
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

2001

Gate and Throughput Optimizations for NULL Convention Self-Gate and Throughput Optimizations for NULL Convention Self-

timed Digital Circuits timed Digital Circuits

Scott Christopher Smith
University of Central Florida, smithsco@uark.edu

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Smith, Scott Christopher, "Gate and Throughput Optimizations for NULL Convention Self-timed Digital
Circuits" (2001). Retrospective Theses and Dissertations. 1359.
https://stars.library.ucf.edu/rtd/1359

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/1359?utm_source=stars.library.ucf.edu%2Frtd%2F1359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

GATE AND THROUGHPUT OPTIMIZATIONS FOR
NULL CONVENTION SELF-TIMED DIGITAL CIRCUITS

Scott Christopher Smith

MSEE, University of Missouri-Columbia, 1998
BSEE, University of Missouri-Columbia, 1996
BSCompE, University of Missouri-Columbia, 1996

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering

in the field of Computer Architecture and Digital Systems
in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2001

Major Professor: Dr. Ronald DeMara

ABSTRACT

NULL Convention Logic (NCL) provides an asynchronous design methodology

employing dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion

Groups (MEAGs) to incorporate data and control information into one mixed path. In

NCL, the control is inherently present with each datum, so there is no need for worse-

case delay analysis and control path delay matching. This dissertation focuses on
Y

optimization methods for NCL circuits, specifically addressing three related architectural

areas of NCL design.

First, a design method for optimizing NCL circuits is developed. The method

utilizes conventional Boolean minimization followed by table-driven gate substitutions. It

IS applied to design time and space optimal fundamental logic hct ions, a time and space

optimal full adder, and time, transistor count, and power optimal up-counter circuits. The

method is applicable when composing logic hc t ions where each gate is a state-holding

element; and can produce delay-insensitive circuits requiring less area and fewer gate

delays than alternative gate-level approaches requiring full minterm generation.

Second, a pipelining method for producing throughput optimal NCL systems is

developed. A relationship between the number of gate delays per stage and the worse-

case throughput for a pipeline as a whole is derived. The method then uses this

relationship to minimize a pipeline's worse-case throughput by partitioning the NCL

combinational circuitry through the addition of asynchronous registers. The method is

applied to design a maximum throughput unsigned multiplier, which yields a speedup of

2.25 over the non-pipelined version, while maintaining delay-insensitivity.

Third, a technique to mitigate the impact of the NULL cycle is developed. The

technique Wher increases the maximum attainable throughput of a NCL system by

reducing inherent overheads associated with an integrated data and control path. This

technique is applied to a non-pipelined Cbit by 4-bit unsigned multiplier to yield a

speedup of 1.61 over the standalone version.

Finally, these techniques are applied to design a 72+32x32 multiply and

&cumulate (MAC) unit, which outperforms other delay-insensitive/self-timed MACs in
Y

the literature. It also performs conditional rounding, scaling, and saturation of the output,

whereas the others do not; thus further distinguishing it from the previous work. The

methods developed facilitate speed, transistor count, and power tradeoffs using

approaches that are readily automatable.

ACKNOWLEDGEMENTS

I would like to thank Theseus Logic, Inc. for their financial support and the

opportunity to work with such novel and exciting technology. I would like to thank

Dr. DeMara for his technical and editorial advice that has helped shape this work. I

would like to thank the committee members who have taken the time to review and

comment on this dissertation. I would also like to thank the state of Florida for the

fellowships provided that have allowed me the opportunity to pursue this degree. But

- most of all I would like to thank my loving wife Tamara, for her patience and support in

my continued education.

TABLE OF CONTENTS

.. LIST OF TABLES x

LIST OF FIGURES ... xi

... CHAPTER 1 . INTRODUCTION 1

.. . 1 1. Objective 1

1.2. History and Benefits of NCL ... 1

... 1.3. Research Challenges -5

.. 1.4. Dissertation Overview -6

.. CHAPTER 2 . PREVIOUS WORK -8

.. 2.1. Overview of Asynchronous Methods 9

.. 2.1.1. Gate-Level Delay-Insensitive Methods 11

................................ 2.1 .2 . Transistor-Level Delay-Insensitive Methods 12

2.2. Overview of NCL .. 12

.. 2.2.1. Delay-Insensitivity 13

2.2.2. Logic Gates and Functional Blocks .. 15

... 2.2.3. Completeness of Input -20

.. 2.2.4. Obsewability -22

.. 2.2.5. NCL Registration 23

.. 2.2.6. NCL Completion -29

CHAPTER 3 . THRESHOLD COMBINATIONAL REDUCTION METHOD 3 1

.. 3.1. Chapter Outline 32

3.2. TCR Method Definition ... 32

3.2.1 . Method 1 : Incomplete Functions ... -34

3.2.2. Method 2: Dual-Rail Optimizations ... -34

3.2.3. Method 3 : Quad-Rail Optimizations .. -36

3.2.4. Performance Assessment ... -37

3.3. Application to Input-Complete Fundamental Logic Functions 38

... 3.4. Application to Full Adder -40

3.5. Application to Up-Counter ... -47

.. 3.5.1. Method 1 : Incomplete Functions 51

3.5.2. Method 2: Dual-Rail Encoding Optimizations 53

3.5.3. Method 3: Quad-Rail Encoding Optimizations 57

... 3.5.4. Other MEAG Optimizations 61

3.5.5. Up-Counter Performance Summary .. -64

':-CHAPTER 4 . GATE-LEVEL PIPELINING OPTIMIZATIONS 66

.. 4.1. Chapter Outline 67

.. 4.2. Previous Work -67

4.2.1 . Relation of NCL to Previous Work .. 70

... 4.3. Method Definition -72

4.3.1 . Throughput Derivation .. 75

4.3.1 . 1. Idealized Completion Circuitry -77

4.3.1.2. Non-Zero Delay Completion Circuitry 79

4.3.2. Bit-Wise Completion ... -82

4.4. Application to Unsigned Multiplier ... 85

....................... 4.4.1. Pipelined Multipliers with Full-Word Completion 87

.... 4.4.2. Summary of Multiplier Designs using Full-Word Completion 93

4.4.3. Applying Bit- Wise Completion ... -93

.. 4.5. Conclusion -94

CHAPTER 5 . NULL CYCLE REDUCTION TECHNIQUE ... 96

. 5.1 Introduction .. 96

5.2. NULL Cycle Reduction ... 97

5.2.1 . Demultiplexer .. -99

5.2.2. Completion Detection Circuitry ... -100

5.2.3. Sequencer #l ... 1 00

5.2.4. Multiplexer .. 101

... 5.2.5. Sequencer #2 102

5.3. Simulation Results .. -103

CHAPTER 6 . NCL MULTIPLY AND ACCUMULATE UNIT 106

. 6.1 Introduction .. 107

6.2. Previous Work .. 108

6.3. Self-Timed MAC Design Methods .. 1 09

6.3.1 . Non-Pipelined Modified Baugh- Wooley MAC 1 1 1

6.3.1.1. Operation .. 1 1

vii

.. 6.3.1.2. Design Optimizations 115

6.3.1.3. Average Cycle Time Determination 117

...................................... 6.3.2. Non-Pipelined Modified Booth2 MAC 118

6.3.2.1. Operation .. 118

.. 6.3.2.2. Design Optimizations -120

6.3.2.3. Average Cycle Time Determination 120

.................................. 6.3.3. Pipelined Modified Baugh-Wooley MAC 120

.. 6.3.3.1 . Operation 120

... 6.3.3.2. Throughput Maximization 122

.. 6.3.4. Pipelined Modified Booth2 MAC -126

... 6.3.4.1 . Operation -126

6.3.4.2. Throughput Maximization .. -128

.. 6.3.5. Simulation Results 128

... 6.4. Cany-Propagate Adder Comparison -129

6.5. Gate Requirements for Proposed Designs .. -132

6.5.1 . Modified Baugh- Wooley MAC .. 133

6.5.2. Modified Booth2 MAC ... 133

... 6.5.3. Array MAC 134

... 6.5.4. Modified Booth3 MAC 135

6.5.5. Modified Booth4 MAC ... 136

6.5.6. Combinational 2-Bit x 2-Bit MAC ... 137

6.5.7. Combinational 2-Bit x 3-Bit MAC ... 138

... 6.5.8. Combinational 2-Bit x 4-Bit MAC 139

.. 6.5.9. Combinational 3 -Bit x 3 -Bit MAC 140

.. 6.5.10. Quad-Rail MACs 142

... 6.6. Conclusion 142

CHAPTER 7 . Conclusion 145

7.1. Summary .. 145

... 7.2. Future Work 147

LIST OF REFERENCES ...

LIST OF TABLES

Attributes of clocked Boolean and asynchronous methods 3

... Attributes of self-timed methods 10

.. 27 NCL macros 36

Performance characteristics of input-complete NCL logic functions 40

Full adder using various delay-insensitive methods ... -43

Delay-insensitive methods for f(a. b. c. d) = a b '. c . d 47

Alternate designs for NCL up-counter increment circuit 65

Discrete timing chart for the idealized NCL cycle .. 77

Discrete timing chart for the general NCL cycle ... 80

Stage delay and throughput for various multiplier designs 93

... Sequencer output -101

NCR vs . pipelining for multiplier application .. -104

... Saturation table 1 5

XIV . Propagation delay and gate count for 4-bit adders ... 131

XV . Algorithm. technology. and cycle time for various self-timed MACs 144

LIST OF FIGURES

.. 1 . Symbolic incompleteness of a Boolean AND gate 13

.. 2 . NCL AND function: Z = X Y and associated waveforms 15

... 3 . THmn threshold gate -16

4 . Static CMOS implementation of a TH23 gate ... 16

... 5 . NULL flowing through combinational circuitry -18

.. 6 . Completion detection of NULL output 19

... 7 . DATA flowing through combinational circuitry 19

.. 8 . Completion detection of DATA output -19

... 9 . DATA-to-DATA cycle time (TDD) -20

... 10 . Incomplete AND function: Z = X Y 21

.. 1 1 . Conventional input-complete AND function: Z = X Y 21

12 . Incorrect XOR function: Z = X @ Y (orphans may propagate through a gate) 22

13 . Correct XOR function: Z = X @ Y (orphans may not propagate through any gate) ... 23

... 14 . n-bit dual-rail registration -24

... 15 . Initial register state 26

.. 16 . Register state after traversing combinational circuitry 27

................ 17 . Register state after NULL wavefiont passes through downstream register 27

18 . Register state after DATA wavefi-ont passes through current register 27

..................... 19 . Register state after NULL wavefront passes through upstream register 28

.. 20 . Static register state -28

.. 2 1 . Single-bit dual-rail regster 29

... 22 . Single-signal quad-rail register -30

... 23 . N-bit completion component 30

.. . 24 TCR design flow 33

25 . Conventional input-complete OR function: Z = X + Y ... 39

... 26 . Conventional input-complete XOR hct ion: Z = X @ Y 39

... 23 . Truth table for 1 1 1 adder -41

.. 28 . K-map for C,., output of full adder 41

.. 29 . K-map for S output of full adder 41

.. 30 . Optimized NCL full adder -41

31 . Full adder using Anantharaman's approach or DIMS ... 43

.. 32 . Full adder using Seitz's approach 44

... 33 . Full adder using David's approach -45

34 . Full adder using Singh's approach ... 46

35 . 4-bit up-counter block diagram .. 48

... 36 . Up-counter with three-register feedback 48

.. 37 . Dual-rail 4-bit counter waveforms -49

.. 38 . 16-rail MEAG 4-bit counter waveforms SO

.. 39 . Quad-rail 4-bit counter waveforms 51

xii

k m t circuit 52

circuit using incomplete AND functions*........ -52

ent circuit using dual-rail reduced mintem expressions 54

ent circuit using dual-rail factored mintexm expressions 55

. Dual-rail increment circuit using complex gates ... 56

..*....*............................ maps for quad-rail counter 57

ent circuit using quad-rail reduced minterm expressions 58

. Increment circuit using quad-rail factored minterm expressions -60

. Quad-rail increment circuit using complex gates .. 61

. I Grail MEAG increment circuit ... -62

1 MEAG register ... 63

. Two-phase handshaking protocol ... -69

our-phase handshaking protocol ... -69

wp flow .. *.7 3

ub-cycles of the NCL cycle .. -76

line showing NCL sub-cycle times ... 76

completion .. -84

it-wise completion ... 84

er block diagram .. -85

Non-pipelined, 1 -stage 4x4 multiplier using ill-word completion 86

-87 ...

