6 research outputs found

    Verfahren zur direkten Implementierung von Algorithmen auf Gatterebene

    Get PDF
    Bit serial, processing, digital signal processing, transmission, time division, linear programming, linear optimizationMagdeburg, Univ., Fak. für Maschinenbau, Diss., 2003von Thomas Reineman

    Untersuchungen zur Kostenoptimierung für Hardware-Emulatoren durch Anwendung von Methoden der partiellen Laufzeitrekonfiguration

    Get PDF
    Der vorliegende Band der wissenschaftlichen Schriftenreihe Eingebettete Selbstorganisierende Systeme widmet sich der Optimierung von Hardware Emulatoren durch die Anwendung von Methoden der partiellen Laufzeitrekonfiguration. An aktuelle Schaltkreis- und Systementwürfe werden zunehmend divergente Anforderungen gestellt. Einer sehr kurzen Entwicklungszeit für eine schnelle Markteinführung steht, um teure und aufwändige Re-Desings zu verhindern, eine möglichst umfangreiche Testabdeckung des Entwurfs gegenüber. Um die Zeit für die Tests zu reduzieren, kommen überwiegend FPGA-basierte HW-Emulatoren zum Einsatz. Durch den Einfluss der steigenden Komplexität aktueller Entwürfe auf die Emulator-Plattform reduziert sich jedoch signifikant die Performance der Emulatoren. Die in Emulatoren eingesetzten FPGAs sind aber zunehmend partiell zur Laufzeit rekonfigurierbar. Der in der vorliegenden Arbeit umgesetzte Ansatz behandelt die Anwendung von Methoden der Laufzeitrekonfiguration auf dem Gebiet der Hardware-Emulation. Dafür ist zunächst eine Partitionierung des zu testenden Entwurfs in möglichst funktional unabhängige Systemteile notwendig. Für eine optimierte und ressourceneffiziente Platzierung der einzelnen HW-Module während der Emulation, ist ein ebenfalls auf dem FPGA platziertes Kommunikationsnetzwerk implementiert. Der vorgestellte Ansatz wird an verschiedenen Beispielen anschaulich illustriert. So kann der Leser die Mächtigkeit der entwickelten Methodik nachvollziehen und wird motiviert, das Verfahren auch auf weitere Anwendungsfälle zu übertragen.Current circuit and system designs consist a lot of gate numbers and divergent requirements. In contrast to a short development and time to market schedule, the needs for perfect test coverage and quality are rising. One approach to cover this problem is the FPGA based functional test of electronic circuits. State of the art FPGA platforms doesn't consist enough gates to support fully custom designs. The thesis catches this problem and gives some approaches to use partial dynamic reconfiguration to solve the size problem. A fully automated design flow demonstrates partial partitioning of designs, modifications to use dynamic reconfiguration and its schedule. At the end of the work, some examples demonstrates the power of the approach

    Gate and Throughput Optimizations for NULL Convention Self-timed Digital Circuits

    Get PDF
    NULL Convention Logic (NCL) provides an asynchronous design methodology employing dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion Groups (MEAGs) to incorporate data and control information into one mixed path. In NCL, the control is inherently present with each datum, so there is no need for worse-case delay analysis and control path delay matching. This dissertation focuses on optimization methods for NCL circuits, specifically addressing three related architectural areas of NCL design. First, a design method for optimizing NCL circuits is developed. The method utilizes conventional Boolean minimization followed by table-driven gate substitutions. It is applied to design time and space optimal fundamental logic functions, a time and space optimal full adder, and time, transistor count, and power optimal up-counter circuits. The method is applicable when composing logic functions where each gate is a state-holding element; and can produce delay-insensitive circuits requiring less area and fewer gate delays than alternative gate-level approaches requiring full minterm generation. Second, a pipelining method for producing throughput optimal NCL systems is developed. A relationship between the number of gate delays per stage and the worse-case throughput for a pipeline as a whole is derived. The method then uses this relationship to minimize a pipeline\u27s worse-case throughput by partitioning the NCL combinational circuitry through the addition of asynchronous registers. The method is applied to design a maximum throughput unsigned multiplier, which yields a speedup of 2.25 over the non-pipelined version, while maintaining delay-insensitivity. Third, a technique to mitigate the impact of the NULL cycle is developed. The technique further increases the maximum attainable throughput of a NCL system by reducing inherent overheads associated with an integrated data and control path. This technique is applied to a non-pipelined 4-bit by 4-bit unsigned multiplier to yield a speedup of 1.61 over the standalone version. Finally, these techniques are applied to design a 72+32x32 multiply and accumulate (MAC) unit, which outperforms other delay-insensitive/self-timed MACs in the literature. It also performs conditional rounding, scaling, and saturation of the output, whereas the others do not; thus further distinguishing it from the previous work. The methods developed facilitate speed, transistor count, and power tradeoffs using approaches that are readily automatable
    corecore