign Reviewers’ goals.

The second coded mutation involved the deletion (DEL) of entities from plan graphs and the

renaming of them inconsistently and out of context with respect to the conference scenario.

Third, there was a replacement of goal steps (REP) with related goals (parents or children)

from the goal tree.

Table 7.1 summarises the results obtained by applying our approach on the 11 mutations.

Only one mutation (MA0) out of the five in the ADD category was detected. This was a result

of the introduction of a new goal, creating a new step in the scenario that had not been originally

specified. The remaining four mutations added new functionality to the design that was filtered

because it was not part of the scenario (recall that behaviour runs have elements that do not occur

in the scenario filtered out). Such a filtering process takes place in our verification approach

because we check one point-of-reference artefact at a time. However, in future research, we will

investigate how to consider multiple point-of-reference artefacts at once to address such cases.

In the DEL category, three of the four mutations were detected. For the undetected mutations,

the participant modified the plan graph such that the goal Assign Reviewer was handled by one

plan instead of two. This simply reduced the number of (correct) runs and, hence, the design was

still correct with respect to the ‘Review’ scenario.

The REP mutations did not produce defects in the design and, consequently, the tool did not

find defects in the design. Participants replaced goals in the design with child/parent goals from

the goal hierarchy that were valid with respect to the scenario.

This shows that our approach is promising, despite the small numbers involved. In particular,

if we consider our technique as a method of classifying mutations as correct or incorrect, we

correctly identified eight out of 11 mutations as either defective or correct. The four incorrectly
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Cases Category Number of Designs Total Number of Scenarios Total Number of Protocols

Students Assignments 7 7 7
Expert Designs 6 0 6
Case Studies 2 3 9

Total 15 10 22

Table 7.2: Objects of analysis

Type Name

1
2
3
4
5
6
7
8

Goal
Percept

Percept
Goal
Goal
Goal
Action
Percept

PassCardInfo
GetPassCardNumber
TopUpRequest
ExtractTopUpPreferences
ManagePayment
UpdateServersWithTopUp
UpdateAccountData
UpdateConfirmation

Role

InfoExtractor
Issuer
InfoExtractor

Seller
Updater
Updater
InfoExtractor

InfoExtractor

9 Goal AddNewBalanceToCard Issuer
Action
Percept
Goal

WriteToCard
DataWritten
PrintTopUpReceipt

Issuer
InfoExtractor
Issuer

Action PrintReceipt Issuer

10
11
12
13

Figure 7.5: Top up scenario description

classified mutations were a result of the filtering process. It is also encouraging to note that there

were no false positives (i.e., all detected defects corresponded to actual design defects).

7.2.2 Effectiveness via Application Systems

In this section, real cases were used to test for defects within designs. Table 7.2 shows the details

of the object of analysis we used for this effectiveness evaluation. We verified the validity of 15

agent-behaviour models against 32 point-of-reference artefacts in total. We have categorised these

15 objects of analysis into three categories (see Table 7.2):

Category 1: student assignments — As part of an RMIT agent-oriented programming and de-

sign course, students were required to design a ‘Top-up’ scenario (see Figure 7.5) for the

‘smart-kiosk ticketing’ system detailed in Section 2.4 on page 22. The ‘Top-Up’ specifica-

tions are as follows:

‘Top-up Description: the system should allow customers to recharge their pass cards based

on the type of card (pass or money). After the pass card is touched onto the RFID reader/writer
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Figure 7.6: Payment finalisation AUML protocol

port, the system should be able to recognise the card and obtain the card number. Through

the touch screen, customers should be able to tap on the ‘Top-Up’ option. Then, the sys-

tem should allow customers to specify, through the touch screen, the type of card (money

or pass), the top-up amount and the payment method (card or cash). After finalising the

payment process (through the protocol explained below), the system should update both the

provider servers and the pass card (using the RFID reader/writer).

The payment process involves an interaction between multiple participants (see Figure 7.6)

including a Ticketing-Agent, Payment-Manager, GUI, Money-Scanner (actor) and Banking-

Server (actor). This payment process is different based on the chosen payment option. If

the card option is chosen, the process involves the following: verifying the card with the

banking server, deducting the amount from the customer’s account and then the provision

of a transaction number by the banking server. Then, the system should push such updates

over to the company’s servers. If cash is the option chosen, then the system should recognise

the inserted amount and decide the requisite change for the customer. As a final step of

the top-up transaction, customers should be notified about the outcome of the transaction

(whether it has been approved or not). If the transaction has been approved, the notification
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Design part related to scenario Design part related to protocol
Design #Plans #Entities Total #Plans #Entities Total

1 13 21 34 14 15 29
2 5 8 13 13 14 27
3 13 15 28 14 15 29
4 4 7 11 15 13 28
5 4 7 11 11 13 24
6 18 23 41 15 16 31
7 9 15 24 12 19 31

Table 7.3: Number of design units for the first category, students assignments (#Entities: number
of events, actions and percepts

Sale-Transaction
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Figure 7.7: Sale transaction AUML-sequence diagram

should be provided in the form of a printed receipt.’

As per Table 7.2, this category includes seven different designs and each design implements

one scenario and one protocol. We checked each design against both the scenario and the

protocol. Details about the number of plans and other design entities in these agent models

are summarised in Table 7.3.

Category 2: expert designs — Three interaction protocols that were used in this evaluation were
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Figure 7.8: Secure Net-Bill AUML-sequence diagram

‘Sale-Transaction’, the ‘Net-Bill’ protocol and the ‘Secure-Net-Bill’. We investigated three

designs for the ‘Sale-Transaction’ protocol, two for the ‘Net-Bill’ and one for the ‘Secure-

Net-Bill’. Each design was produced by a person outside of our research team who was

familiar with BDI modelling and the Prometheus methodology. All participants had ex-

perience, ranging from three to 15 years in the agent field, specifically, in the Prometheus

methodology.

Figure 7.7 shows the AUML protocol for the ‘Sale-Transaction’ system, which was de-

signed by us. The corresponding system models an online store as a multi-agent system

with three agents (the ‘Seller Agent’, the ‘Buyer Agent’ and the ‘Bank Agent’) that interact

with each other. We asked three participants to complete the behaviour models for each of

the agents involved in the protocol, resulting in three different designs.

A complete design of the agent system following the ‘Net-Bill’ protocol (see Figure 5.15 on

page 129) was produced by two experts in the field. In addition, a group of researchers, at the

University of Melbourne with extensive experience in Prometheus methodology restricted
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Design part related to protocol
Design #Plans #Entities Total

Sale-Transaction 1 17 15 32
Sale-Transaction 2 11 8 19
Sale-Transaction 3 13 12 25
Net-Bill 1 13 9 22
Net-Bill 2 12 9 21
Secure Net-Bill 12 17 29

Table 7.4: Number of design units for the second category, expert designs. (#Entities: number of
events, actions and percepts

Design part related to protocol
Protocol Name #Protocol’s Entities #Plans #Entities Total

ATS 37 21 30 51
Prepare-Arrival 5 6 5 11
Handle-Baggage 4 4 3 7
Board 4 4 3 7
De-board 4 3 2 5
Prepare-Departure 6 7 6 13
Maintain-Aircraft 3 4 3 7
Service-Aircraft 4 4 4 8

Table 7.5: Number of design units for the Aircraft Turnaround Simulator. (#Entities: number of
Events, Actions and Percepts

this protocol to enhance its security. Figure 7.8 depicts the secure version of the ‘Net-Bill’

protocol. Then, they produced the agent-behaviour models according to the role of each

agent in the protocol.

In total, we investigated six designs against six interaction protocols. Table 7.4 details these

six agent models with respect to the number of plans and other design entities.

Category 3: case studies — Two case studies were used in the evaluation: (1) aircraft turnaround

simulation (ATS)2 and (2) oil production simulation3. The ATS case study consisted of

joint work between the University of Melbourne and its industry partner, Jeppesen [Miller

et al. 2014]. Briefly, the system simulates the operations that take place at the airport when

an aircraft lands. The system implements eight protocols, which model the interactions

2Refer to Appendix C for the protocols used in this case study and the agent-behaviour models.
3Refer to Appendix D for the protocols used in this case study and the agent-behaviour models.
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Scenario Information Design part related to Scenario
Scenario #Goals #Actions #Percepts Total #Plans #Entities Total

ControlSendContent 5 1 1 7 14 16 30
RespondToOperator 1 1 1 3 5 5 10
OptimiseOilProduction 5 1 1 7 23 24 47

Table 7.6: Details of the scenarios in the oil production simulation.

OptimisationNegotiation

opt

WaterContentRequest

Well
Controller WellMonitor

WaterContentRequest

WaterContentReply

WaterContentReply

ProductionAdjusmentRequest

Production
Optimiser

Figure 7.9: Optimisation negotiation AUML-sequence diagram

between 11 agents. The largest of these eight protocols involves all 11 agents with 37

design entities. This protocol is of particular interest for us in assessing the types of errors

we would find because it was constructed early in the project and not maintained as the

project evolved and, thus, some changes to other models may not have been reflected in the

protocol. Table 7.5 lists details of the relevant parts for the design to each protocol.

The other case study (oil production simulation) was developed in the context of a master’s

research project [Engmo and Hallen 2007]. The system is an agent-based simulation that

simulates the operations and processes of a simple oil field. The system includes six agents,

who participate in three scenarios and one protocol. As Figure 7.9 depicts, the agents in

the ‘Optimisation Negotiation’ protocol exchange five messages and the relevant design

parts of this protocol capture six plans that are associated with the five messages. The three

scenarios are concerned with managing the oil field. Table 7.6 provides an overview of

these three scenarios.
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The Experimental Procedure

Fifteen designs were used in this evaluation. These designs are divided into three categories and

each category is configured as follows:

Category 1: student assignments — As per the assignment specifications, students were asked

to work in pairs and to use PDT (Eclipse Plug-in Version 0.4) when designing the system.