7 component .. $7

...
Xll l

62 . 2-stage 4x4 multiplier using full-word completion ... 89

63 . 3-stage 4x4 multiplier using full-word completion ... 90

64 . 4-stage 4x4 multiplier using full-word completion ... 91

65 . 7-stage 4x4 multiplier using full-word completion ... 92

... 66 . 7-stage 4x4 multiplier using bit-wise completion 95

.. 67 . NCR architecture -98

... 68 . 1 -bit Demultiplexer -99

69 . Sequence generator .. 101

70 . 1 -bit Multiplexer .. 102

71 . NCL pipeline with one slow stage ... 105

.. 72 . MAC block diagram 111

.. 73 . Taxonomy of 72+32x32 MAC 111

... 74 . Non-pipelined Modified Baugh-Wooley MAC 1 13
. .

75 . Output divisions for up.scaling. no scaling. and down-scaling 114

76 . Non-pipelined Modified Booth2 MAC .. 1 9

77 . Pipelined Modified Baugh-Wooley MAC ... 121

78 . Pipelined Modified Booth2 MAC .. 127

79 . 4-bit carry-lookahead adder .. -130

xiv

1.0 INTRODUCTION

1.1 Obiective

This Ph.D. dissertation is intended to familiarize the reader with the syntax and

NULL Convention Logic (NCL), to

techniques, and to discuss analytical

develop NCL design methods

. and experimental results. The

I' ' - focus will be on architectural aspects of NCL as discussed at the gate level. 1 '4

!
!

1.2 History and Benefits of NCL

and

main

I

Various design aspects of NCL were patented by Karl Fant and Scott Brandt in

April of 1994 [I]. Acknowledging that clocked circuits unnecessarily restricted execution

: flow, consumed power proportional to the operating frequency, occupied significant

device area for the clock tree, and greatly complicated the design process, they sought a

.clockless design approach, But eliminating clocks as in traditional asynchronous design

presented race conditions and made timing optimizations like pipelining difficult. By

eliminating clocks but retaining control information in the datapath, NCL aims at
'7

designing VLSI devices with greater ease, with a reduced power budget, lower

electromagnetic interface effects, and reduced noise margins.

Karl Fant founded Theseus Logic, Inc., whlch began operations in Minnesota in

January of 1996, to develop NCL-based Application Specific Integrated Circuits (ASICs)

and "soft cores" for electronics manufacturers. The company has demonstrated the

viability of NCL technology through government programs with Honeywell, Lockheed

Martin, the Defense Advanced Research Projects Agency (DARPA), the Ballistic Missile

Defense Organization (BMDO), the US ARMY Communication Electronics Command

(CECOM), and the National Security Agency (NSA). A privately held company, Theseus

is now headquartered in Orlando, Florida and also has a research and development office

in Sunnyvale, Cali fomia.

f : In August 1999, Theseus and the University of Central Florida were awarded a

state-fhded grant for a joint research project involving NCL ASIC design and

development of formal design methods for NCL. In October 1999 Theseus formed a

strategic technology alliance with Motorola's Semiconductor Products Sector to jointly

implement NCL versions of various Motorola microcontrollers. And in September 2000

Theseus formed a strategic technology alliance with Synopsys for development of NCL-

based design tools. Many potential applications fkom mobile, handheld low-power DSP

devices to general purpose CPUs lie ahead.

Table I lists the advantages of asynchronous design, both bounded-delay and

delay-insensitive models, over clocked Boolean design. It shows that clocked Boolean

design necessitates a global clock, where asynchronous design does not; and that only

delay-insensitive methods have no glitch power, deliver average-case verses worse-case

performance, and provide for ease of design reuse. Table I also lists that power, noise,

1 and EM1 are disadvantages for clocked Boolean circuits, but are advantages for their

asynchronous counterparts, as detailed below.

I

). Table I. Attributes of clocked Boolean and asynchronous methods.
W.,' -
9:

- -

Y '

Traditional clocked Boolean circuits suffer fiom the layout nightmare of clock

M b 1 m and require high power surges at the clock edge, when switching is most
WAII

EM1
D
A
A

Synchronous circuits also cannot operate at their maximum potential due to

. These trends have led to a large revival of interest in the asynchronous

Noise
D
A
A

+'bynchronous design approaches each component in the system is not

~ t r o l l d by a clock signal. Thus, timing design margins are not required to compensate

Power
D
A
A

#I clock skew. An asynchronous design theoretically should allow data to flow through a

Reuse
Ease

N
N
Y

W i g n Paradigm
Clocked Boolean
Bounded-Delay
r

Dday-Insensitive

at the maximum rate of the underlying switching technology being used. As the

inputs arrive, a function should be executed and its results sent to the required

(s)*

Nonetheless, traditional asynchronous design techniques have drawbacks of their

Global
Clock

Y
N
N

OM. & asynchronous circuit is traditionally designed as having a datapath and a control

p#h. Since there is no clock to synchronize these two paths, there must be extensive

ysis performed in order to determine the worse-case delay in the datapath.

then be matched in the control path in order to synchronize the two paths

a clock. This method of asynchronous circuit design is classified as

Glitch
Power

Y
Y
N

Performance
Average-
Case

N
N
Y

Worse-
Case

Y
Y
N

bounded-delay. Both clocked Boolean and bounded-delay designs suffer fiom the

problem of limiting the maximum operating fiequency based on the worse-case delay in

the datapath. Bounded-delay design also alleviates the complex task of clock distribution.

but it introduces another complex task of determining the worse-case datapath delay and

matching this delay in the control path. An important benefit of NCL is asynchronous

execution that is completely delay-insensitive, assuming that wire forks are isochronic

12.31. When designing in NCL there is no need for worse-case delay analysis and delay

matching, which makes the NCL design process significantly less complex than

traditional asynchronous design.

NCL on the other hand, allows a system to run at its maximum frequency

regardless of the input. For inputs which traverse a path with minimal delay, the output

will arrive much faster than for inputs which traverse a longer delay path. This property

rllows a NCL circuit to potentially operate faster than a traditional Boolean asynchronous

design. NCL circuits are also much more adaptive, and facilitate easier reuse than

Boolean asynchronous circuits, since timing analysis is unnecessary due to NCL's delay-

insensitivity.

As the trend towards higher clock Gequency continues, power consumption,

noise, and electromagnetic interference (EMI) of synchronous designs increase

significantly. PCs are becoming more widespread and consume an increasingly

substantial percentage of the world's electrical power. With the absence of a clock, NCL

systems promise to reduce power consumption, noise, and EMI. NCL circuits, designed

using CMOS, also exhibit an inherent idle behavior since they only switch when useful

is being performed, unlike clocked Boolean circuits that switch every clock pulse.

NCL circuits adhere to monotonic transitions between DATA and NULL, so there is no

glitching, unlike clocked Boolean circuits that produce substantial glitch power. NCL

systems also distribute the demand for power over time and area, reducing the occurrence

of hot spots, system noise, and peak power demand, unlike clocked Boolean circuits

where all circuitry switches simultaneously at the clock edge. Furthermore, NCL systems

are very tolerant of power supply variations such that cheaper power supplies can be used

end voltage can be reduced dramatically to meet performance criterion while reducing

power consumption. Therefore, a very fast NCL circuit can be run at a lower voltage to

reduce power consumption when high performance is not required.

The initial version of Motorola STAR08 processor using NCL technology shows

a 40% reduction in power and a 10 dB reduction in noise over its clocked Boolean

counterpart, while operating at a comparable frequency. Since NCL circuits have been

demonstrated to consume significantly less power than clocked Boolean designs, NCL

has a promising future in the field of mobile electronics, where power consumption is a

major design consideration.

1.3 Research Challenges

This dissertation focuses on three architectural areas of NCL, all related to circuit

design and optimization. Since NCL is still conceptually young, there is no current

fonnal method for designing optimal NCL circuits. NCL differs significantly from

Boolean logic; so traditional Boolean techniques for circuit simplification cannot be

applied to NCL circuits without major modifications. Thus, the first goal is to devise a

new formal method for NCL circuit simplification, such that optimal designs are readily

obtained.

The unique structure of NCL lends itself to pipelining, even though a clock is not

present. Since there is no clock in NCL to synchronize pipeline stages, the design of a

NCL pipeline will be significantly different than a Boolean pipeline design. A related

need is to develop a means for determining the maximum number of gate delays per stage

to yield the maximum attainable throughput when pipelining a given design. Thus, the

second goal is to develop a formal method for designing throughput optimal NCL

systems.

The NULL cycle accounts for approximately half of the cycle time of a NCL

circuit, therefore reducing the system's maximum attainable throughput by a factor of

two. Thus, the third goal is to devise a technique to reduce the NULL cycle, fiuther

increasing system performance. This further speedup may be essential for especially time

critical circuits.

1.4 Dissertation Overview

This dissertation is organized into seven chapters. Chapter 2 presents previous

work and contains an in-depth discussion of fundamental NCL terminology, concepts,

and components, which will provide the notation and basis for the rest of the dissertation.

In Chapter 3, a formal method for designing different types of optimal combinational,

simplified NCL circuits is developed. This method is then tested on the design of

firndmnental logic functions, a h11 adder, and a 4-bit counter, with simulation times, gate

counts, and transistor counts included. In Chapter 4, a formal method for producing

pipelined designs, which yield the maximum attainable throughput, is devised. This

method is tested on the design of a 4-bit by 4-bit multiplier, and includes comprehensive

simulation times and pipeline stage information. Chapter 5 develops a technique for

reduction of the NULL cycle, and applies it to a non-pipelined 4-bit by 4-bit multiplier.

Chapter 6 details the design of a throughput and area optimal 72+32x32 MAC. Chapter 7

highlights the contributions of this dissertation and provides direction for future research.

2.0 PREVIOUS WORK

For the last two decades the focus of digital design has been primarily on

synchronous, clocked architectures. However, as clock rates have significantly increased

while feature size has decreased, clock skew has become a major problem. High

pafonnance chips must dedicate increasingly larger portions of their area for clock

drivers to achieve acceptable skew, causing these chips to dissipate increasingly higher

power.& these trends continue, the clock is becoming more and more difficult to

manage. This has caused renewed interest in asynchronous digital design.

