We consider the problem of rate and power allocation in a multiple-access
channel. Our objective is to obtain rate and power allocation policies that
maximize a general concave utility function of average transmission rates on
the information theoretic capacity region of the multiple-access channel. Our
policies does not require queue-length information. We consider several
different scenarios. First, we address the utility maximization problem in a
nonfading channel to obtain the optimal operating rates, and present an
iterative gradient projection algorithm that uses approximate projection. By
exploiting the polymatroid structure of the capacity region, we show that the
approximate projection can be implemented in time polynomial in the number of
users. Second, we consider resource allocation in a fading channel. Optimal
rate and power allocation policies are presented for the case that power
control is possible and channel statistics are available. For the case that
transmission power is fixed and channel statistics are unknown, we propose a
greedy rate allocation policy and provide bounds on the performance difference
of this policy and the optimal policy in terms of channel variations and
structure of the utility function. We present numerical results that
demonstrate superior convergence rate performance for the greedy policy
compared to queue-length based policies. In order to reduce the computational
complexity of the greedy policy, we present approximate rate allocation
policies which track the greedy policy within a certain neighborhood that is
characterized in terms of the speed of fading.Comment: 32 pages, Submitted to IEEE Trans. on Information Theor