Additionally, they were notified that their design must conform to the order that enforced

by the specifications of the ‘Top-up’ transaction and the interaction protocol (‘Payment-

Finalisation’ shown in Figure 7.6). They were told to ensure comprehensive descriptors for

each design entity. More importantly, students were advised that if a plan posted multiple

events, the relationship between these events was to be assumed to be parallel.

We investigated ten assignments and excluded the ones that lacked comprehensive descrip-

tors for design entities. We filtered three assignments out of the evaluation because they

lacked information (i.e., no descriptors for the design entities). Thus, the evaluation in-

cluded seven assignments out of the ten initial submissions.

Category 2: expert designs — Each participant was given specifications for their assigned pro-

tocol. They were then asked to design the agents according to their roles in the protocol.

Participants were given a laptop with PDT (Eclipse Plug-in Version 0.4) installed and were

asked to design the protocol using PDT, documenting their design assumptions via the de-

scriptor of every plan they created. Unlike in the previous category, participants were not

restricted by the parallelism assumption. In other words, they were free to design the choice

through having one plan to post multiple events, assuming the selection statement would be

coded into the plan’s body to post only one event. We asked participants to document their

assumptions.

Category 3: case studies — For the two cases under this category, we undertook the following:

We reverse-engineered the Jason implementation of the ATS system into a PDT design. We

followed a one-to-one mapping approach. In Jason, each function represents a plan that has

an input and an output. From the code, we can distinguish between the different design

entities (i.e., messages, events, goals, actions and percepts).
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For the oil production simulator, we manually created the PDT design file from the master’s

thesis project. We obtained the design artefacts from the appendices of the thesis [Engmo

and Hallen 2007].

For all the three categories, we manually checked the consistency of the design entities’

names against the specified point-of-reference artefact. We then followed an iterative process for

checking each design. This iterative process involved the following three steps for each design:

1. Execution: We ran our tool over the PDT design file (including both the point-of-reference

artefact and the agent-behaviour models) to produce a report. We used a laptop running a

64-bit Intel Core i7 processor clocked at 3.1 GHz. 1 GB of RAM was dedicated to utilisation

by the Java Virtual Machine.

2. Inspection: Using the report generated, we analysed the causes of failed behaviour runs,

categorising each cause as either a true positive, a false positive or an unknown. A false

positive is a warning raised that we believe not a defect in the design but is caused by

a clear and valid assumption made by the designer. An unknown categorisation implies

that the design produces runs that fail, perhaps because the designer made explicit design

assumptions that we do not understand.

3. Modification: Some defects mask the presence of other defects. As such, we modified the

design in such a way as to rectify the causes of the reported failures, including false positives

and unknowns. The changes involved adding, removing and modifying plans, other design

entities (i.e., events, actions, percepts and goals) and associations.

We iterated each design until our tool reported no problems. During each iteration, we

recorded the following:

1. The number of warnings raised by the tool.

2. The number of true positive, false positive and unknown defects.

3. The time that was taken to extract the runs from the reachability graph.
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Figure 7.10: Distribution of faults over all iterations

4. The level of coverage the design offered concerning the specified point-of-reference artefact

whether the design accomplished 100% passing rate.

5. The number of extracted behaviour runs.

Results

This section presents the results of the evaluation outlined in Section 7.2.2. As per the iterative

process described, we were able to identify and categorise the total number of defects found (true

positives), the number of false positive defects found and the number of potential defects that could

not be accurately categorised for each of the designs. Further, we identified the level of coverage

offered by each design with respect to the point-of-reference artefact under investigation.

Overall, we examined 15 designs against 32 point-of-reference artefacts via 104 iterations

and discovered 100 potential problems. Figure 7.10 provides an illustration of the different cat-

egories of errors as applied to the 100 faults that were raised (see Table 3.1 on page 73). As the

figure demonstrates, almost a half of the failures resulted from the wrong ordering (MO) of design

entities with respect to the specified point-of-reference artefact, while just a third of errors arose

from missing entities (ME). A small fraction of behaviour runs was unsuccessful as a consequence

of fewer entities in the run (TS) according to the specified point-of-reference artefact, while 14

faults out of 100 resulted from runs that had more entities than they should (i.e., TL).

Based on the designers’ assumptions, we divided the 100 faults into three categories: (1) true
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Figure 7.11: Categorisation of defects over all iterations

Figure 7.12: Coverage check over all cases

positive, (2) false positive and (3) unknown. Figure 7.11 visualises the categorisations of faults for

the 104 iterations. True positives imply actual design defects, while false positives and unknown

faults were flagged as warnings to the designers. As can be seen from the figure, we were able to

detect 89 defects in 32 design parts with only six false positives and five faults that were unable to

be categorised. This provided a strong indication that our approach, via the tool-support, indeed

detects defects in agent-behaviour models with respect to the specified point-of-reference artefact,

producing few false positives and in a reasonable amount of time, as we demonstrate later in this

chapter.

The tool support reported the level of coverage of each valid design with respect to the spec-

ified point-of-reference artefact at the end of each experimental run. Similar to the false positives

and the unknown faults, as mentioned above, the coverage percentage was flagged as a warning
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Design Against Scenario Design Against Protocol
ID True Positive False Positive Unknown Total True Positive False Positive Unknown Total

D 1 14 0 0 14 3 0 0 3
D 2 5 0 0 5 3 0 0 3
D 3 3 0 0 3 4 0 0 4
D 4 6 0 0 6 1 0 0 1
D 5 6 0 0 6 2 0 0 2
D 6 7 0 0 7 5 0 0 5
D 7 3 0 0 3 3 0 0 3

Total 44 0 0 30 21 0 0 21

Table 7.7: Categorisation of defects over all iterations for student assignments category

Design Against Scenario Design Against Protocol
ID #Iter ME TS TL MO Total Cov #Iter ME TS TL MO Total Cov

D 1 15 0 0 1 13 14 100 4 0 0 0 3 3 100
D 2 6 5 0 0 0 5 100 4 0 0 2 1 3 100
D 3 4 2 0 0 1 3 100 5 0 0 1 3 4 100
D 4 7 6 0 0 0 6 100 2 0 1 0 0 1 100
D 5 7 6 0 0 0 6 100 3 1 0 1 0 2 100
D 6 8 0 0 2 5 7 100 6 1 2 1 1 5 50
D 7 4 2 0 0 1 3 100 4 1 1 0 1 3 50

Total 51 21 0 3 20 44 — 28 3 4 5 9 21 —

Table 7.8: Summary of potential problems raised by the tool concerning the students assignments
category (#Iter: number of iterations, ME: missing entity, TS: run too short, TL: run too long, MO:
mismatch between entities, Cov: percentage of coverage)

sign. The findings of the coverage check that we conducted on 32 point-of-reference artefacts are

shown in Figure 7.12. Over one third of the cases resulted in a partial coverage, while 53% of

the cases resulted in 100% coverage. Although a large proportion of the cases resulted in 100%

coverage, most of these cases were related to scenarios with only one basic run and without vari-

ations.

In the above, an overview analysis of the results we obtained from evaluating our verification

framework via the implemented systems. In what follows, we break down our results based on the

three categories of the systems used in this evaluation.

Category 1: student assignments — Since students were required to document all the design
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Design Against Scenario Design Against Protocol
ID #Behaviour Runs Time Taken (in seconds) #Behaviour Runs Time Taken (in seconds)

D 1 2 0.001 8 0.001
D 2 1 < 0.001 8 0.003
D 3 2 < 0.001 8 < 0.001
D 4 1 < 0.001 8 0.001
D 5 1 < 0.001 8 0.001
D 6 1 < 0.001 4 0.001
D 7 6 0.003 4 0.001

Table 7.9: Time Analysis of Runs Concerning the Student Assignments Category.

assumptions they made, all faults in executing the behaviour runs against the Petri net into

both the ‘Top-Up’ scenario and the ‘Payment-Finalisation’ protocol represent defects in the

agent-behaviour models. Table 7.7 shows that all failures in behaviour runs against the

Petri net for both the ‘Top-Up’ scenario and the ‘Payment-Finalisation’ protocol are true

positives.

Table 7.8 demonstrates the information about the defects that were found in the seven

assignments considered in the evaluation, concerning both the ‘Top-Up’ scenario and the

‘Payment-Finalisation’ protocol. At the end of each iteration, a defect was addressed. For

example, in ‘D 1’, the wrong ordering between the first percept in the ‘Top-Up’ scenario

(‘Top-Up-Request’) and another goal step was fixed after the first iteration. The sequence

of the scenario states that the ‘Top-Up-Request’ Percept needed to be sent after posting the

‘GetPassCardNumber’ goal. However, the design had the plan that posted the ‘GetPass-

CardNumber’ goal posted another goal related to the scenario (i.e., it was included in the

run). Thus, the behaviour run underwent the goal step before the percept. We changed the

sequence of the design to ensure that the percept was posted immediately after the intended

goal to address this ordering issue. After 15 iterations, the ‘D 1’ design was free of defects

concerning the scenario; at this point, we iterated the design four times to ensure its validity

in relation to the protocol.

Overall, we iterated all the designs 79 times over to address 65 defects detected with re-

spect to the ‘Top-Up’ scenario and the ‘ Payment-Finalisation’ protocol. The majority of
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Case ID True Positives False Positives Unknown Total

Sale-Transaction 1 3 0 2 5
Sale-Transaction 2 1 0 0 1
Sale-Transaction 3 1 2 0 3
Net-Bill 1 0 1 0 1
Net-Bill 2 0 0 0 0
Secure Net-Bill 2 2 0 4

Total 7 5 2 14

Table 7.10: Categorisation of defects over all iterations for the expert designs category

Figure 7.13: Buyer Agent overview diagram

defects fell into two categories: (1) the wrong-ordering category (more than 40%) and (2)

the missing entity category (39%).