NULL Convention Logic (NCL) offers a delay-insensitive logic paradigm where

control is inherent with each datum. NCL follows the so-called "weak conditions" of

Seitz's delay-insensitive signaling scheme [4]. As with other delay-insensitive logic

methods discussed herein, the NCL paradigm assumes that forks in wires are isochronic

[2,3]. The origins of various aspects of the paradigm, including the NULL (or spacer)

logic state from which NCL derives its name, can be traced back to Muller's work on

speed-independent circuits in the 1950s and 1960s [5].

Earlier work by Seitz presents an extensive discussion of delay-insensitive logic,

illustrating its advantages over traditional clocked logic, and includes one approach to

designing such circuits [2]. Some other methods of designing delay-insensitive circuits

are detailed in [6,7, 8,9]. These techniques concentrate on developing circuits from a

standardized set of gates, while other techniques [lo, 1 11 emphasize formal logic

methods that directly yield designs at the transistor-level. In the application of CMOS

technology, processors implemented with this type of signaling scheme include the MIPS

R.3000 [12] and another at Caltech [13], the FLYSIG processor at the University of

Paderbom [14], the MSL16A at the Chinese University of Hong Kong [IS], and the

TITAC processor at the Toyko Institute of Technology [16]. NCL differs from the above

mentioned methods in that they only utilize one type of state-holding gate, the C-element

[5]. On the other hand, all NCL gates are state-holding. Thus, NCL optimization methods

can be considered as a subclass of the techniques for developing delay-insensitive circuits

using a pre-defined set of more complex components with built-in hysteresis behavior. In

-functions that do not require full minterm generation, such attributes may allow

optimizations that produce smaller, faster delay-insensitive combinational circuits.

2.1 Overview of Asynchronous Methods

Asynchronous circuits fall into two main categories: delay-insensitive and

bounded-delay models. Paradigms, like NCL, assume delays in both logic elements and

interconnects to be unbounded, although they assume that wire forks are isochronic. This

implies the ability to operate in the presence of indefinite arrival times for the reception

of inputs. Completion detection of the output signals allows for handshaking to control

input wavefionts. On the other hand, bounded-delay models such as Huffman circuits

[17], burst-mode circuits [18], and micropipelines [19] assume that delays in both gates

and wires are bounded. Delays are added based on worse-case scenarios to avoid hazard

&hditions. This leads to extensive timing analysis of worse-case behavior to ensure

correct circuit operation. Since NCL exhibits neither of these characteristics, bounded-

May models are not addressed further.

Table I1 summarizes the attributes of various self-timed methods. It lists that only

micropipelines add explicit delays, while the other methods rely on completion detection;

and that only micropipelines exhibit worse-case performance, verses the average-case

performance of the other methods. Table 11 also shows that only Seitz's, Anantharaman's,

and DIMS approaches require full minterm generation, while all approaches use

C-elements exclusively for their state-holding gates, except for micropipelines that do not

require any state-holding elements, NCL that utilizes numerous state-holding gates, and

Martin's 'method that does not use a standardized set of gates but instead develops each

element at the transistor level, as detailed below.

Table 11. Attributes of self-timed methods.

Self-Timed
Method
Micropipelines
Seitz
DIMS
Anantharaman
Singh
David

Explicit
Delays
Inserted

Y
N
N
N
N
N

NCL
Martin

Y
Y

N
N

Completion
Detection

N
Y
Y
Y
Y
Y

N
N

Full Minterm
Generation
Required

N
Y
Y
Y
N
N

Numerous
N/A

State-
Holding
Gates
None
C-elements
C-elements
C-elements
C-elements
C-elements

Y
Y

Performance

N
N

Average-
Case

N
Y
Y
Y
Y
Y

Worse-
Case

Y
N
N
N
N
N

2.1.1 Gate-Level Delay-Insensitive Methods

Most gate-level delay-insensitive methods combine C-elements [5] with Boolean

gates for circuit construction. A C-element behaves as follows: when all inputs assume

the same value then the output assumes this value, otherwise the output does not change.

Seitz's method [2] employs a sum of products network using AND and OR gates,

combined with a network to OR both rails of all inputs together. The output of the OR

I' network is then combined with the sum of products outputs, using C-elements, to produce

the circuit outputs. DIMS [9] and Anantharaman's approach [7] are similar to each other

in that each produces a sum of products circuit using OR gates and C-elements, instead of

AND gates. Singh's method [8] combines small self-timed logic hc t ions to produce the

desired functionality, while David's method [6] produces self-timed circuits with

n inputs and m outputs, composed of four subnets, O W , CEN, D W , and OUm. ORN

consists of n Zinput OR gates, which OR together both rails of each dual-rail input. CEN

is an n-input C-structure, which is equivalent to an n-input C-element, whose inputs are

the n outputs fiom ORN. DRN is a monotonic implementation of each rail of the dual-rail

output(s). OUTN produces the circuit output and consists of 2m 2-input C-elements, each

with the output of CEN as one input, and an output fkom DRN as the other input. Seitz's

method, Anantharaman's approach, and DIMS require the generation of all mintems to

implement a function, where a minterm is defined as the logical AND, or product, of

input signals. While Singh's and David's methods do not require full minterm generation,

they rely solely on C-elements for delay-insensitivity.

Since Seitz's and Anantharaman's approaches, along with DIMS, require the

generation of all minterms, no optimization is possible. However, Singh's and David's

approaches allow for some Boolean optimization to be performed, but they may not

facilitate the same potential for optimization provided by NCL's many state-holding

i gates, as will be shown in Chapter 3.

2.1.2 Transistor-Level Delay-Insensitive Methods

Other delay-insensitive methods such as Martin's [30] consist of constructing

transistor-optimized circuits from their Boolean equations through formal logic

transformations. Most of the resulting transistor level circuits are state-holding. However,

since these methods do not target a specific set of gates, they are not directly comparable

to gate-level delay-insensitive methods, including NCL.

2.2 Overview of NCL

NCL gates are a special case of the logical operators or gates available in digital

VLSI circuit design [20]. Such an operator consists of a set condition and a reset

condition that the environment must ensure are not both satisfied at the same time. If

neither condition is satisfied then the operator maintains its current state. A number of

NCL-based designs have been commercially developed by Theseus Logic, Inc., which

has formed strategic alliances with Motorola for microcontroller design and Synopsys for

NCL-based design tool development.

2.2.1 Delav-Insensitivity

NCL uses symbolic completeness of expression [2 11 to achieve self-timed

behavior. A symbolically complete expression is defined as an expression that only

depends on the relationships of the symbols present in the expression without a reference

to the time of evaluation. Traditional Boolean logic is not symbolically complete; the

output of a Boolean gate is only valid when referenced with time. For example, assume it

takes 1 ns for output Z of an AND gate to become valid once its inputs X and Y have

arrived. As shown in Figure 1, suppose X = 1, Y = 0, and Z = 0, initially. If Y changes

to 1, Z will change to 1 after 1 ns; so Z is not valid from the time Y changes until 1 ns

later. Therefore output Z not only depends on the inputs X and Y, but time must also be

referenced in order to determine the validity of Z. This can be critical when Z is used as

an input to another circuit.

:,
y :,I
Z 1,:

Valid / Invalid j Valid
Output i Output (Output

Figure 1. Symbolic incompleteness of a Boolean AND gate.

In particular, dual-rail signals, quad-rail signals, or other Mutually Exclusive

Assertion Groups (MEAGs) can be used to incorporate data and control information into

one mixed signal path to eliminate time reference [22]. A dual-rail signal, D, consists of

two wires, DO and D', which may assume any value from the set {DATAO, DATAI,

NULL). The DATAO state (DO = 1, D' = 0) corresponds to a Boolean logic 0, the

DATAl state (DO = 0, D' = 1) corresponds to a Boolean logic 1, and the NULL state

(DO = 0, D' = 0) corresponds to the empty set meaning that the value of D is not yet

available. The two rails are mutually exclusive, so that both rails can never be asserted

simultaneously; this state is defined as an illegal state. A quad-rail signal, Q, consists of

four wires, Q', Q', @, and p], which may assume any value from the set {DATAO,

-0 ,Q2=0 ,Q3=0) DATAl , DATA2, DATA3, NULL). The DATAO state (Q0 = 1, Q' -

corresponds to two Boolean logic signals, X and Y, where X = 0 and Y = 0. The DATAl

state (Q0 = 0, Q' = 1, Q2 = 0, Q3 = 0) corresponds to X = 0 and Y = 1. The DATA2 state

(Q* = 0, Q1 = 0, Q2 = 1, Q3 = 0) corresponds to X = 1 and Y = 0. The DATA3 state

(Q' = 0, Q' = 0, Q2 = 0, Q3 = 1) corresponds to X = 1 and Y = 1, and the NULL state

(Q' = 0, Q' = 0, Q2 = 0, Q3 = 0) corresponds to the empty set meaning that the result is

not yet available. The four rails of a quad-rail NCL signal are mutually exclusive, so no

two rails can ever be asserted simultaneously; these states are defined as illegal states.

Both dual-rail and quad-rail signals are space optimal delay-insensitive codes, requiring

two wires per bit. Other higher order MEAGs are not typically wire count optimal,

however they can be more power efficient due to the decreased number of transitions per

cycle.
I

Consider the behavior of a symbolically complete AND function using NCL as

1 shown in Figure 2. Assume it takes 1 ns for output Z of a NCL AND fhction to become

valid once its inputs X and Y have arrived. Also, initially suppose Xis DATAl, Y is

DATAO, and Z is DATAO. Before the next set of inputs can be applied, all inputs must

first transition to NULL, which causes the output to transition to NULL, 1 ns later. Once

the output has transitioned to NULL, the next input set can be applied. If the next input

set consists of X= DATAl and Y = DATAl, Z will become DATAl after 1 ns, signaled

by Z transitioning fiom NULL to DATA. Output Z will remain DATAl until both inputs,

Xand Y, transition to NULL, due to the hysteresis behavior inherent in each threshold

gate. Time is never referenced to determine the validity of 2. The 1 ns delay is an

arbitrary gate transition delay and does not affect the validity of Z.

NCL AND
Function

I I I I

xO :, :+ I ns +; :+ I ns +:
I I I I

X1 2, I
Yo :,
Y1 I
zO 2,
z1 I

Valid
I

I NULL Valid
I

Output Output : I Output

Figure 2. NCL AND function: Z = X Y and associated waveforms.

NCL uses thre~hold gates with hy,~te*esis [23] for its ~ ~ n q ~ & a b l e logic elements.

One type of threshold gate is the Wmn gate, where 1 < m 5 n, as depicted in Figure 3. A

THmn gate corresponds to an operator with at least m signals asserted as its set condition

and all signals de-asserted as its reset condition. THmn gates have n inputs. At least m of

the n inputs must be asserted before the output will become asserted. Because threshold

gates are designed with hysteresis, all asserted inputs must be de-asserted before the

output will be de-asserted. Hysteresis is used to provide a means for monotonic

transitions and a complete transition of multi-rail inputs back to a NULL state before

asserting the output associated with the next wavefront of input data. In a THrnn gate,

each of the n inputs is connected to the rounded portion of the gate. The output emanates

fiom the pointed end of the gate. The gate's threshold value, m, is written inside of the

gate. Figure 4 shows a static CMOS implementation of a TH23 gate, with inputs A, B,

and C, and output 2. [23] details various design implementations (static, semi-static, and

dynamic) of THrnn gates.

