537 research outputs found

    On Resource Allocation in Fading Multiple Access Channels - An Efficient Approximate Projection Approach

    Full text link
    We consider the problem of rate and power allocation in a multiple-access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates on the information theoretic capacity region of the multiple-access channel. Our policies does not require queue-length information. We consider several different scenarios. First, we address the utility maximization problem in a nonfading channel to obtain the optimal operating rates, and present an iterative gradient projection algorithm that uses approximate projection. By exploiting the polymatroid structure of the capacity region, we show that the approximate projection can be implemented in time polynomial in the number of users. Second, we consider resource allocation in a fading channel. Optimal rate and power allocation policies are presented for the case that power control is possible and channel statistics are available. For the case that transmission power is fixed and channel statistics are unknown, we propose a greedy rate allocation policy and provide bounds on the performance difference of this policy and the optimal policy in terms of channel variations and structure of the utility function. We present numerical results that demonstrate superior convergence rate performance for the greedy policy compared to queue-length based policies. In order to reduce the computational complexity of the greedy policy, we present approximate rate allocation policies which track the greedy policy within a certain neighborhood that is characterized in terms of the speed of fading.Comment: 32 pages, Submitted to IEEE Trans. on Information Theor

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency

    Industrial Symbiotic Relations as Cooperative Games

    Get PDF
    In this paper, we introduce a game-theoretical formulation for a specific form of collaborative industrial relations called "Industrial Symbiotic Relation (ISR) games" and provide a formal framework to model, verify, and support collaboration decisions in this new class of two-person operational games. ISR games are formalized as cooperative cost-allocation games with the aim to allocate the total ISR-related operational cost to involved industrial firms in a fair and stable manner by taking into account their contribution to the total traditional ISR-related cost. We tailor two types of allocation mechanisms using which firms can implement cost allocations that result in a collaboration that satisfies the fairness and stability properties. Moreover, while industries receive a particular ISR proposal, our introduced methodology is applicable as a managerial decision support to systematically verify the quality of the ISR in question. This is achievable by analyzing if the implemented allocation mechanism is a stable/fair allocation.Comment: Presented at the 7th International Conference on Industrial Engineering and Systems Management (IESM-2017), October 11--13, 2017, Saarbr\"ucken, German

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
    • …
    corecore