Regarding the point-of-reference coverage, all seven designs fully cover the ‘Top-Up’ sce-

nario, as the scenario does not have variations. However, two designs resulted in a 50%

coverage of the ‘Payment-Finalisation’ protocol. Neither design ‘D 6’ nor ‘D 7’ had a run

that covered the ‘cash option’ region captured by the protocol.

Table 7.9 demonstrates the time-cost for checking the conformity of the runs from the reach-

ability graph against both the scenario and the protocol Petri nets. Note that the table lists

the worst-case scenario (i.e., the entire reachability graph was traversed). The time-cost is

low for all the cases, at almost zero seconds.

Category 2: expert designs — Unlike the first category above, not all the design assumptions

were documented. Hence, not all the faults found could be classified as true positives. As

Table 7.10 shows, we were able to detect seven defects in six different designs with only
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Case ID #Iter ME TS TL MO Total Cov

Sale-Transaction 1 6 1 0 1 3 5 100
Sale-Transaction 2 2 1 0 0 0 1 50
Sale-Transaction 3 4 0 1 0 2 3 50
Net-Bill 1 2 0 0 1 0 1 50
Net-Bill 2 1 0 0 0 0 0 50
Secure Net-Bill 5 0 0 3 1 4 100

Total 20 2 1 5 6 14 —

Table 7.11: Summary of potential problems raised by the tool concerning the expert designs cate-
gory (#Iter: number of iterations, ME: missing entity, TS: run too short, TL: run too long, MO: mismatch
between entities, Cov: percentage of coverage)

Case ID #Behaviour Runs Time Taken (in seconds)

Sale-Transaction 1 4 0.001
Sale-Transaction 2 2 < 0.001
Sale-Transaction 3 2 < 0.001
Net-Bill 1 2 < 0.001
Net-Bill 2 4 < 0.001
Secure Net-Bill 5 < 0.001

Table 7.12: Time analysis of runs concerning the expert designs category.

five false positives and two faults that we were unable to categorise. For example, in ‘Sale

Transaction 2’, there were two wrong-ordering problems raised (see Table 7.11) that were

categorised as unknown. As Figure 7.13 shows, the participant designed both messages—

‘Accept The Price’ and ‘Make Payment By Card’—to be sent by one plan. Our approach

considered that these messages could be sent in any order. However, ‘Accept The Price’

needed to be sent first to correspond to the protocol. Despite this, we did not classify this

as a true positive defect, because it was unclear whether the participant assumed that the

ordering between these two messages was implicit.

Considering the ‘Net-Bill 1’ case, the design had a plan to post both ‘ExitSystem’ and

‘Accept’ messages, while the protocol had these two messages in an alternative control

fragment. Subsequently, as shown in Table 7.11, the design resulted in a longer run than it

should. In contrast to the ‘Sale-Transaction 1’ case, the designer assumed that a selection
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Case ID True Positive False Positive Unknown Total

ATS 12 1 0 13
Prepare-Arrival 0 0 0 0
Handle-Baggage 2 0 0 2
Board 0 0 0 0
De-board 2 0 0 2
Prepare-Departure 0 0 0 0
Maintain-Aircraft 0 0 0 0
Service-Aircraft 0 0 0 0

Total 16 1 0 17

Table 7.13: Categorisation of defects over all iterations for the ATS case-study.

Case ID True Positive False Positive Unknown Total

ControlSendContent Scenario 1 0 1 2
RespondToOperator Scenario 0 0 0 0
OptimiseOilProduction Scenario 1 0 1 2
Optimisation Negotiation Protocol 0 0 0 0

Total 2 0 2 4

Table 7.14: Categorisation of defects over all iterations for the oil production simulation case-
study.

statement would be coded into the plan, allowing only one message to be posted and, hence,

the long run fault was false positive.

Table 7.11 demonstrates that 66.7% of the six designs provided partial coverage as per the

protocol. Although the ‘Net-Bill 2’ design resulted in zero defects from the first iteration, it

covered 50% of the ‘Net-Bill’ protocol. Regarding the time required to check the conformity

of the correct version of the designs (i.e., the worst-case scenario), all of the six cases took

fractions of seconds to be verified. Table 7.12 lists the time taken to check each design.

The table then shows that the longest time was taken by the ‘Sale-Transaction 1’ case, with

0.001 seconds taken to check four runs.

Category 3: case studies — The designs of these case studies were reconstructed through re-

verse engineering the implementation of these case studies and using their documenta-
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Case ID #Iter ME TS TL MO Total Cov

ATS 14 7 0 0 6 13 50
Prepare-Arrival 1 0 0 0 0 0 100
Handle-Baggage 3 1 0 0 1 2 100
Board 1 0 0 0 0 0 100
De-board 3 2 0 0 0 2 100
Prepare-Departure 1 0 0 0 0 0 100
Maintain-Aircraft 1 0 0 0 0 0 100
Service-Aircraft 1 0 0 0 0 0 100

Total 25 10 0 0 7 17 —

Table 7.15: Summary of potential problems raised by the tool concerning the ATS case study
(#Iter: number of iterations, ME: missing entity, TS: run too short, TL: run too long, MO: mismatch
between entities, Cov: percentage of coverage)

Case ID #Iter ME TS TL MO Total Cov

ControlSendContent Scenario 3 0 0 0 2 2 100
RespondToOperator Scenario 1 0 0 0 0 0 100
OptimiseOilProduction Scenario 3 0 0 1 1 2 100
Optimisation Negotiation Protocol 1 0 0 0 0 0 50

Total 8 0 0 1 3 4 —

Table 7.16: Summary of potential problems raised by the tool concerning the Oil Production
Stimulator case study (#Iter: number of iterations, ME: missing entity, TS: run too short, TL: run too
long, MO: mismatch between entities, Cov: percentage of coverage)

tions. Therefore, the designers’ assumptions were partially documented by the project team.

Hence, as Tables 7.13 and 7.14 demonstrate, we were able to find 18 defects in the designs

(i.e., true positives) and one false positive, while we could not categorise two faults because

of the lack of documented design assumptions. For example, in the ‘ATS’ case, the design

captured a plan that posted multiple messages and these messages needed to be posted se-

quentially as per the protocol. This resulted in a wrong-ordering problem. However, the

implementation of the system had these two messages posted sequentially, as per the proto-

col; hence, it is not a defect in the design.

Tables 7.15 and 7.16 show information about the potential defects found within the designs.
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Case ID #Behaviour Runs Time Taken (in seconds)

ATS 11933397408 4798.044
Prepare-Arrival 1 < 0.001
Handle-Baggage 1 < 0.001
Board 1 < 0.001
De-board 1 < 0.001
Prepare-Departure 1 < 0.001
Maintain-Aircraft 6 0.008
Service-Aircraft 6 0.002

Table 7.17: Time analysis of runs concerning the ATS case-study.

Case ID #Behaviour Runs Time Taken (in seconds)

ControlSendContent Scenario 2 0.002
RespondToOperator Scenario 1 < 0.001
OptimiseOilProduction Scenario 2 0.003
Optimisation Negotiation Protocol 1 < 0.001

Table 7.18: Time analysis of runs concerning the oil production simulation case-study.

All the faults in Table 7.15 represent defects in the designs; however, as stated above, one of

the six ‘MO’ faults in the ‘ATS’ case is not a defect. Similarly, two of the three ‘MO’ faults

in Table 7.16 are not defects, as we could not categorise them as a consequence of the lack

of design assumptions. With respect to the outcomes of the coverage check, all cases aside

from two protocols, fully covered their point-of-reference artefacts.

Tables 7.17 and 7.18 show the time-cost for checking the conformity of all possible be-

haviour runs from the agent-behaviour models. The time-cost was low for each of the

cases, except for the ‘ATS’ case. The design resulted in 11,933,397,408 runs and took over

1.3 hours. The duration for verifying such a large quantity of runs is very samll for an

industrial-scale system like the ‘ATS’ protocol (see page 176).

Threats to Validity

The outcomes of the evaluation we conducted can be generalised. As with all experiments, there

are considerable risks in terms of validity and, in this particular case, the main external threat
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to the validity of our experiments was the inclusion of student assignments. These assignments

were of the same specifications and resulted in the provision of eight general designs out of the 15

systems that were checked in our experiments. As these designs were developed by students, the

types of defects may not be representative of those made by more experienced software engineers.

However, this risk did not eventuate, as the defects found in these assignments spread across all the

four fault categories (see Section 7.2.2). Another threat is that we did not conduct an initial manual

analysis of the agent-behaviour models to obtain an idea of how many defects were affecting these

models. Therefore, we cannot judge whether there may by defects that our approach has missed.

7.3 Scalability Evaluation

The previous section has demonstrated that our approach was scaled on two industrial-scale sys-

tems; here, we examine how well the proposed approach scales as the size of the agent design

grows. The complexity of our approach rests on the behaviour run extraction from the result-

ing plan graphs. The number of runs grows exponentially as plan graphs increase in size and its

branching factor. Therefore, we generate synthetic plan graphs, systematically varying the size

and the amount of parallelism up until the time taken to check the conformity of the runs—within

a ‘reasonable’ period. We define ‘reasonable’ to be within 24 hours.

7.3.1 Experiment Design

We first generated synthetic plan graphs that were a combination of plans and other design entities,

including goals, messages, actions and percepts. We generated a total of 21 different plan graphs

using the systematic process described below. We extracted and executed the behaviour runs,

recording the following measures:

i. The number of runs corresponding to a plan graph.

ii. The time that was taken to extract and execute all runs of a plan graph against the point-of-

reference artefacts Petri net.
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Figure 7.14: Plan graph for case 2 in Table 7.19

Plan graph generation

To increase the size of the plan graph, we increased the number of design entities, including plans,

actions, percepts, goals and messages. For simplicity, rather than generating graph structures we

generated trees (i.e., single root and acyclic trees). However, for consistency, we will continue to

refer to them as plan graphs.