Input n W
Figure 3. THmn threshold gate [2 11.

Figure 4. Static CMOS implementation of a TH23 gate.

Another type of threshold gate is referred to as a weighted threshold gate, denoted

as THmnWwlw2.. . w ~ . Weighted threshold gates have an integer value, rn 2 w~ > 1,

applied to inputR. Here 1 I R < n; where n is the number of inputs; rn is the gate's

threshold; and wr, w2, . . . w ~ , are the integer weights of inputl, input2, . . . inputR,

respectively. For example, consider a TH34W2 gate, whose n = 4 inputs are labeled A, B,

C, and D. The weight of input A, W(A), is therefore 2. Since the gate's threshold, m, is 3,

this implies that in order for the output to be asserted, either inputs B, C, and D must all

be asserted, or input A must be asserted and any other input, B, C, or D must also be

asserted. NCL threshold gates may also include a reset input to initialize the gate's output.

Resetable gates are denoted by either a D or an N appearing inside the gate, along with

the gate's threshold, refemng to the gate being reset to logic 1 or logic 0, respectively.

By employing threshold gates for each logic rail, NCL is able to determine the

output status without referencing time. Inputs are partitioned into two separate

wavefronts, the NULL wavefiont and the DATA wavefront. The NULL wavefiont

consists of all inputs to a circuit being NULL, while the DATA wavefiont refers to all

inputs being DATA, some combination of DATA0 and DATA1. Initially all circuit

elements are reset to the NULL state. First, a DATA wavefiont is presented to the circuit.

Once all of the outputs of the circuit transition to DATA, the NULL wavefiont is

presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next

DATA wavefiont is presented to the circuit. This DATA/NULL cycle continues

repeatedly. As soon as all outputs of the circuit are DATA, the circuit's result is valid.

The NULL wavefront then transitions all of these DATA outputs back to NULL. When

they transition back to DATA again, the next output is available.

Figure 5 shows the primary bctional blocks of a NCL circuit. The NCL

registration stages act to control the DATANULL wavefronts, through their request

input lines, Ki, and their request output lines, KO. The NCL completion detects complete

DATA and NULL sets, where all outputs are DATA or all outputs or NULL,

respectively, at the output of NCL registration. NCL combinational circuits provide the

fhdamental hctionality of a NCL system. Since every NCL circuit continually cycles

through NULL followed by DATA, one complete cycle will consist of NULL flowing

through the combinational circuitry as shown in Figure 5, followed by NULL flowing

through the completion circuitry as shown in Figure 6, followed by DATA flowing

through the combinational circuitry as shown in Figure 7, and finally followed by DATA

flowing through the completion circuitry, back to the input as shown in Figure 8. r =

refers to request for NULL and rfd refers to request for DATA. Each phase of this cycle,

depicted in the Gantt chart of Figure 9, will be referred to here on out as the DATA-to-

DATA cycle; and the period of this cycle will be called the DATA-to-DATA cycle time

(TDD). Too has an analogous role to the clock period in a synchronous system.

NCL
Pegistratior

Figure 5. NULL flowing through combinational circuitry.

NCL
qegistratior

rfd rf n
Ki

DATA
'

NULL
I

NCL
KO Ki

rf n

Completion

NCL
I Combinational

Circuit

4

\I

DATA
. In Out

egistratio

NULL h
Combinational -7 In Out rq circuit F ; I n

rf d rf n NCL rf n
KO Ki 4 KO Ki 4 Completion

I I

Figure 6. Completion detection of NULL output.

Figure 7. DATA flowing through combinational circuitry.

NULL

NCL
Segistratior

NCL

NCL
qegistratior

rf n

Figure 8. Completion detection of DATA output.

Completion

t
NCL

qegistratior

NULL
In Out

DATA
I I In Out

KO Ki

NCL
~

Segistratior

NCL
I Combinational

Circuit

DATA
I In Out

\

DATA
: In Out

rf d
KO Ki

rf d
4

4 DATA-to-DATA Cycle Time (Too) w

NULL NULL DATA DATA
Com binational Completion Combinational Completion

Figure 9. DATA-to-DATA cycle time (TDD).

2.2.3 Completeness of Input

The input-completeness criterion [2 11, which NCL circuits must maintain in order

to be delay-insensitive, requires that:

Acknowledgement

1. the outputs of a circuit may not transition fiom NULL to DATA until all inputs have

transitioned from NULL to DATA, and

Evaluation Evaluation

2. the outputs of a circuit may not transition fkom DATA to NULL until all inputs have

transitioned fiom DATA to NULL.

In circuits with multiple outputs, it is acceptable for some of the outputs to transition

Acknowledgement

without having a complete input set present, as long as all outputs cannot transition

before all inputs arrive. This signaling scheme is equivalent to the "weak conditions" of

delay-insensitive signaling defined by Seitz [4]. Consider the incomplete NCL AND

function shown in Figure 10. The output can change fiom NULL to DATAO without both

inputs first transitioning to DATA. For instance, if A = DATAO and B = NULL then

C = DATAO, which breaks the completeness of input criterion. Figure 11 shows a

complete NCL AND h c t i o n since the output cannot transition until both inputs have

transitioned.

Figure 10. Incomplete AND function: Z = X Y.

Figure 1 1. Conventional input-complete
AND hct ion: Z = X Y

Completeness of DATA can be ensured for an N input b c t i o n as shown in

Algorithm 2. I-. If a function is complete with respect to DATA, it is also complete with

respect to NULL due to the hysteresis functionality of every NCL gate. This

completeness check takes O(N 2N-1); however, this is unnecessary for many functions

due to their inherent completeness. For example, the XOR function, the full adder, and

the increment circuitry, all are inherently complete such that it is impossible to know the

output without all of the inputs being known.

for (i = 1 to N) loop
INPUTi = NULL
group INPUTS, (1 S j S N, j # i)

such that they form an N-1 bit word called REMAINDER
for (k = 0 to 2N-1- 1) loop

REMAINDER = k
if (all output bits are DATA) then

return (INCOMPLETE)
end loop

end loop
return (COMPLETE)

Algorithm 2.1. Input-completeness pseudocode.

2.2.4 Obsewability

There is one more condition that must be met in order for NCL to retain delay-

insensitivity. No orphans may propagate through a gate. An orphan is defined as a wire

that transitions during the current DATA wavefront, but is not used in the determination

of the output. Orphans are caused by wire forks and can be neglected through the

isochronic fork assumption, as long as they are not allowed to cross a gate boundary. This

observability condition ensures that every gate transition is observable at the output.

Consider an incorrect version of an XOR fbnction shown in Figure 12, where an orphan

is allowed to pass through the TH12 gate. For instance, when X = DATAO and

Y = DATAO, the TH12 gate is asserted, but does not take part in the determination of the

output, Z = DATAO. This orphan path is shown in boldface in Figure 12. A correct, fully

observable version of the XOR h c t i o n is given in Figure 13, where no orphans

propagate through any gate. An orphan checker tool, as a Synopsys shell, is run on each

design to ensure observability.

Figure 12. Incorrect XOR function: Z = X $ Y
(orphans may propagate through a gate).

Figure 13. Correct XOR function: Z = X (33 Y
(orphans may not propagate through any gate).

2.2.5 NCL Repistration

With the input-completeness and observability criteria met, a NCL circuit is

therefore delay-insensitive, because the output will not transition until all of its inputs

transition and two consecutive DATA wavefronts will always remain separated despite

arbitrarily large gate delays. Henceforth, the circuit will wait indefinitely until it receives

all of its inputs and the inputs traverse the logic, before requesting the next either NULL

or DATA wavefront.

With this in mind, there must be a device that monitors the outputs of NCL

circuits in order to detect when there is a complete DATA set or a complete NULL set,

and upon detection of a complete output set, request the next wavefront. The NCL

register, shown in Figure 14, does just that. When the request input line, Ki, is ~$d, any of

the register inputs, I, that are asserted are allowed to pass through their respective TH22

gate, to the output of the register. Likewise, when the request input line, Ki, is r@, any of

the register inputs, I, that are de-asserted are allowed to pass through their respective

TH22 gate, to the output of the register. Only after all n inputs to the register have

transitioned to DATA, causing their respective outputs to transition to DATA as well,

will the register's request output line, KO, transition to rfn, meaning that the register has

received the DATA wavefiont and is requesting the NULL wavefiont. And, only after all

n inputs to the register have transitioned to NULL, causing their respective outputs to

transition to NULL as well, will the register's request output line, KO, transition to rfd,

meaning that the register has received the NULL wavefiont and is requesting the DATA

wavefi-ont.

Figure 14: n-bit dual-rail registration.

The NCL register does not assure completeness of input, it only assures

completeness of output. The NCL register will not request the NULL wavefiont until the

current DATA wavefiont has been received; and likewise the next DATA wavefiont will

not be requested until the current NULL wavefiont has been received. This would not

prevent the NULL wavefiont from being requested before all of the inputs become

DATA, if the output was all DATA, caused by some inputs being DATA and

combinational logic which is not complete with respect to its inputs.

Assume that the registers shown in Figure 15 have the following values: the

output of the upstream register is DATA, so it is requesting NULL; the output of the

current register is NULL, so it is requesting DATA; and the output of the downstream

register is DATA, so it is requesting NULL. Also assume that the input to the upstream

register is NULL and that the request input, Ki, to the downstream register is rfn. The

NULL input to the upstream register will be blocked because the upstream register's

request input line, Kj, is set to rfd. The DATA output from the upstream register will flow

through the first set of combinational logic, to the input of the current register, while the

NULL output of the current register flows through the second set of combinational logic

to the input of the downstream register, as depicted in Figure 16. Once the DATA

wavefiont reaches the input of the current register, it is blocked, because the current

register's request input line, Ki, is rfn. But when the NULL wavefiont reaches the input

of the downstream register, it is allowed to pass through to the output because the

downstream register's request input line, Kj, is $n. When every output of the downstream

register transitions to NULL, the downstream register's request output line, KO, will

transition to r$d, shown in Figure 17, which will allow the DATA wavefiont at the input

of the current register to pass through to the output of the current register and start

flowing through the second set of combinational logic. When all outputs of the current

register have transitioned to DATA, the request output line, KO, of the current register

will transition to rfn, as shown in Figure 18, which will allow the NULL wavefront at the

input of the upstream register to pass through to the output of the upstream register and

start flowing through the first set of combinational logic, as depicted in Figure 19. As

shown in Figure 20, once the NULL wavefront has passed through the first set of

combinational logic, the circuit will be in a static state; and no more transitions can occur

until the request input line, Ki, of the downstream register transitions to rfd, signifying

that the NULL wavefront at the output of the downstream register has been received by

the next register after the downstream register. The registers will continue to control the

NLTLLIDATA cycles in this fashion, insuring that the next wavefront is sent only after

the current wavefront has produced all of its outputs.

upstream current downstream

Figure 1 5. Initial register state.