Plan graphs capture two control fragments: choice and parallel. It is common for plan graphs

to capture both control types of fragments, so we defined the following systematic process to

generate a variety of plan graphs while systematically increasing the scale of the graphs (see

Figure 7.14).

1. We started all plan graphs with one plan that was linked to a number of posted entities

(parallelism).

2. The type of each branch (choice or parallel) was the opposite of its parent.

3. The number of nodes NL at level L is NL = NL−1 + c, where NL−1 is the number of nodes at

the parent level and c is a constant.

4. All nodes had one child, except the left-most node, which had c+1 children.

As is shown in Table 7.19, by varying the size of a plan graph, we vary the size of the agent

design. For instance, in Case 3, the plan graph is of a breadth of two and a depth of three, which

results in a design with eight plans and nine other nodes (actions, percepts, goals and messages).

In Case 10, with a depth of 10, the design had 64 plans and 65 other nodes.
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B D #Paths #Plans #Nodes #Runs Time (in seconds)

Case 1 2 1 0 1 2 2 < 0.001
Case 2 2 2 2 4 5 12 0.001
Case 3 2 3 4 8 9 60 0.002
Case 4 2 4 6 13 14 280 0.014
Case 5 2 5 8 19 20 1260 0.039
Case 6 2 6 10 26 27 5544 0.026
Case 7 2 7 12 34 35 24024 0.207
Case 8 2 8 14 43 44 102960 0.574
Case 9 2 9 16 53 54 437580 2.325
Case 10 2 10 18 64 65 1847560 4.130

Case 11 3 1 0 1 3 6 < 0.001
Case 12 3 2 3 6 8 270 0.010
Case 13 3 3 6 13 15 8400 0.140
Case 14 3 4 9 22 24 242550 1.992
Case 15 3 5 12 33 35 6810804 37.560
Case 16 3 6 15 46 48 188684496 1156.001
Case 17 3 7 18 61 63 5187948480 61154.961

Case 18 4 1 0 1 4 24 0.001
Case 19 4 2 4 8 11 10080 0.130
Case 20 4 3 8 18 21 2587200 13.880
Case 21 4 4 12 31 34 630630000 4697.720

Table 7.19: Structures of the plan graphs used in the experiments (B: breadth, D: Depth, #Runs:
number of runs generated, conformity check: time taken in seconds to extract and execute all
behaviour runs)

We incremented the breadth and depth by one for each case, omitting cases for which the

execution took more than one day (e.g., breadth of three , depth of eight and breadth of four, depth

of five).

Execution environment

We ran all the experiments on a desktop using a 64-bit Intel Core i7 processor clocked at 3.4 GHz.

One GB of RAM was dedicated for use by the Java Virtual Machine. We ran no other tasks on the

machine. We ran each case six times and recorded the average times for checking the conformity

of all runs.

195 (August 14, 2017)



CHAPTER 7: EVALUATION

Figure 7.15: Time taken to check the conformity of runs for all the cases in Table 7.19

7.3.2 Results

Table 7.19 shows our findings. We see that the number of behaviour runs grows exponentially

as the plan graph increases in size, as expected. Similarly, we see that the execution time is

proportional to the number of runs.

Figure 7.15 plots the time taken to check the conformity of all the cases listed in Table 7.19.

Note that the Y-axis is logarithmic. The exponential nature of this problem is hardly surprising.

What we consider significant is the number of runs that can be analysed within a reasonable

time frame (in our case, within one day). For instance, the time taken to extract and execute

over five billion runs in Case17 (the largest case) took around 17 hours. However, as Table 7.19

shows, the equivalent design to the plan graph of case 17 consists of 61 plans and 63 other nodes

(actions, percepts, goals and messages). Further, these nodes include both parallelism and choice

decompositions.

While the plan graphs analysed were generated artificially, we believe that this shows that

our approach can, at least under some circumstances, scale up relatively well. It is, of course,

impossible to know what sizes will occur in practice without a real design of some significant size.

Based on the experience within our research group over the last 15 years of building agent systems

in collaboration with industry partners, Case 15 (with 33 plans and 35 nodes) is reasonably large

and our approach took just 38 seconds to check it.

Threats to Validity

The main threat to external validity in our scalability analysis is the length of the entity labels

from the plan graphs used in the experiments. In our approach, the conformity check is conducted
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via string comparisons and, hence, comparing labels with lengthy strings takes more time than

considering short ones. The entity labels in our analysis are of a fixed length (of three). Thus,

further experimentations are required on plan graphs with variable lengths of node labels for more

generalised results. Another threat is that the plan graphs used are synthetic. However, as dis-

cussed above, the size of some of the cases included in the analysis are even larger than some

industry-level projects (e.g., in Case 17).

7.4 Discussion

The method presented in this thesis compares the consistency of design artefacts to flag potential

defects. However, given the partial nature of the agent-behaviour models used in Prometheus

and other semi-formal agent-oriented software engineering methodologies, neither soundness nor

completeness are possible.

Specifically, our method may raise false positives as a result of the under-specification of the

designs. Given an agent plan that posts several entities, our method assumes that the plan posts all

entities. However, a designer may intend only some of these entities to be posted for any single

execution of the plan, depending on some logic internal to the plan. In Prometheus, such logic is

not captured at the design level. As such, the set of possible runs generated by our method could

be larger than the set of runs intended by the designer and some of the additional runs may violate

the corresponding point-of-reference artefact.

With regard to the categorisation in Table 3.1 (page 73), some causes can result in false

positives, but others will not. Causes 1 and 3(a) (short run and missing entities) will always be

true positives, because the partial nature of the designs will result in more runs than may have

been intended, but never fewer runs. Additional runs resulted from designs in which plans posted

multiple entities, but the designer intended only some of these to be posted at any time. Our

method assumes that all entities must be posted and that this will not result in shorter runs or

missing entities. Conversely, Causes 2 and 3(b) in Table 3.1 may result from under-specification

and therefore may contain false positives. To avoid false positives, agent-behaviour models can

be structured such that a plan intended to post only a subset of its specified entities is broken into

sub-plans, in which all entities specific are intended to be posted, thus providing a deterministic
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way of calculating the entities that will be sent by each plan.

The exponential nature of the approach raises concerns about its applicability in practice.

To overcome this exponentiation challenge, our approach checks one token at a time, rather than

checking the entire set of runs at once. As a result, the time to traverse the reachability graph is

reduced, as the sub-graphs under the erroneous states are eliminated. However, in the worst-case

scenario (i.e., a valid design), the entire reachability graph must be traversed. As per the scalability

analysis we conducted in Section 7.3, the computation time is not prohibitively expensive in regard

to the worst-case scenario. Further, we have found from the experience of building agent systems

in collaboration with industry partners within our research group that designs are not large enough

to take an ‘unreasonable’ amount of time to be verified. Thus, we believe our approach can provide

relatively quick feedback when checking agent designs.

On the evaluation of design coverage, our approach does not report lack of coverage as a

defect in the design. This is because the coverage is a designer choice. For example, a designer

may choose to implement the specified point-of-reference artefact partially and still implement it

correctly. Given this, we cannot say that the design is defective, as certain parts of the point-of-

reference artefact are relevant to the context of the system-to-be and are functional and accurate.

It is important to note that our coverage check is not a simple static check (i.e., checking whether

the design entities exist in the agent-behaviour models or not). Considering the same ‘Net-Bill’

protocol, if we added another ‘Request’ message at the end of the protocol, the static check would

not give any warning as to whether the design covers the OPT control fragment or not.

Finally, the verification approach in this thesis is grounded in the Prometheus methodology,

but it can be generalised to other methodologies. Our work is a way of transforming the re-

quirement specifications of Prometheus into executable structures. It is difficult to provide useful

verification techniques without grounding them in a methodology that is also able to be imple-

mented as usable tool support. We believe that adapting our work to other methodologies is

possible because the most widely used agent-oriented software-engineering methodologies share

similar design concepts (see [Winikoff and Padgham 2013]). Note that we use Petri nets as an

intermediate representation and that any notation translatable to Petri nets will work.
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Multi-agent systems are gaining popularity for building complex applications ranging from critical

systems used in crisis management, to non-critical systems such as video games. One of the

barriers to the widespread adoption of agent technology in the industry is its reliability. To increase

the trust in such systems, many testing and debugging techniques have been proposed.

It is well accepted in software engineering that defects found and fixed late in a project

cost considerably more than those found earlier. Thus, the ability to find defects in the design

artefacts (i.e., before the implementation phase) of the system-to-be will positively impact the cost

of developing multi-agent systems. However, comparatively little research has been conducted

into developing methods for detecting defects in agent designs (see Section 2.9 in Chapter 2).

In this thesis, we have proposed an approach and tool support for finding defects in agent de-

signs concerning two point-of-reference artefacts: (1) interaction protocols and (2) scenarios. This

approach involves generating the set of possible behaviour runs permitted by the agent-behaviour

models and checking whether the sequences of design entities in these runs are valid with respect

to the specified point-of-reference artefact. Although our tool supports only designs that have

been written using the Prometheus methodology, as discussed in Section 7.4, we believe that the

approach is general enough to work with other AOSE methodologies that follow the BDI model

of agency. In this thesis, we have addressed the following research aims:

First, we determined the design units to be considered in our approach. As is stated in the con-

ceptual framework of our approach (see Chapter 3), we identified the point-of-reference artefacts
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and the design units considered for the proposed approach. Our approach considers two point-

of-reference artefacts: (1) interaction protocols and (2) scenarios. Regarding the agent-behaviour

models, the verification framework considers all the design entities that are used to specify agents

in Prometheus. However, we excluded data-sets, unless they performed actions (e.g., posting an

internal event that triggered plans).

Second, we showed how the point-of-reference artefacts of the system-to-be were trans-

formed to executable models. A scenario in Prometheus is a sequence of steps and these steps

can be of different types, including goals. Thus, a scenario may have alternative paths, pro-

duced through consideration of information from the goal model relevant to that scenario. Also,

Prometheus does not support structured specification for variations and, hence, it is tedious to

include the variations in the checking process.

We overcome the limitations mentioned above by automatically generating an activity dia-

gram from a given scenario and the goal model of the system-to-be. The activity diagram then

acted as a coherent structure for requirements and permitted the software engineers to specify

variations as part of a more structured approach that allowed reasoning about such variations. The

details of this construction process along with the user study we conducted were explained in

Chapter 4.

After generating the activity diagram, we transformed the point-of-reference artefacts in

Prometheus: (1) the UML-activity diagrams (representing requirements) and (2) the AUML-

sequence diagrams (representing interaction protocols) into place/transition Petri nets. We chose

Petri nets over other formalisms, such as statecharts, since they are simple to understand and

they serve our purpose. Additionally, there are existing algorithms proposed by Poutakidis et

al. [Padgham et al. 2005b] that translate AUML-interaction fragments (i.e., sequential, selection,

loops and parallelism control fragments) into Petri nets. In fact, we adopted the work of Poutakidis

et al. [Padgham et al. 2005b] with some modifications as detailed in Chapter 5.

Third, we proposed a technique that permits the extraction of all possible runs from the agent-

behaviour models concerning the specified point-of-reference artefact. This includes transforming

agent-behaviour models into executable models. As explained in Chapter 5, we adopted the con-

cept of a plan graph proposed by Miller et al. [Miller et al. 2010], to construct a coherent structure

that merges different agent-behaviour models related to the specified point-of-reference artefact.
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Then, we transformed the plan graph into a Petri net to allow for the extraction of all possible

behaviour runs via the Petri net’s reachability graph.

Fourth, we ensured the conformity of agent-behaviour models with the specified point-of-

reference artefact by comparing the two Petri nets (i.e., the Petri nets of the agent-behaviour mod-

els and the point-of-reference artefact of the system-to-be). Such comparisons were performed

by extracting all possible runs from the agent-behaviour models and checking them against the

point-of-reference artefact’s Petri net. As per Chapter 6, a correctness check was performed by ex-

ecuting the possible behavioural runs extracted from the plan graph against the point-of-reference

artefact’s Petri net and logging the existence of any violations. Hence, the output of our verifica-

tion framework is a report that documents information about the agent design under investigation.

We implemented this verification approach as an Eclipse plug-in that integrated with PDT.

To show the effectiveness of the verification framework in this thesis, we evaluated it on 11

versions of the same design (via mutations) that were carried out by two participants. The results

demonstrated that our approach was able to detect defects successfully.

Next, we evaluated our approach in terms of 15 implemented systems; the total number of

point-of-reference artefacts in these systems was 32. As detailed in Chapter 7, we categorised

these cases into three categories: (1) students assignments, (2) expert designs and (3) case studies.

Overall, the approach detected 100 faults in total, 89% of which were defects in the designs (i.e.,

true positives). Because of the lack of documented assumptions about the designs, 6% of the 100

faults were false positives and 5% we could not categorise (i.e., they remained unknown). The

89% of the defects were distributed across the four faults categories (wrong ordering, missing

entity, run too short and run too long). This shows that our verification framework is able to detect

defects in agent designs with a low number of false positives and generally in a negligible amount

of time.

Additionally, we performed a scalability analysis to examine how well the proposed approach

scales as the size of the agent design grows. In this analysis, we synthesised plan graphs, system-

atically varying the size and the amount of parallelism. The largest plan graph used in our analysis

was of a depth of seven and a breadth of three. The plan graph contained 61 plans and 63 other

design entities (i.e., goals, percepts, actions and events). The plan graph resulted in more than five

billion runs and the time taken for checking their conformity was 16.98 hours. The results of our
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scalability analysis demonstrate that our approach could verify significant plan graphs in under 24

hours, despite the exponential explosion in runs as the designs grow.

Limitations

As with any research project, there are limitations that require further investigations. In this the-

sis, the verification approach considers one point-of-reference artefact at a time. Therefore, our

approach is unable to detect defects that result from conflicts between multiple point-of-reference

artefacts. In other words, our approach is a unit verification approach rather than an integra-

tion verification approach. The integration verification would detect inconsistencies in the agent-

behaviour models with respect to multiple point-of-reference artefacts.

Another limitation of our proposed method is the false positives that may be raised as a result

of the lack of design assumptions. Even though our approach did not result in a high number of

false positives, the approach needs to be refined to reduce these false positives to a minimum.

Further, the approach lacks a detailed fault model that categorises design defects based on

their severity. Our approach reports all defects detected as errors in the design, whereas some

defects may be treated as warnings by some designers. For example, in our approach, a behaviour

run that has more tokens than it should is marked as an erroneous run and reflects an error in the

design. However, based on the context of the system-to-be, such erroneous runs can be interpreted

as warnings.

Our evaluation indicated that some designs could result in an explosive number of runs and,

therefore, in long execution times. This exponential nature of the approach represents another

limitation that could be addressed.

Regarding the evaluation results, there were some threats to their generalisability. The main

threat to the validity of our evaluation was the inclusion of student assignments. Since these

systems were designed by relativity inexperienced participants, the defects detected may not be

representative of those made by more experienced participants.

Future Work

There are many potential extensions of this topic. Future work might address some of the limita-

tions.
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Figure 8.1: Checking the operational consistency of the system-to-be

• Our approach considers one point-of-reference artefact at a time. Thus, a natural extension

that fits the context of this research project is the consideration of the overall picture—that

is, of all the scenarios and protocols at once (i.e., integration verification). This integration

verification would allow software engineers to ensure that there would be no conflicts be-

tween agents at run-time (i.e., operational consistency). Such a consistency check could be

performed via an inter-level check and an intra-level check (see Figure 8.1). The inter-level

check is an initial check of the point-of-reference artefacts and the agent-behaviour mod-

els. Software engineers could test a number of properties, such as operational conflicts, in

the point-of-reference artefacts [Thangarajah and Padgham 2011; 2004, Thangarajah et al.

2003; 2002]. Similarly, designers may examine the agent-behaviour models to ensure that

they are conflict free [Shapiro et al. 2012].

• A refinement of our approach is needed to reduce the number of false positives. False

positives result because the design of the system-to-be lacks details, such as assumptions on

parallelisms. One way to overcome this limitation would be by extending Prometheus such

that it allows designers to provide more details on their designs and include such data in the

vitrification process; for example, to include context conditions of the plans in the agent-

behaviour models. These conditions could then be used to filter out some runs that currently

lead to false positives. Another approach would be to extend the tool-support. Such an
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extension may include offering of a pop-up dialogue box to prompt software engineers

to state their assumptions about the uncertainties in the design under consideration; for

example, to prompt for assumptions about parallelisms in the design.

The fault model in our approach is limited to a certain extent. Our approach does not

categorise defects based on their severity. In other words, our approach reports all defects

as errors, whereas in some cases some defects, based on the designers’ interpretations, can

be treated as warnings. Therefore, there is a need to enhance the fault model of our approach

by providing a broader categorisation of defects. To develop such an enhanced fault model,

a basic user testing of our verification framework is required, with a number of software

engineering experts involved.

• To improve the scalability of our approach, the depth-first-search algorithm used to extract

behaviour runs needs to be enhanced. Currently, the search algorithm extracts the first path

of the graph and follows it until it reaches the last path; the algorithm moves in the order in

which the paths appear. A prioritisation mechanism, via some sort of heuristics, could be

applied to the extraction algorithm to mitigate the exponential nature of our approach. The

goal of this prioritisation mechanism would be to find and report defects early; hence, the

erroneous parts of the reachability graph under consideration would be eliminated early in

the checking process.

• In terms of activity diagrams, further investigation is needed into ways to provide round-

trip engineering. This could be achieved by designing and implementing an algorithm to

automate the process for propagating changes from the activity diagram into the goal model

and possibly into the scenario.

Final Comment

This thesis contributes a framework and a methodology that achieves the goal of identifying de-

fects early in the development life-cycle for BDI systems. The basic intuition of our verification

framework is to extract the possible behaviour runs from the agent-behaviour models and to verify

whether these runs conform to the specifications of the system-to-be. We used Petri nets to act as

executable models for both the agent-behaviour models and the point-of-reference artefacts of the
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system-to-be. The tool-support of our verification framework accepts a Prometheus-based design

file and produces a report. The report logs the defects in the agent-behaviour models concerning

the specified point-of-reference artefact (i.e., its requirements or protocol) in the design file. The

evaluation we conducted showed that the verification framework is effective for detecting defects

in BDI systems.
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User Study on specifying requirements in the Prometheus methodology 1

Pre-Expriment Questionnaire

The main purpose of the pre-questionnaire is to assess the user’s experience in the filed of AOSE, specifically
the Prometheus methodology. Also, it aims to assess your experience in the UML activity diagrams.