NCL
Register

NCL
Register

NCL
Register

NULL
I

DATA

rfn

NULL

f

DATA NCL
Combinational

circuit #I

rf n
4 - K O

In Out

K i a

NCL
Combinational

~ i r c u i t ~
In Out -

rfd

-
a*

rf n
KO K i KO K i a

Figure 16. Register state after traversing combinational circuitry.

upstream current downstream

NCL
Regster

Figure 17. Register state after NULL wavefiont passes through downstream register.

upstream cumnt downstream

upstream

NCL
Register

current

NCL
Register

NCL
Register

NULL
I In Out

downstream

In Out

t

+

NCL
Register

KO K i a

Figure 18. Register state after DATA wavefiont passes through current register.

DATA
,

rf n
KO Ki

DATA NCL
Combinational

Circuit #I

NCL
Register

NCL
Register

NULL
In Out

DATA
.

'In Out

DATA
In Out

NULL NCL
Combinational

Circuit M

-
#--

rfd

NULL
In Out

NULL

NCL
Register

KO Ki 4
rfn

-
rfd

NCL
Register

KO K i t

- K O Ki

-
4 rfd -

r
r fn

4
rfn

KO Ki

NULL DATA
, I\

4
rfn

KO Ki KO K i *

NCL
Combinational

Circuit #1

- rfd

NULL
In Out

DATA
In Out

NCL
, Combinational

Circuit #2

Figure 19. Register state after NULL wavefront passes through upstream register.

upsberm current downstream

upstream current

NULL

downstream

NCL
Register

DATA
In Out

NCL
Register

NCL
Register

Figure 20. Static register state.

Circuit #I

All NCL systems have at least two register stages, one at both the input and

output; and all NCL systems with feedback have at least three register stages in the

feedback loop [2 11. This technique of organizing registers into a ring is l l l y discussed in

, *d-.~o

NULL

r
rfn

[24,9]. These register stages interact through handshaking to prevent DATA seti from

overwriting DATA set,., by ensuring that the two consecutive DATA sets are always

DATA
In Out

NULL

+
rfn

Ki-
rfd

NCL
Register

L

separated by a NULL set.

NCL
Combinational

Ki KO Ki

NCL
Register

-

u

4
rfn

K O

NCL
Register

KO Ki

NULL
In Out

DATA NCL
'

Combinatiinal
c i r c u ~

4
rfn -

DATA

KO Ki

u

4 rfd - KO Ki

2.2.6 NCL Completion

Actual NCL registration is realized through cascaded arrangements of single-bit

dual-rail registers or single-signal quad-rail registers, depicted in Figure 2 1 and 22,

respectively. Therefore, an N-bit register stage, comprised of N single-bit dual-rail NCL

registers, requires N completion signals, one for each bit. The NCL Completion

component, shown in Figure 23, uses these N KO lines to detect complete DATA and

NULL sets at the output of every register stage and request the next NULL and DATA

set, respectively. The single-bit output of the completion component is connected to all Ki

lines of the previous register stage. Since the maximum input threshold gate currently

supported is the TH44 gate, the number of logic levels in the completion component for

an N-bit register is given by [log4 N]. Likewise, the completion component for an N-bit

quad-rail registration stage requires + inputs, and can be realized in a similar fashion

using TH44 gates. The registers shown in Figures 21 and 22 are reset to NULL. Either

register could be instead reset to a DATA value by replacing exactly one of the TH22n

gates with a TH22d gate.

Figure 2 1. Single-bit dual-rail register.

Figure 22. Single-signal quad-rail register.

Ko(4)
Ko(3)
Ko(2)
Ko(1)

Figure 23. N-bit completion component.

3.0 THRESHOLD COMBINATIONAL REDUCTION METHOD

Delay-insensitive logic design methods are developed using Threshold

Combinational Reduction (TCR) within the NULL Convention Logic (NCL) paradigm.

NCL logic elements are realized using 27 distinct transistor networks implementing the

set of all functions of four or fewer variables, thus facilitating a variety of gate-level
'r

optimizations. TCR optimizations are formalized for NCL and then assessed by

comparing levels of gate delays, gate counts, and transistor counts of the resulting

designs. The methods are illustrated to produce fundamental logic functions, and a full

adder with reduced critical path delay and transistor count over various alternative gate-

level synthesis approaches. As an example of circuits employing feedback, TCR is

applied to derive time and space optimized increment circuits for a 4-bit up-counter.

Results demonstrate support for a variety of optimizations utilizing conventional Boolean

minimization followed by table-driven gate substitutions. Whereas previous work on

optimization of circuits constructed from logical operators has concentrated on transistor-

sizing [25] and decomposition of high fan-in operators [26], this chapter will emphasize

composable circuit construction utilizing a set of complex state-holding gates, and will

illustrate circuit minimization techniques, their application, and associated tradeoffs.

3.1 Chapter Outline

This chapter is organized into five sections. In Section 3.2, the TCR method for

optimizing combinational NCL circuits is developed. The method is demonstrated in

Sections 3.3,3.4, and 3.5. Section 3.3 presents optimal input-complete AND/NAND,

ORINOR, and XOR/NXOR logic functions, designed using TCR. Section 3.4 applies

TCR to produce a delay-insensitive Full Adder that significantly reduces critical path

delay and transistor count over previous gate-level delay-insensitive approaches.

Section 3.5 illustrates the use of TCR to derive a variety of time and space optimized

NCL increment circuitries for an up-counter with a feedback circuit.

3.2 TCR Method Definition

As depicted in Figure 24, the design process begins with a specification of the

circuit functional behavior and desired optimization criteria. Circuit behavior is specified

as Boolean logic expressions, truth tables, andlor narrative descriptions. The optimization

criteria include parameters such as critical path delay, gate count, transistor count, or

power consumption, that are to be minimized in the target design. Several alternate

designs are generated, which are then assessed against the optimization criteria, allowing

the preferred design to be selected for implementation.

First, a logic encoding scheme is selected such as dual-rail, quad-rail, or other

MEAG representations, as depicted in Figure 24. Typically either dual-rail or quad-rail is

chosen since these encoding yield the minimum of two wires per bit. If a dual-rail

encoding is used, the next step is to select the optimization space in which minimization

will be performed. The proposed TCR design methods have been numbered "I", "2", and

"3", each with design steps labeled "A", "B", or "C", appropriately.

Functional n
Specification L/'

Optimization n
Parameters L.-'

circuit behavior critical path delay,
description gate count,

transistor count,
power

Select Logic Encoding

Select Optimization Space

Method 1: Method 2.-

Optimal NCL
Circuit

Boole8n Du.hril Qum&mll
Optimlzatlon Optimlzmtion Optlmizaffon

Figure 24. TCR design flow.

Use Incompleb ICL funcaons

1

2A) Derive Reduced Mintenn Expressions
produce 2-level logic

3A) Derive Reduced Quad-Rail Explnsions
produce 2-level logic

,,"

(0) Ensun blay-lnunsltivlty 3Bj Factor Quad-Rail Expressions
reduce gate count /

...." ! : I ,
. .
i i i i
, . : i

i i

"1 Ex~muions
reduce gate count

\,, \
%
'**

'% ..,
Z''.... .: .? ;.... \.., ". ,..' ., .. ,I, ' ' . . '- ,.

..-
. " ,,

%. Z

..' ..(
.... :

"..d'..

...... -'.. ,.,,, "......"......I /..: "//-=-
.

.......

Select Best Design

i

',?~)hmnsfonn to ~omplex ~ a t u
\ .. i. ., reduce gate count and logic levels ' . . '. i ... i

i '

I

fC~$nnsform to Complex Gates
, reduce gate count and logic levels

3.2.1 Method 1 : Incomplete Functions

As depicted in Figure 24, Method 1 corresponds to Boolean optimization.

Maximal use of incomplete NCL logic functions, such as the incomplete AND function

shown in Figure 10, generates the individual outputs, while maintaining the completeness

of input criterion for the circuit as a whole. For example, gates in Boolean designs that

target the basic logical operators (AND, OR, XOR, NAND, NOR, NXOR, NOT) are

directly mapped to a NCL design by using as many incomplete NCL hc t ions as

possible. As described in Step 1A of Figure 24, each Boolean gate is replaced with its

NCL equivalent function, using incomplete versions whenever possible. Step 1B ensures

input-completeness for the circuit as a whole by employing complete functions only for

selected gates in the data path, so that the computation of an entire output set implies that

the complete input set has anived. The observability criterion must also be ensured.

3.2.2 Method 2: Dual-Rail Optimizations

Method 2 is based on dual-rail optimization. In Step 2A, the NCL circuit is

optimized by using reduced minterm expressions for both rails of the output. These

expressions are then mapped to THln and THnn gates. As in Boolean circuits, a

Karnaugh map can be constructed for each output. The 0s in the Kamaugh map refer to a

signal's raiP line and the is refer to a signal's rail1 line. Reduced minterm expressions

for both the is and 0s in the Karnaugh map are derived. After these expressions for the

outputs have been obtained, an assessment must be made to ensure that the complete

output set cannot be generated without all of the inputs being present. If under any timing

scenario, a complete output set can be generated without all of the inputs being present,

the missing logic terns must be added to the reduced expressions to guarantee that the

completeness of input criterion holds. This method will always generate two-level logic,

given that threshold gates with a sufficiently large number of inputs are available. The

first level will consist of THnn gates, to produce the required minterms; and the second

level will consist of THln gates, which act to OR the minterms together to produce the

desired outputs. Step 2A is similar to Anantharaman's approach [7] and DIMS [9]. In

Step 2B, the common sub-expressions are factored and consolidated to reduce the gate

count. Finally, the factored expressions for each rail are manipulated in Step 2C to obtain

equations of the forms contained in Table 111. The observability criterion must be ensured

for every circuit output fiom Steps 2A, 2B, and 2C.

Table I11 lists the 27 transistor networks, along with their corresponding Boolean

equations, used to construct NCL circuits. These 27 transistor networks, implemented as

macros, constitute the set of all functions consisting of four or fewer variables. Since each

rail of a NCL signal is considered a separate variable, a four variable function is not the

same as a function of four literals, which would normally consist of eight variables.

Twenty four of these macros can be realized using complex threshold gates, identical to

the standard threshold gate forms for functions of four or fewer variables [27,28,29].

The other three macros could be constructed fkom threshold gate networks, but have been

implemented as transistor networks to provide completeness. Table I11 also contains the

transistor count for these 27 macros.

Table 111.27 NCL macros.

3.2.3 Method 3: Quad-Rail Optimizations

For some circuits, it may be advantageous to use quad-rail optimization, referred

TH34w2
TH44w2
TH34w3
TH44w3
TH24w22
TH34w22
TH44w22
TH54w22
TH34w32
TH54w32
TH44w322
TH54w322
THxorO
THandO
TH24cornp

to as Method 3 in Figure 24. Two dual-rail signals yield the same five logic states as one

quad-rail signal, however using quad-rail logic signals may lead to a more efficient

design. Quad-rail optimization follows the same steps as does dual-rail optimization. In

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four

rails of the output. These expressions are then mapped to THln and THnn gates. As in

AB + AC + AD + BCD
ABC + ABD + ACD
A + BCD
AB + AC + AD
A + B + CD
AB + AC + AD + BC + BD
AB + ACD + BCD
ABC + ABD
A + BC + BD
AB+ACD
AB + AC + AD + BC
AB + AC + BCD
AB + CD
AB + BC + AD
AC + BC + AD + BD

22
23
19
16
18
22
24
18
17
20
20
21
20
20
18

dual-rail optimization, a Karnaugh map can be constructed for each output, but instead of

only 0s and Is, corresponding to a signal's raif and rail1, respectively, the K-map also

contains 2s and 3s, which correspond to a signal's rail2 and rail3, respectively. Reduced

minterm expressions for the Os, Is, 2s, and 3s in the Karnaugh map are derived. After

these expressions for the outputs have been obtained, an assessment must be made to

ensure that the complete output set cannot be generated without all of the inputs being

present. If under any timing scenario, a complete output set can be generated without all

of the inputs being present, the missing logic terms must be added to the reduced

expressions to guarantee that the completeness of input criterion holds. This method will

always generate two-level logic, given that threshold gates with a sufficiently large

number of inputs are available. The first level will consist of THnn gates, to produce the

required minterms; and the second level will consist of THln gates, which act to OR the

minterms together to produce the desired outputs. In Step 3B, the common sub-

expressions are factored and consolidated to reduce the gate count. Finally, the factored

expressions for each rail are manipulated in Step 3C to obtain equations of the forms

contained in Table 111. The observability criterion must be ensured for every circuit

output from Steps 3A, 3B, and 3C.

3.2.4 Performance Assessment

To assess the performance of alternate designs, Synopsys, a commercial design

tool, was used to simulate the circuits to generate their timing characteristics. All NCL

circuits presented herein have been exhaustively tested and their average cycle time, TDD,

has been reported. The Synopsys technology library for the 27 macros is based on Spice

simulations of static 0.25 pm CMOS gates, operating at 3.3V. Along with the average

cycle time, the number of gates and transistors has also been tabulated for comparison.

The design that best meets the desired criteria can then be selected for implementation.

3.3 Application to Input-Complete Fundamental Logic Functions

Several optimizations can be used to generate designs that are very competitive in

terms of speed and area as compared to other self-timed approaches. For example,

Figures 11,25, and 26 show the conventional implementations of the logic functions:

AND, OR, and XOR, respectively. Each of these may be obtained directly from their

minterm form. Method 2 is readily applicable. Dual-Rail Encoding Optimization achieves

significant reduction in both area and speed. TCR Step 2C can be applied directly from

the minterm form to reduce the circuit complexity and improve performance.

Specifically, consider the objective of realizing an optimized input-complete 2-input OR

function: Z = X + Y. The minterm expression for 2 is given by: Z0 = x 0 9 , which

directly maps to a TH22 gate in Table 111. The minterm expression for 2' is given by:

2' = X'Y' + fi' + X ' P , which directly maps to a THandO gate. Similarly, an

optimized input-complete 2-input AND hct ion: Z = X Y can be realized. The rninterm

expression for 2? is given by: Z0 = X O ~ + X%' + X ' P , which directly maps to a

THandO gate. The minterm expression for 2' is given by: 2' = X' Y', which directly

maps to a TH22 gate. The derivation of an optimized 2-input XOR function: Z = X @ Y

is a bit more complex. The minterm expression for 2? is given by: ZO = X!?+ XIY',

which directly maps to a THxorO gate. The minterm expression for 2' is given by:

2' = X 1 p + x'Y', which also directly maps to a THxorO gate. However, two transistors

can be eliminated for each rail of Z by adding the two don 't care terms, representing the

cases when both rails of either X or Yare simultaneously asserted. The new equations for

ZO and Z' are as follows: Z' = W + X'Y' + X'X' + YOY' and

Z' = x'P+ X%' + Px' + Y%l, both of which now map to TH24comp gates.

Figure 25. Conventional input-complete
OR function: Z = X + Y.

Figure 26. Conventional input-complete
XOR hct ion: Z = X CEJ Y.

As shown in Table IV, the AND, OR, and XOR functions produced using TCR

outperform the conventional minterm designs in terms of both area and throughput. In

particular, the TCR optimized AND and OR functions are 2.2-fold faster and require 43%

fewer transistors than the conventional minterm designs. Furthermore, the optimized

XOR function is 2.3-fold faster and requires 40% fewer transistors than the conventional

minterm design. The inverse logic functions, NAND, NOR, and NXOR, can easily be

attained by exchanging the output rails of the AND, OR, and XOR functions,

respectively.

Table IV. Performance characteristics of input-complete NCL logic functions.

Complete AND
Conventional
TCR Method 2

Complete OR
Conventional
TCR Method 2

3.4 Application to Full Adder

XOR
Conventional
TCR Method 2

The truth table for a full adder circuit is shown in Figure 27, where X and Y

denote the input addends and Ci denotes the cany input. S and Co denote the sum and

TDD
1.58 ns
0.71 ns

Component List
4xTH22,lxTHl 3
IxTHandO, 1 xTH22

Component List
4xTH22,l xTH13
1 xTHandO, 1 xTH22

carry output, respectively. This circuit can be extensively optimized using TCR

Method 2. Applying TCR Step 2A, the K-map for the Co output is obtained as shown in

Figure 28, yielding: c,O = xOYO + ci0xo + ci0YO and c,' = X'Y' + cilx' + ci'yl. Both

functions directly map to a TH23 gate, so factoring in Step 2B is not necessary. Since a

TH23 gate does not produce an output which is complete with respect to any of its inputs,

Gate Delays
2
1

Gate Delays
2
1

Component List
4xTH22,2xTH12
2xTH24comp

there must be another output or set of outputs that enforce the completeness of input

criterion. As explained below, the sum output, S, will enforce the completeness of input

criterion for the circuit as a whole, thus allowing the carry output to be incomplete.

Transistor Count
60
36

Gate Count
5
2

TDD
1.70 ns
0.75 ns

Gate Delays
2
I

Transistor Count
56
32

TDo
1.58 ns
0.71 ns

Gate Count
5
2

Gate Count
6
2

Transistor Count
56
32

Figure 27. Truth table
for full adder.

Figure 28. K-map for C, output of full adder.

Figure 29. K-map for S output of full adder. Figure 30. Optimized NCL full adder [21].

The K-map for S, based on X, Y, Ci, and the intermediate output C,, is shown in

Figure 29, with essential prime implicants covered. This cover yields:

SO = cO1XO + cO1YO + cO1ciO + x O Y O C ~ O and s1 = c,OX' + c,OY' + c,Ocil + x1y1ci1, both

of which directly map to TH34W2 gates, so factoring in Step 2B is not necessary. C, is

taken as the A input such that W(Co) = 2, as shown in Figure 30. Checking input-

completeness, the carry output requires at least two inputs to be generated and the sum

output requires either the carry output and one more input, or all three inputs to be

generated; so all three inputs are needed to generate the sum output. Therefore, the

completeness of input criterion holds for the circuit as a whole.

As shown in Table V, the NCL design of the full adder produced using TCR

optimizations can outperform those of other delay-insensitive methods, such as

Anantharaman's and DIMS, Seitz's, David's, and Singh's approaches, shown in Figures

3 1,32,33, and 34, respectively. Here n-input C-elements are drawn as THnn gates since

their hctionality is identical. The NCL design has far fewer gates and transistors, while

requiring fewer logic levels to produce the carry output, C,. NCL also requires fewer

logiclevels to produce the sum output, S, than three of the five other methods, and has the

same number of logic levels for S as the other two. Notice that the NCL full adder uses

the carry output as an input to compute the sum output, whereas the other methods

compute the sum and carry outputs independently. This is because for the other methods

it is not practical to use the cany output to help generate the sum output. For the other

methods the carry output is generated in the same number of logic levels, or more, as the

sum output. Therefore, to use the carry output as an input for calculating the sum output

would require more logic levels, as well as more gates. Besides NCL, only Seitz's full

adder can be designed such that C, can be computed before the Ci input is known for the

cases A = DATAO, B = DATAO and A = DATAl, B = DATAl. This optimization is

important if the full adder component is to be used in an N-bit ripple-carry addition; since

it allows the addition to be performed in O(log2 N) on average instead of O(N). This

optimization could be applied to DIMS, Anantharaman's approach, and David's method,

if their signaling scheme was slightly changed such that it coincided with the "weak

conditions" of delay-insensitive signaling defined by Seitz [4] and used by NCL.

Table V. Full adder using various delay-insensitive methods.

Figure 3 1 . Full adder using Anantharaman's approach or DIMS [9].

Method
Seitz [4]
Anantharaman [7]
DIMS [9]
David [6]
Singh [8]
TCR (Method 2)
Martin [30]

Design
Level
gate
gate
gate
gate
gate
gate

transistor

Transistor
Count

1 54
168
168
186
192
80

42 or 34

Gate Delays
for C,

2
2
2
3
6
1
1

Gate Delays
for S

3
2
2
3
4
2
1

Gate
Count

18
12
12
20
19
4
3

Figure 32. Full adder using Seitz's approach [4].

NCL circuits are often able to outperfom other self-timed methods since NCL

targets a wider range of logical operators whereas other methods target a more standard,

restricted set. For example, the full adder can be further optimized by design methods at

the transistor level as demonstrated by Martin [30]. His full adder requires three complex

transistor networks: the first computes both rails of the sum output, while the second and

third each compute one rail of the cany output. The resulting design consists of only 42

transistors, when the input and output inverters are included, or 34 transistors otherwise.

However, thls method is not directly comparable to the other above mentioned methods

since it optimizes designs at the transistor level instead of targeting use of a predefined

set of gates.

Figure 33. Full adder using David's approach.

Figure 34. Full adder using Singh's approach.

As for general-purpose methods, DIMS, Seitz's method, and Anantharaman's

approach require full minterm generation, so that no simplification is possible. DIMS and

Anantharaman's approach cannot outperform NCL, and at best will be identical only if

the NCL design requires fill minterm generation. Seitz's approach can outperform NCL

in terms of area, but not speed, for a limited class of circuits. These include functions

with 4 or more inputs, with one or few outputs, that contain almost all is or 0s in their

truth table. These are the types of circuits that will receive little benefit from TCR

optimizations. David's and Singh's approaches also favor these same classes of

functions, and typically produce more efficient circuits than those obtainable by Seitz's

approach. Singh's approach will require less area, but more delay than TCR for these

types of functions, whereas David's approach will provide the same speed with

significantly less area. For example, consider the function: f(a, b, c, d) = a . b ' c d '

[6] . Table VI shows that Seitz's, David's, and Singh's circuits are all better than those

obtainable by TCR, in terms of area for this function and that Anantharaman's approach

is the same. However, only David's approach outperforms TCR in both area and speed.

David's approach is better because this function, and others like it, require full minterm

generation in NCL to ensure input-completeness, so no simplification is possible by TCR

methods.

Table VI. Delay-insensitive methods for f(a, b, c, d) = a b ' c . d '.
Method
Seitz [4]
Anantharaman [7]
DIMS [9]
David [6]

3.5 Application to Up-Counter

- -
Singh [8]
NCL

A number of experiments based on the Cbit counter shown in Figure 35 have

been conducted. The specifications for this counter include a full NCL interface with

Gate Delays
4
3
3
3
4
3

Gate Count
25
21
21
9

Transistor Count
250
368
368
88

15
21

168
368

request and acknowledge signals labeled Ki and KO, respectively. Functionality was

specified to reset count to OOOOb when the reset signal is applied, to increment count by 1

when inc = 1, and to keep count the same when inc = 0. The counter will rollover to

OOOOb when count = 1 1 1 1 b and inc = 1.