About this questionnaire

On a scale of 1-5 (with 1 being Very Unfamiliar, and 5 being Very Familiar) Please rate your familiarity
with:

1a. Software Requirements Analysis Concepts: Vary Unfamiliar 1 2 3 4 5 Very Familiar

1b. Intelligent Agents: Vary Unfamiliar 1 2 3 4 5 Very Familiar

1c. The Prometheus AOSE Methodology: Vary Unfamiliar 1 2 3 4 5 Very Familiar

On a scale of 1-5 (with 1 being inexperienced, and 5 being expert) Please rate your familiarity with:

2a. Software Analysis and Design : inexperienced 1 2 3 4 5 expert

2b. UML Behavioural Models: inexperienced 1 2 3 4 5 expert

2c. Use Case Scenarios: inexperienced 1 2 3 4 5 expert

2c. BDI-Agent System Modelling: inexperienced 1 2 3 4 5 expert

3. How many software systems have you designed (not including agent-oriented)?

2 0

2 1-5

2 6-10

2 11-20

2 21-29

2 30+

4. How many agent software systems have you designed?

2 0

2 1-5

2 6-10

2 11-20

2 21-29

2 30+

5. Do you have any expertise in other AOSE methodologies other than Prometheus? List
them if yes

2 No

2 Yes



User Study on specifying requirements in the Prometheus

methodology

Yoosef

November 7, 2014

Participant information

You are invited to participate in a research project being conducted by a PhD student at RMIT
University. Your participation is entirely voluntary. This information sheet describes the project
in plain, simple language. Please read this sheet carefully and be confident that you understand
its contents before deciding whether to participate. If you have any questions about the project,
please ask the investigator.

• Project Title
User Study on specifying requirements in the Prometheus methodology.

• Investigators:
Dr. John Thangarajah, PhD. Primary Supervisor. John.thangarajah@rmit.edu.au, 9925 9535
Dr. James Harland, PhD. Associate Supervisor. james.harland@rmit.edu.au, 9925 2045
Dr. Tim Miller, PhD. Associate Supervisor. tmiller@unimelb.edu.au, 8344 1318
Mr. Yoosef Abushark, PhD student and investigator, yoosef.abushark@rmit.edu.au, 0432076551.

• Who is involved in this research project? Why is it being conducted?

– Yoosef Abushark is a PhD student at RMIT University, and he is working in the area
of agent-oriented software engineering. He is supervised by Dr. John Thangarajah,
Ass.Pro. James Harland and Dr. Tim Miller.

– This project is part of a PhD thesis, and it proposes a new approach for specifying
requirements in the Prometheus methodology. We are conducting the current study
to determine how well the proposal affects the way of specifying requirements in the
Prometheus methodology.

– The project has been approved by the RMIT Human Research Ethics Committee.

• Why have you been approached?
You have been approached either because we know you and think you may be interested, or
willing to assist us, or because you have registered to do small tasks for payment and have

1



chosen, or are considering choosing, this task. We have no specific selection criteria beyond
the need to be an adult, and to understand English.

• What is the project about?
This project aims to enhance the way of specifying requirements in the Prometheus method-
ology. The main research question we are trying to address is:

– Does the proposed approach enhance the agents requirements analysis in the following
aspects:

∗ Design Understandability: To measure how both approaches affect the understand-
ability of the designers in relation to the agent detailed models.

∗ Artefacts Consistency: To investigate whether both approaches enable designers to
pick the missing entities in the top level of the design (e.g. goal overview and anal-
ysis overview), and how they affect them in incorporating these changes (addition,
removal and/or modification).

∗ Maintainability: To measure how easy to incorporate the changes in both ap-
proaches.

– We are hoping to have fifteen people assess both approaches, and to help us understand
what is working well and what needs further work.

• If you agree to participate, what will you be required to do?
Your role is to help us assess both approaches (i.e. we are not testing you). You cannot do
anything wrong. We will be asking you to try achieving number of tasks (by an editable PDF)
on a given use case scenario that requires you to walk through the existing approach in the
methodology, and with the proposed approach (activity diagram). You do not have to worry
about making any mistakes. The session is so that we can enhance the way of specifying
requirements in the Prometheus methodology, so we need to hear your honest reactions. The
investigator will be with you throughout the session. If you have any questions as you go
along, just ask him. Since we are interested in how people use the approaches when they dont
have anybody sitting next to them to help, the investigator may not be able to answer your
questions right away. But when the session is finished, your questions will be answered. The
investigator will be asking you to do some specific tasks. The tasks will be written down for
you to read, and will also be read out to you by the investigator. As you try to achieve the
tasks, the investigator will ask you to try and think out loud: to say what you are trying to
do, and what you are thinking.

We will also ask you to fill in a questionnaire at the start and end of the session. The session
should not take more than 30 minutes to complete. You can take a break during the session
at any time.

• What are the possible risks or disadvantages?

– There are no risks or disadvantages in participating, beyond giving up a small amount
of your time.

– Although there are no foreseeable risks, if you are unduly concerned about your responses
to any of the questionnaire items or if you find participation in the project distressing, you
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should contact John Thangarajah as soon as convenient. He will discuss your concerns
with you confidentially and suggest appropriate follow-up, if necessary.

• What are the benefits associated with participation?
There are no immediate benefits to you from your participation in this study, although you
might feel more adept with both approaches after exploring it in this session. If you wish, I
will send you a summary of findings and recommendations when I complete this project.

• What will happen to the information you provide?

– The information you provide will be anonymous. It will be used only for statistical
analysis of what is working well and what needs further attention.

– The results of this study will be presented in a paper for publication. All reporting of
observations and comments will be anonymous, so that you cannot be identified. The
research data will be kept securely at RMIT for 5 years after publication, before being
destroyed. Potential future uses of the data include improvement of the system and
further publications.

– Because of the nature of data collection, we are not obtaining written informed consent
from you. Instead, we assume that you have given consent by your completion and
return of the survey.

• Security of the data
Due to the nature of the experiment, we will be asking you to do the tasks on the provided
hard copy survey. After completing all experiments, all responses will be, manually, dumbed
into a google sheet (google drive). Then, all the hard copies will be destroyed. Regarding the
pre and the post questionnaires, we will be using google forms. Thus, all the responses, by
default, will be collected in a google sheet on google drive. The drive’s account belongs to the
RMIT University (@rmit), and hence all the data will be under RMIT University control.

• What are your rights as a participant?
As a participant, you have the right to:

– Withdraw your participation at any time, without prejudice.

– Have any unprocessed data withdrawn and destroyed, provided it can be reliably iden-
tified as yours.

– Have any questions answered at any time.

• Who should you contact if you have any questions?
If you require any further information, you may contact the investigator (Yoosef Abushark).

• What other issues should you be aware of before deciding whether to participate?
There are no other issues you should be aware of.
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Expriment Prerequisite Materials (Optional)

• Specifying Requirements in the Prometheus methodology
In Prometheus, requirements are specified using goals and use case scenarios. A scenario
is a sequence of steps that describe a particular run of the system. These steps are of
different types ranging from sub-scenarios to the goals that need to be achieved by the system.
Although a scenario is a single sequence of steps, the result is a set of sequences, because a
goal step can be realised by implementing its children (more generally, its descendants), or its
parent from the goal model of the system (goal overview diagram). For example the scenario
in Figure 1a, the “Invite Reviewers” goal step could be realised either by the goal step itself
or along with “Invite Reviewers Via Email”; or “ Invite Reviewers Via Portal” goal steps.
Also, a scenario may have some variations at some point. Such variations are specified in a
free-text manner. consequently, these variations may introduce new goals and/or modifying
the compositions of existing goals in the goal overview diagram.

– Review scenario of the conference management system
The conference management system is an agent-based system that helps in managing
the different phases of the international conferences including: submission, review, deci-
sion and paper collection.In the submission phase, the system should be able to assign a
number for each submission and provide receipts to authors. After the specified submis-
sion deadline, the system assigns papers to the reviewers. After receiving the reviews,
a decision should be made, by the system, about accepting or rejecting the papers with
notifying authors. Then, the system collects the accepted papers and prints them in a
form of a conference proceeding. As Figure 1 shows, the review scenario (Figure 1a)

(a) Scenario Description

Manage Conference

Get Papers Review Select Papers Print Proceeding

AND

Invite Reviewers

Collect Prefs

Assign Reviewers
Collect Reviews

Get PC Opinions

Invite_Reviewer
_Via_Email

Invite_Reviewer
_Via_Portal

AND

OR

(b) Goal Overview Diagram

Figure 1: Review Scenario & System’s Goal Overview Diagram

includes number of steps ranging from percepts the system perceives to goals to pursue.
Also, one text-based variation is specified after the second step. Figure 10b outlines the
goals and sub-goals required to successfully review the papers. As can be seen in the
figure, there are three types of goal decomposition: OR, undirected-AND (denoted by
AND) and directed-AND (denoted by AND with dashed arrows between the child goals
indicating the ordering constraints, e.g. Invite Reviewers to Collect Prefs).
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a) Action Node b) Regular Activity Edge c) Initial Node

d) Final Node e) Fork / Join f) Decision / Merge

Figure 2: Adopted UML activity digram notations

• UML Activity Diagrams
UML activity diagrams are typically used for business process modelling, for modelling the
logic captured by a single use case scenario. Activity diagrams provide designers with a range
of graphical notations for modelling activity diagrams including: activity nodes and activity
edges. The following six notations (Figure 2) are necessary for this project:

(a) Action Node: it is the fundamental and the executable node in the activity diagrams. It
is notated by a rectangular shape with rounded edges.

(b) Regular Activity Edge: It is a directed connection that shows the flow between the
different actions within an activity diagram.

(c) Initial Node: It is a control node that initiates the execution of an activity.

(d) Final Node: It is a control node that shows the end of an activity.

(e) Fork / Join: It is control node that splits the execution flow into multiple threads to be
executed independently, and then synchronises them.

(f) Decision / Merge: It is control node that splits the execution of an activity into multiple
alternate flows with only one flow to be executed.