4-bit Counter

Count (3:O)

- - - R - ~ - S h g P g P g P g P - - g P - g P g P g P - - g P g P g P - - g P - - I
I

I

I

I

I =

I

: NCLRegi8tmr NCL Regkt.r NCLRogIater I

I

- ?'??"!'=-k_-"d_ : 1

I

I

I I
I

I I
I

I I
I

1 1 I

zur * 8:O) (3:O) (3:0)1

I

lncl , 1 1
I

I

I I
I

I

I I
I

I

I I
I

L - - - - - - - - - - - I I
I

I

l
d' I(a d

I I

I _ Reset to DATA 0 Reset to NULL ResettoNULL I

Reset l A .
I :

4 KO

Figure 36. Up-counter with three-register feedback.

I &

The functional design of the 4-bit counter, shown in Figure 36, will be the same

for all counter models considered here. However, the Increment Circuitry will differ

based on the particular TCR optimization method that is used. Figure 36 shows that there

Figure 35.4-bit up-counter block diagram.

are three NCL registers to feedback the current count to the increment circuitry. These

Registration Stages act to control the DATA/NULL wavefionts, through their request in

lines, Kt, and their request out lines, KO. The completion logic (COMP) detects complete

DATA and NULL sets, where all outputs are DATA or all outputs are NULL,

respectively, at the output of NCL registration. The waveforms for the dual-rail, 16-rail,

and quad-rail counters are shown in Figures 37, 38, and 39, respectively, with timing

information depicted in nanoseconds. From these si mu1 at ions the average

DATA-to-DATA cycle time can be computed as follows: T D ~ = $; where TT is the total

tfme for all input combinations and 32 is the number of combinations of the 5 circuit

inputs (i.e. 2' = 32). The timing information shown for the dual-rail and quad-rail

waveforms is for their respective complex gate model.

so I O U ~ s a
. 1 . 1 . 1 1 . . 1 1 . 1 1 1 1 1 , I l . l . . . l , . &

4 TT -- b
r a L R h I L 1

r C R A l L O

W R U L t

M . W W

k P ! U

Figure 3 7. Dual-rail 4-bit counter waveforms.

5u l a o Is0 250
I . .

Figure 38. 16-rail MEAG 4-bit counter waveforms.

I --

Figure 39. Quad-rail 4-bit counter waveforms.

3.5.1 Method 1: Incom~lete Functions

This technique was applied to the optimized Boolean increment circuitry of the

4-bit counter shown in Figure 40, which is based on a carry look-ahead adder. The

Boolean XOR gates were replaced with the XOR finction described in Section 3.3, and

the Boolean AND gates were replaced with incomplete versions of the AND fbnction

shown in Figure 10. The resulting logic diagram is depicted in Figure 41. The

completeness of input criterion for the circuit as a whole is satisfied since all of the inputs

are needed to produce a complete output set, due to the inherent completeness of input of

an XOR finction. This model has a worse-case path delay of two NCL gates in the

increment circuitry. It consists of 14 NCL gates and Tm was determined to be 4.8 1 ns

using Synopsys.

Figure 40. Boolean increment circuit.

s,'

rnpleta 3 input AND

XOR

Figure 41. Increment circuit using incomplete AND functions.

3.5.2 Method 2: Dual-Rail Encoding Optimizations

The resulting logic diagram after deriving reduced minterm expressions fiom

Step 2A is shown in Figure 42. This model has a theoretical worse-case path delay of 2

threshold gates in the increment circuitry. However, TH15 and TH55 gates are not

supported in the 27 NCL macros, since they require 5 inputs. Therefore, the TH15 gate

was realized by connecting a TH14 gate in series with a TH12 gate. However, this

technique could not be applied to the TH55 gate, since this decomposition would violate

the observablity criterion. Instead the two TH55 gates were decomposed into one TH44

gate and two TH22 gates, in order to maintain observability of every gate transition at the

output. This decomposition is valid since every transition of the TH44 gate will result in

exactly one of the two TH22 gates also transitioning. The decompositions caused the

worse-case path delay to be three NCL gates, instead of two. The reduced minterm model

consists of 39 gates, but only 36 gates are necessary if TH55 and THIS gates are used.

From Synopsys simulation, TDD was determined to be 5.34 ns.

To fbrther reduce the gate count, the expressions for Sl, S2, and S3 can be factored

using Step 2B. This factoring increases the worse-case path delay from two NCL gates to

three NCL gates. Since constructing TH55 and TH15 gates for the reduced minterm

model from smaller gates caused a worse-case path delay of 3 threshold gates, factoring

did not increase the depth of the critical path. The logic diagram for the increment

circuitry factored form is shown in Figure 43. The factored minterm model consists of 28

gates, but only 27 gates are necessary if TH55 gates are used. From Synopsys simulation,

TDD was determined to be 5.28 ns.

Figure 42. Increment circuit using dual-rail reduced minterrn expressions.

0

Figure 43. Increment circuit using dual-rail factored minterm expressions.

b

,

S1°

Sl

b

b

I

I b

4

I

I) .

I

I

I D

I

I

S3'

I

b

I

I,

).

, I

s,O

SZ1

S3"

3.5.3 Method 3: Ouad-Rail Encodinp Optimizations

Quad-rail optimizations proceed in a similar fashion to dual-rail optimizations. In

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four

rails of both outputs, So and Sl, the low order two bits and the high order two bits,

respectively, derived fiom the Karnaugh maps shown in Figure 45. Note that not all of

the coverings that eliminate Inc are shown, so as not to clutter the drawing. The reduced

Inc

Inc = 0 Inc = 1

M

Figure 45. Karnaugh maps for quad-rail counter.

minterm expressions derived fiom these K-maps are as follows: S: = Inc0&O + lnclx:,

0 0 so1 = I ~ C O X ~ ' + ~nc'&O, S: = IIICOX: + ~ncl&', so3 = IIICOX: + ~ n c ' & ~ , sI0 = IIIC x1 +
0 0 Xo XI + ~ 0 ~ x 1 ~ + x:xl0 + I ~ C ' & ~ X ~ ~ , sI1 = I ~ C ~ X ~ ' + ~OxI1 + xO1xI1 + x:xll +

0 2 1nc1x:xI0, s12 = Inc XI + x:x12 + xO'xl2 + x:xl2 + Inc1x2xl', s13 = hc0xl3 +

+ &'XI + X ~ X I ~ + I ~ c ' x ~ x ~ ~ . These equations can now be directly mapped to

TH 1 n and THnn gates to produce the reduced minterm model, shown in Figure 46. This

Figure 46.11

x,' 4' 4' XI0 Y XoZ hi)bO lncl Id

ncrement circuit using quad-rail reduced mintem r expressions.

model has a theoretical worse-case path delay of two NCL gates in the increment

circuitry. However, TH15 gates are not supported in the 27 NCL macros, since they

require 5 inputs. Therefore, the actual worse-case path delay is three NCL gates. The

reduced minterm model consists of 40 gates, but only 36 gates are necessary if TH15

gates are used. From Synopsys simulation, TDD was determined to be 5.59 ns.

To further reduce the gate count, the expressions for Sl can be factored using

Step 3B. This factoring increases the worse-case path delay from two NCL gates to three

NCL gates. Since constructing TH15 gates for the reduced minterm model from smaller

gates caused a worse-case path delay of 3 gates, factoring did not increase the depth of

the critical path. The factored minterm model, shown in Figure 47, reduced the gate count

to only 25 gates, and from Synopsys simulation, TDD was determined to be 5.57 ns.

Step 2C maps the factored expressions to the full 27 macros in Table 111, reducing

both the number of gates and the number of logic levels. Note that the expressions for So

and Sl can be mapped to TH24comp gates by adding two don 't care terms as for the

XOR function explained in Section 3.3. The logic diagram for the increment circuitry

using complex gates is shown in Figure 48. It has a worse case path delay of two NCL

gates in the increment circuitry. The complex quad-rail model consists of 10 gates and

from Synopsys simulation T' was determined to be 5.47 ns.

Figure 47. Increment circuit using quad-rail factored minterm expressions.

XI3 x,? X,' XI0 Xo' XoO ~ncl in@

Figure 48. Quad-rail increment circuit using complex gates.

3.5.4 Other MEAG Ootimizations

To reduce power, thls technique was applied to design a 16-rail MEAG counter.

The resulting increment circuitry is shown in Figure 49. Note that TH24comp gates can

be used by adding two don 't care terms as for the XOR function explained in Section 3.3.

This model has a worse-case path delay of one NCL gate in the increment circuitry and

consists of 16 NCL gates. However, a special 16-rail register, shown in Figure 50, was

required to implement the feedback circuitry. The register is depicted as reset to NULL,

however it could be instead reset to a DATA value by replacing exactly one of the TH22n

gates with a TH22d gate. This register requires two levels of logic to generate the KO

signal, instead of only one level required by both the dual-rail and quad-rail registers,

causing the 16-rail MEAG counter to have a longer feedback path and therefore operate

slower. Furthermore this 16-rail representation is exponential in the number of bits,

reducing its applicability for general purpose designs. TDD was determined to be 8.77 ns

using Synopsys and the average power per cycle, denoted PDD, was determined to be

5.37 pW using Cadence.
XIS X14 X13 X12 Xl1 X1° XO P X7 P X5 X4 XJ X2 X1 X0 Incl lnt?

Figure 49. 16-rail MEAG increment circuit.

Figure 50. 16-rail MEAG register.

3.5.5 Up-Counter Performance Summaw

Table VII lists the timing, gate counts, and transistor count for each of the eight

counter models. It also lists the average power per operation for both the optimal dual-rail

and quad-rail counters, as well as for the 16-rail MEAG counter. The theoretical gate

count is the number of gates that would be required if TH55 and/or TH15 gates were

used. Since these gates are not part of the 27 NCL macros, they have been constructed

fiom existing gates, as discussed in Section 3.5.2, to yield the actual gate count.

Table VII indicates that the factored forms of both the dual-rail and quad-rail circuits

yield fewer gates and transistors, as well as smaller cycle times, compared to their

original reduced forms. However, the complex gate models yield the best time and space

performance for Method 2 and Method 3, as expected. The optimal design in terms of

speed is generated fiom both Method 1 and Method 2C, although the design from

Method 2C is preferred since it contains fewer gates and transistors. The most area

efficient design is generated fiom Method 3C, requiring 22% fewer transistors than the

speed optimal design of Method 2C. Furthermore, the most power efficient design is the

16-rail MEAG counter, requiring 63% less power than the optimal dual-rail design fkom

Method 2C and 42% less power than the optimal quad-rail design from Method 3C,

although it requires 36% and 73% more transistors and is 82% and 60% slower than the

two, respectively.

Table VII. Alternate designs for NCL up-counter increment circuit.