Figure 3: Equivalent AD for the scenario in 1a

Revisiting the conference management system example, Figure 3 shows the equivalent activity
diagram for the scenario along with its variation. In fact, Activity Diagram is a coherent
structure that merges the scenario steps along with their related information from the goal
overview diagram
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Trading Agent System

The trading agent system is an agent-based system that captures the process that takes place in a
sale transaction. The system has three agents including: seller, buyer and banker. The seller agent
must send the list of products to the buyer agent when it receives the ”store opening” percept. The
buyer agent then selects a product. After that, the seller agent should send the buyer the price of
the selected item.

Then, the buyer agent should proceed with the payment through the banker agent. The banker
agent then processes the payment and notifies both the seller and the buyer about the payment
process outcomes ( approved or denied). The order of these notifications is not important (e.g.
seller first and buyer second or the other way around). In the case of an approved payment, the
seller must send the item to the buyer.

NOTE : The provided designs across the tasks are possible designs and do not necessarily represent
good ones.
NOTE Activity Diagram is a coherent structure that merges the scenario steps along with their
related information from the goal overview diagram.
Remember: A goal step can be realised through its children, or in some cases through its parent
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Task 1

Assuming that the scenario description (Figure 4) along with the goal overview (Figure 5) capture
the specifications of the system, determine the valid and invalid traces.
Remember: Activity diagram acts as a coherent structure that merges the steps of the scenario
along with its related information from the goal overview diagram, and hence it can be used in
achieving the task.

Type Name

1

2

3

4

5

6

7

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Store_Opening

Send_Item_List

Select_Item

Send_Item_Price

Make_Payment

Send_Item

Manage_Payment

Figure 4: Sale Transaction Scenario Description

Manage_Sale_Transaction

Send_Item_List Send_Item_Price Send_Item

Manage_Payment

Validate_Card Notify_Participants

Notify_Buyer Notify_Seller

Buying_Item

Select_Item Make_Payment

AND

AND

AND

AND

Figure 5: System Goal Overview Diagram

Store 
Opening

Send Item 
List Select Item Send Item 

Price
Make 

Payment

Validate 
Card

Notify 
Participants

Manage 
Payment

Notify Buyer Notify Seller

MSend Item DD

Figure 6: Activity Diagram

Execution Trace 1 Execution Trace 2 Execution Trace 3 Execution Trace 4 Execution Trace 5

Token 1 Store Opening Store Opening Store Opening Store Opening Store Opening
Token 2 Send Item List Send Item List Send Item List Send Item List Send Item List
Token 3 Select Item Buying Item Select Item Select Item Select Item
Token 4 Send Item Price Send Item Price Send Item Price Send Item Price Send Item Price
Token 5 Make Payment Make Payment Make Payment Make Payment Make Payment
Token 6 Validate Card Manage Payment Manage Payment Manage Payment Manage Payment
Token 7 Notify Participants Validate Card Validate Card Validate Card Validate Card
Token 8 Send Item Notify Participants Notify Participants Notify Participants Notify Participants
Token 9 - Send Item Send Item Notify Seller Notify Buyer
Token 10 - - - Notify Buyer Notify Seller
Token 11 - - - Send Item Send Item

Answer: 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid
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Task 2

According to the basic run (scenario in Figure 7), “Manage Payment”, “Send Item” is one of the
possible paths after posting “Make Payment” goal. Specify, if possible, another three paths by
numbering the tokens based on their order (refer to the example column).
Remember: Activity diagram acts as a coherent structure that merges the steps of the scenario
along with its related information from the goal overview diagram, and hence it can be used in
achieving the task.

Type Name

1

2

3

4

5

6

7

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Store_Opening

Send_Item_List

Select_Item

Send_Item_Price

Make_Payment

Send_Item

Manage_Payment

Figure 7: Sale Transaction Scenario Description

Manage_Sale_Transaction

Send_Item_List Send_Item_Price Send_Item

Manage_Payment

Validate_Card Notify_Participants

Notify_Buyer Notify_Seller

Buying_Item

Select_Item Make_Payment

AND

AND

AND

AND

Figure 8: System Goal Overview Diagram

Figure 9: Activity Diagram

Example (this path is
based on the basic run) Path 1 2 Not Possible Path 2 2 Not Possible Path 3 2 Not Possible

( )Manage Sale Transaction ( )Manage Sale Transaction ( )Manage Sale Transaction ( )Manage Sale Transaction
( )Validate Card ( )Validate Card ( )Validate Card ( )Validate Card
( )Notify Seller ( )Notify Seller ( )Notify Seller ( )Notify Seller
( )Notify Participants ( )Notify Participants ( )Notify Participants ( )Notify Participants
( )Notify Buyer ( )Notify Buyer ( )Notify Buyer ( )Notify Buyer
( )Buying Item ( )Buying Item ( )Buying Item ( )Buying Item
( )Send Item List ( )Send Item List ( )Send Item List ( )Send Item List
( )Select Item ( )Select Item ( )Select Item ( )Select Item
( )Send Item Price ( )Send Item Price ( )Send Item Price ( )Send Item Price
( )Make Payment ( )Make Payment ( )Make Payment ( )Make Payment
( 1 )Manage Payment ( )Manage Payment ( )Manage Payment ( )Manage Payment
( 2 )Send Item ( )Send Item ( )Send Item ( )Send Item
( )Store Opening ( )Store Opening ( )Store Opening ( )Store Opening
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Task 3

One of the stakeholders wants the buyer agent to be able to show its disinterest in a product. Thus,
a variation to the scenario is appeared as follows:

After the Buyer agent receives the item list event from the Seller agent, it may select a product or
may show its disinterest

Your task is to add the new goal/s introduced by the variation in the goal overview diagram (Figure
11).

Remember: Activity diagram acts as a coherent structure that merges the steps of the scenario
along with its related information from the goal overview diagram, and hence it can be used in
achieving the task.

Type Name

1

2

3

4

5

6

7

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Store_Opening

Send_Item_List

Select_Item

Send_Item_Price

Make_Payment

Send_Item

Manage_Payment

(a) Scenario

Store 
Opening

Send Item 
List Select Item Send Item 

Price
Make 

Payment

Validate 
Card

Notify 
Participants

Manage 
Payment

Notify Buyer Notify Seller

MSend Item DD

Show 
Disinterest

D

(b) Activity Diagram

Figure 10: Scenario & Activity Diagram
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Manage_Sale_Transaction

Send_Item_List Send_Item_Price Send_Item

Manage_Payment

Validate_Card Notify_Participants

Notify_Buyer Notify_Seller

Buying_Item

Select_Item Make_Payment

AND

AND

AND

AND

Figure 11: System Goal Overview Diagram

Task 4

Considering the two traces below, the appearance of Trace 2 is due to a change requested by the
stakeholders. Your task is to annotate the activity diagram in Figure 14 to capture both traces in
the table below.

Token# Trace 1 Trace 2

1 Store Opening Store Opening
2 Send Item List Send Item List
3 Select Item Select Item
4 Send Item Price Send Item Price
5 Make Payment Make Payment
6 Manage Payment Manage Payment
7 Send Item Cancel Order
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Type Name

1

2

3

4

5

6

7

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Store_Opening

Send_Item_List

Select_Item

Send_Item_Price

Make_Payment

Send_Item

Manage_Payment

Figure 12: Scenario Description

Manage_Sale_Transaction

Send_Item_List Send_Item_Price Send_Item

Manage_Payment

Validate_Card Notify_Participants

Notify_Buyer Notify_Seller

Buying_Item

Select_Item Make_Payment

AND

AND

AND

AND

Figure 13: System’s Goal Overview

Figure 14: Activity Diagram

Auction System

The auction system is a small agent-based system that simulates the activities that take place in an
auction. The system has five agents including: auctioneer, three bidders and banker. The Auction
has seven items to bid upon (one item at each round).

The Auctioneer agent should announce the start of the action to the bidders after it receives the
“new auction percept from the environment. The percept includes information about the item to
bid and its reserve value.

Then, the bidders should calculate and place their bids. After that, the auctioneer agent should
decide on the winning bid and notify the bidders about its decision (who won). Bidders should
then update their beliefs with such decision (either winning or lost).

NOTE : The provided designs across the tasks are possible designs and not necessarily represent
good ones.
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Remember: A goal step can be realised through its children, or in some cases through its parent
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Task 1

Assuming that the scenario description below along with the goal overview (Figure 16) capture
the specifications of the system, determine the valid and invalid traces.

Type Name

1

2

3

4

5

6

7

Goal

Percept

Goal

Goal

Goal

Goal

Goal

Start_Auction

Announce_New_Auction

Calculate_Bid

Place_Bid

Identify_Winner

Announce_Winner

Log_Decision

Figure 15: Auction Scenario
Description

Manage_Auction

Announce_New_Auction Identify_Winner Announce_Winner

Participate_in_Auction

Propose_Bid Log_Decision

Calculate_Bid Place_Bid

Invite_Bidder1

AND

AND

AND

Invite_Bidder2 Invite_Bidder3 Notify_Bidder1 Notify_Bidder2 Notify_Bidder3

AND AND

Figure 16: System Goal Overview Diagram

Execution Trace 1 Execution Trace 2 Execution Trace 3 Execution Trace 4 Execution Trace 5

Token 1 Start Auction Start Auction Start Auction Start Auction Start Auction
Token 2 Announce New Auction Announce New Auction Announce New Auction Announce New Auction Announce New Auction
Token 3 Calculate Bid Invite Bidder1 Propose Bid Calculate Bid Invite Bidder1
Token 4 Place Bid Invite Bidder2 Calculate Bid Place Bid Invite Bidder3
Token 5 Identify winner Invite Bidder3 Place Bid Identify Winner Invite Bidder2
Token 6 Announce Winner Calculate Bid Identify Winner Announce Winner Propose Bid
Token 7 Log Decision Place Bid Announce Winner Notify Bidder1 Calculate Bid
Token 8 - Identify Winner Notify Bidder1 Notify Bidder3 Place Bid
Token 9 - Announce Winner Notify Bidder3 Notify Bidder2 Identify Winner
Token 10 - Log Decision Notify Bidder2 Log Decision Announce Winne
Token 11 - - Log Decision - Log Decision

Answer: 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid 2 Valid 2 Invalid
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Task 2

According to the basic run (scenario in Figure 17), “Announce New Auction”, “Propose Bid”, “Iden-

tify Winner”, “Announce Winner” and “Log Decision” is one of the possible paths after receiving
“Start Auction” percept. Specify, if possible, another three paths by numbering the tokens based
on their order (refer to the example column).

Type Name

1

2

4

5

6

Goal

Percept

Goal

Goal

Goal

Start_Auction

Announce_New_Auction

Identify_Winner

Announce_Winner

Log_Decision

3 Goal Propose_Bid

Figure 17: Auction Scenario
Description

Manage_Auction

Announce_New_Auction Identify_Winner Announce_Winner

Participate_in_Auction

Propose_Bid Log_Decision

Calculate_Bid Place_Bid

Invite_Bidder1

AND

AND

AND

Invite_Bidder2 Invite_Bidder3 Notify_Bidder1 Notify_Bidder2 Notify_Bidder3

AND AND

Figure 18: System Goal Overview Diagram
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Example (this path is
based on the basic run) Path 1 2 Not Possible Path 2 2 Not Possible Path 3 2 Not Possible

( )Manage Auction ( )Manage Auction ( )Manage Auction ( )Manage Auction
( 1 )Announce New Auction ( )Announce New Auction ( )Announce New Auction ( )Announce New Auction
( )Invite Bidder1 ( )Invite Bidder1 ( )Invite Bidder1 ( )Invite Bidder1
( )Invite Bidder2 ( )Invite Bidder2 ( )Invite Bidder2 ( )Invite Bidder2
( )Invite Bidder3 ( )Invite Bidder3 ( )Invite Bidder3 ( )Invite Bidder3
( 3 )Identify Winner ( )Identify Winner ( )Identify Winner ( )Identify Winner
( 4 )Announce Winner ( )Announce Winner ( )Announce Winner ( )Announce Winner
( )Notify Bidder1 ( )Notify Bidder1 ( )Notify Bidder1 ( )Notify Bidder1
( )Notify Bidder2 ( )Notify Bidder2 ( )Notify Bidder2 ( )Notify Bidder2
( )Notify Bidder3 ( )Notify Bidder3 ( )Notify Bidder3 ( )Notify Bidder3
( )Participate in Auction ( )Participate in Auction ( )Participate in Auction ( )Participate in Auction
( 2 ) Propose Bid ( )Propose Bid ( )Propose Bid ( )Propose Bid
( )Calculate Bid ( )Calculate Bid ( )Calculate Bid ( )Calculate Bid
( )Place Bid ( )Place Bid ( )Place Bid ( )Place Bid
( 5 ) Log Decision ( ) Log Decision ( ) Log Decision ( ) Log Decision
( )Start Auction ( )Start Auction ( )Start Auction ( )Start Auction
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Task 3

One of the stakeholders wants the bidder agents to be able to request a loan from the banker agent
in the case of three successive losses.. Thus, a variation to the scenario in Figure 19 is appeared
as follows:

In the case when a bidder agent successively loses the auction three times, it needs to apply for
bank loan, rather than proposing a new bid.

Type Name

1

2

4

5

6

Goal

Percept

Goal

Goal

Goal

Start_Auction

Announce_New_Auction

Identify_Winner

Announce_Winner

Log_Decision

3 Goal Propose_Bid

Figure 19: Auction Scenario Description

Your task is to add the new goal/s introduced by the variation above in the goal overview diagram.

Manage_Auction

Announce_New_Auction Identify_Winner Announce_Winner

Participate_in_Auction

Propose_Bid Log_Decision

Calculate_Bid Place_Bid

Invite_Bidder1

AND

AND

AND

Invite_Bidder2 Invite_Bidder3 Notify_Bidder1 Notify_Bidder2 Notify_Bidder3

AND AND

Figure 20: System Goal Overview Diagram
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User Study on specifying requirements in the Prometheus methodology 1

Post-Expriment Questionnaire

This post test questionnaire is designed to get the user’s feedback on their experience in both approaches.

Using the following rating sheet, please select the number closest to the term that most closely
matches your feeling about the activity diagram as an extra artefact along with scenario and goal
overview diagram.

1. Enables an easy extraction of a possible behaviour path relative to a particular scenario

[ ]Strongly Agree [ ]Agree [ ] Neutral [ ]Disagree [ ]Strongly Disagree

2. The time taken to grasp what the entire activity diagram shows is reasonable

[ ]Strongly Agree [ ]Agree [ ] Neutral [ ]Disagree [ ]Strongly Disagree

3. It is easy to maintain activity diagrams (easy to incorporate changes including: adding,
removing and modifying entities)

[ ]Strongly Agree [ ]Agree [ ] Neutral [ ]Disagree [ ]Strongly Disagree

4. Activity Diagram is useful in designing the agents of a particular scenario.

[ ]Strongly Agree [ ]Agree [ ] Neutral [ ]Disagree [ ]Strongly Disagree

In the experiment you followed two approaches in specifying requirements including: the ap-
proach without activity diagram and the one with activity diagram. Which Approach would you
prefer to use? and why.



CHAPTER B
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CHAPTER B: SCREENSHOTS OF THE TOOL-SUPPORT

Figure B.1: “Design v.s. interaction protocols” Tool after accessing the verification feature from
the “Package Explorer” within PDT

Figure B.2: The tool interface after selecting and confirming a protocol from the drop-down list.
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SECTION B.0:

Figure B.3: The tool interface after generating the Plan Graph.

Figure B.4: The tool interface after generating the Petri net of the selected protocol.
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CHAPTER B: SCREENSHOTS OF THE TOOL-SUPPORT

Figure B.5: The tool interface after translating the plan graph to Petri net to calculate its reacha-
bility graph.

Figure B.6: The tool interface after calculating the reachability graph of the Petri net equivalent
to the plan graph.
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SECTION B.0:

Figure B.7: The tool interface after finishing off the checking process and generating the textual
report.

Figure B.8: “Design v.s. Requirements” Tool after accessing the verification feature from the
“Package Explorer” within PDT.

253 (August 14, 2017)





CHAPTER C
Aircraft Turned-Around Simulator Case-Study

255



CHAPTER C: AIRCRAFT TURNED-AROUND SIMULATOR CASE-STUDY
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ATS	
	

1 Airline	Ground	Staff	Agent	

	
2 Airport	Ground	Staff	Agent	

	
3 Caterer			 	 	 	 	 4							Cleaner	

	
5	 Crew	

	
6 Engineer	



	
7 Fuller	

	
8 Manager	

	
9 Passengers	

	
10	 Pilot	

	



SECTION C.0:

ServiceAircraft

par StartCleaning

Cleaner Caterer

CleaningCompleted

CateringCompleted

WaterContentReply

Crew Manager

Figure C.2: ServiceAircraft Protocol

MaintainAircraft

par
StartRoutineMaintainance

Engineer Fueller

StartNoneRoutineMantainance

StartFuelling

Pilot

Figure C.3: MaintainAircraft Protocol

Board

loop

StartEmbarkingPassengers

Airline
GroundStaff Passenger

Embark

Crew

EmbarkingPassengersCompleted

Figure C.4: Board Protocol

PrepareDeparture

RemoveAirBridge

Airport
GroundStaff

RemoveAirBridgeComplete

Pilot

RemoveWheelChocks

RemoveWheelChocksComplete

AttachTug

AttchTugComplete

Figure C.5: PrepareDeparture Protocol
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CHAPTER C: AIRCRAFT TURNED-AROUND SIMULATOR CASE-STUDY

PrepareArrival

GoToRamp

Airline
GroundStaff Pilot

PositionWheelChocksRequest

Manager

PositionWheelChocksConfirm

PositionAirbridgeRequest

PositionAirbridgeConfirm

Figure C.6: PrepareArrival Protocol

Deboard

loop

StartDisembarking
Crew Passenger

Disembark

Manager

DisembarkCompleted

DisembarkCompleted

Figure C.7: Deboard Protocol

HandleBaggage

UnloadBaggage

Airport
GroundStaff

BaggageUnloaded

Manager

LoadBaggage

BaggageLoaded

Figure C.8: HandleBaggage Protocol
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Oil	Production	
	

1 Production	Optimiser	Agent	

	
2 Well	Controller	Agent	

	
3 Well	Monitor	Agent	

	

	
	 	



SECTION D.0:

Type Name

1
2
3
4
5
6
7

Goal
Percept

Goal
Goal

Goal
Action

Plant Sensor Values
Record Well Sensor Values
Detect Water Content Change
Detect Critical Situation
Produce Alarm
Display Alarm
Notify Operator

Role

PlantMonitoring

WellMonitoring

AlarmCreation
AlarmPresentation

CriticalSituationDetection
Goal

PlantMonitoring

AlarmPresentation

Figure D.1: ControlSendContent Scenario

Type Name

1
2
3

Goal
Percept

Action

Operator’s Choke Adjustment 
Accept Instruction
Change Choke Position

Role

InstructionAcceptance 

ChokeAdjusment
InstructionAcceptance 

Figure D.2: RespondToOperator Scenario

Type Name

1
2
3
4
5
6
7

Goal
Percept

Goal
Goal

Goal
Action

Well Sensor Values
Record Well Sensor Values
Calculate Optimal Choke Position
Detect Critical Situation
Produce Alarm
Display Alarm
Notify Operator

Role

WellMonitoring

FelidOptimisation

AlarmCreation
AlarmPresentation

CriticalSituationDetection
Goal

WellMonitoring

AlarmPresentation

Figure D.3: OptimiseOilProduction Scenario
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