Model Type
1) Incomplete AND
2a) Reduced Dual-Rail
2b) Factored Dual-Rail
2c) Complex Dual-Rail
3a) Reduced Quad-Rail
3b) Factored Quad-Rail
3c) Complex Quad-Rail

I 6-rail M EAG

TDD
4.81 ns
5.34 ns
5.28 ns
4.81 ns
5.59 ns
5.57 ns
5.47 ns
8.77 ns

PDD

14.44 pW

9.30 p~
5.37 p~

Theoretical
Gate Count

14
36
27
13
36
25
I 0
16

Actual
Gate Count

14
39
28
13
40
25
10
16

Transistor
Count

216
460
308
212
440
266
166
288

4.0 GATE-LEVEL PIPELINING OPTIMIZATIONS

Gate-Level Pipelining (GLP) techniques are developed to design throughput-

optimal delay-insensitive NCL systems. Pipelined NCL systems consist of

Combinational, Registration, and Completion circuits implemented using threshold gates

equipped with hysteresis behavior. NCL Combinational circuits provide the desired

processing behavior between Asynchronous Registers that regulate wavefront

propagation. NCL Completion logic detects completed DATA or NULL output sets fiom

each register stage. GLP techniques cascade registration and completion elements to

systematically partition a combinational circuit and allow controlled overlapping of input

wavefronts. Both full-word and bit-wise completion strategies are applied progressively

to select the optimal size grouping of operand and output data bits. To illustrate the

method, GLP is applied to a case study of a 4-bit by Cbit unsigned multiplier, yielding a

speedup of 2.25 over the non-pipelined version, while maintaining delay-insensitivity.

Even though delay-insensitive design methods do not utilize clocked control signals, they

are still amenable to significant throughput increases by pipelining of wavefionts. The

objective of this chapter is to develop and illustrate a pipelining method for maximizing

throughput of delay-insensitive systems at the gate level.

4.1 Chapter Outline

This chapter is organized into five sections. An overview of previous work is

given in Section 4.2. In Section 4.3, the GLP method is developed. This method is then

demonstrated in Section 4.4 by applying GLP to design an optimal 4-bit by 4-bit

unsigned multiplier whose throughput is increased by 125% over the non-pipelined

version. Section 4.5 concludes the 4x4 multiplier case study.

4.2 Previous Work

Pipelining facilitates temporal parallelism by partitioning a process into stages

such that each stage operates simultaneously on different wavefronts of input operands.

If a process that requires N time units can be partitioned into S identical stages then a

steady-state throughput not to exceed S/N results per time unit may be realized. In

practice numerous constraints, such as registration overhead between computational

stages, limit the actual speedup achievable by pipelining. For instance, throughput

limitations may be encountered as clocked Boolean circuits are partitioned to

increasingly finer granularities. In particular, the clock period used to advance data

between stages becomes increasingly dominated by the required design margins,

including accommodations for clock skew. Clearly, asynchronous design methods need

not provide design margins to accommodate clock skew. Nonetheless, they do possess

their own constraints governing speedup by pipelining and can benefit substantially fi-om

optimized pipeline design strategies.

One approach to pipelining asynchronous circuits was described in Ivan

Sutherland's work on micropipelines [19]. This method employs two-phase handshaking

supporting transmission of bundled data. Figure 5 1 shows a two-phase handshaking

protocol. Two control wires, labeled request and achowledge, are used to support an

arbitrary number of data wires. In two-phase handshaking, both the rising and falling

edges of the request and acknowledge signals are indicative of circuit behavior. A cycle

begins with the sender setting the data lines and generating a request event by toggling

the request line. When the request is received, the data is latched and the receiver

generates an acknowledge event by toggling the acknowledge line. The cycle terminates

when the sender receives the acknowledge signal, at which time the data lines may be set

for the next cycle. The use of bundled data refers to the fact that the data lines and request

signal are treated as a bundle. Data bundling implies that the data transmission delay

cannot exceed the delay to transmit the request. Otherwise, the request event might reach

the receiver prior to valid data, causing invalid data to be latched. Subsequent work on

micropipelines [3 1,32,33] suggest that performance may be increased by using four-

phase handshaking protocols. Four-phase handshaking also requires two control wires,

request and acknowledge, along with an arbitrary number of data wires. But, in four-

phase handshaking only one edge, either the rising or falling edge of the request and

acknowledge signals, is active. The four-phase handshaking protocol is shown in

Figure 52, using the rising edge as active. A cycle begins with the sender placing data on

the bus and generating a request event by asserting the request line. When the request is

received, the data is latched and the receiver generates an acknowledge event by asserting

the acknowledge line. When the sender receives the acknowledge signal, the request

signal is de-asserted and the data lines may be set for the next cycle. The cycle concludes

with the acknowledge line being de-asserted, as precipitated by the de-assertion of the

request line. Micropipelining techniques such as these are evident in several processors

that have been designed and implemented using bundled data methods 134,351.

Request

Acknowledge '-r
Figure 5 1. Two-phase handshalung protocol [1 91.

Data - 1
Request '2'@L'@-
Acknowledge

Figure 52. Four-phase handshalung protocol [33].

Another approach to pipelining asynchronous circuits is through the use of wave

pipelining. Hauck and Huss [36] describe a technique that allows multiple data

wavefionts to simultaneously propagate between two asynchronous registers by

partitioning each combinational logic block with dynamic latches, controlled only by the

request line. Synchronous wave pipelining and asynchronous micropipelining methods

can be combined using these techniques. However, a potential limitation of eliminating

the acknowledge signal is that delay-insensitive behavior may be compromised, thus

making the protocol inelastic. Further work by Park and Chung [37] presents a

modification to this approach in which both the number of latches and the number of

delay elements can be reduced, resulting in higher throughput.

A third asynchronous pipelining approach uses delay-insensitive multi-ring

structures [38]. This method employs a four-phase handshaking protocol using dual-rail

signals for data representation and Delay-Insensitive Minterm Synthesis (DIMS) [9] for

each bctional block. It also presents a formal method for analyzing the performance of

these multi-ring structures, based on signal transition graphs. Nonetheless, formal

methods to design throughput-optimal multi-ring structures are not directly feasible due

to underlying difficulties in partitioning of DIMS expressions.

In [39] Kim and Beerel present an optimal branch and bound algorithm to

partition asynchronous circuits composed of precharge-logic blocks [12,24] designed at

the transistor level. The algorithm uses a labeled directed graph to represent the model

being pipelined. However, this method is not directly amenable to pipelining NCL

circuits due to the differences in the fundamental components.

4.2.1 Relation of NCL to Previous Work

For Sutherland's micropipelines using either two-phase or four-phase

handshaking, the determination of the maximum throughput design for a given

combinational circuit is straightforward. Since micropipelines assume bundled data and

therefore employ single-rail signals, there is no completeness of input criterion that must

be met when partitioning a circuit, therefore fbrther partitioning cannot invalidate a

design. Furthermore, delay is added in the control path such that completion detection is

unnecessary, therefore further partitioning cannot decrease throughput. Thus, the design

that will yield the maximum throughput is the one containing only one gate delay per

stage. Since micropipelines necessitate the addition of delay in the control path, they

exhibit worse-case performance verses the average-case performance of NCL systems

and are layout and process dependent unlike NCL systems. Micropipelines also assume

bundled data such that synchronicity is required, while NCL systems require no

synchronization so that inputs may arrive at any time and in any order. Therefore, NCL

systems are potentially more independent than micropipelines.

Since the maximum throughput rate for asynchronous wave pipelines is

determined by the difference between the longest and shortest path through the

combinational logic, there is even more timing analysis required than for micropipelines.

In asynchronous wave pipelines throughput will be maximized by designing the shortest

and longest path to be nearly equal, therefore extensive timing analysis is required.

Asynchronous wave pipelines are therefore very susceptible to process dependencies and

environmental variations, unlike NCL. These fundamental differences between NCL and

both micropipelines and asynchronous wave pipelines place NCL in a different class than

either and would make direct comparisons difficult.

NCL circuits are in the same class as other delay-insensitive approaches [4,6, 7,

8,9], that were compared to NCL in Chapter 3. The functionality of NCL circuits is the

same as those designed using the approaches presented in [4,6,7,8,9]. Thus, the NCL

combinational circuit, as part of the NCL gate-level pipelining framework, could be

replaced with an equivalent circuit designed using [4,6,7,8,9], and the resulting single-

stage system would h c t i o n correctly. This is exactly what delay-insensitive multi-ring

structures are. Their kamework is equivalent to that of NCL, except for the

combinational circuits, which use the approach described in [9]. But, since all of the basic

gates used in the other delay-insensitive approaches, including delay-insensitive multi-

ring structures, do not include hysteresis, their combinational designs cannot be

partitioned, as can NCL combinational circuits. Thus, a given combinational circuit

designed using [4,6, 7, 8,9] can either be used as a non-pipelined design, or if increased

throughput is desired, each stage of the pipeline must be separately redesigned. Therefore

a method which iteratively divides a combinational circuit of a delay-insensitive multi-

ring structure to increase throughput cannot do so with little effort, as does the method

presented herein for NCL; since after each iteration all combinational blocks which were

divided would have to be redesigned to include input-completeness necessary for delay-

4.3 Method Definition

In Chapter 3 it was shown how to design an optimal NCL combinational circuit.

So, starting with an N-level NCL combinational logic circuit, the design process for

optimizing throughput begins, as depicted in Figure 53. Other criteria such as maximum

latency and maximum area may also be considered during throughput optimization.

Several alternate designs are generated which are then assessed against the optimization

criteria, allowing the preferred design to be selected for implementation.

It is assumed that if a maximum latency bound is specified then it is at least one

stage, and that if a maximum area bound is specified then it is at least as large as the non-

pipelined design, otherwise the non-pipelined design will be output. If no maximum

latency or maximum area requirements are specified, then both are assumed to be infinity

such that they are not considered in determining the optimal design. If more than one

design has the same throughput, the one with the least latency will be chosen. If multiple

designs have the same throughput and latency, the one with the least area will be chosen.

Figure 53. GLP design flow.

The original combinational circuit with no pipelining will always be input-

complete since TCR only yields input-complete designs. Thus, starting with the

combinational logic design and adding registration along with corresponding completion

logic at the input and output will yield an initial 1-stage design. Partitioning this initial

design, first into 2 stages, then further into as many as N stages may or may not produce

better designs. First, completeness of input must be ensured at the output of each stage, as

discussed in Chapter 2, otherwise the design will not be delay-insensitive and is therefore

invalid. After input-completeness is ensured, the throughput for the current design must

be calculated and compared to the throughput of the best design. If the current design's

throughput is greater than that of the best design, it is designated as the best design,

otheiwise bit-wise completion is applied to the current design and the throughput is

reevaldted. If the throughput of the current design using bit-wise completion is still not

greater than that of the best design, the best design does not change since the current

design doesn't increase throughput and has longer latency, otherwise the current design

using bit-wise completion becomes the best design. As mentioned in Chapter 2 the

completion delay is proportional to [log4 ~ 1 . Thus, if partitioning causes registers of

significantly larger width to be required then the decrease in the combinational delay per

stage will be offset by the increase in the completion delay such that the throughput of the

system may not necessarily increase, as discussed in Section 4.3.1. If after traversing the

loop of Figure 53 (i = O), which generates each subsequent pipelined design, or if the

maximum latency or area requirements have been exceeded, then if the best design

utilizes full-word completion, bit-wise completion is applied to this design to possibly

further increase throughput. If throughput is not increased the design with the least area is

chosen since both designs will have the same throughput and latency. This is because

application of bit-wise completion won't decrease throughput, as explained in

Section 4.3.2, and doesn't impact the number of stages. The output of this flowchart will

be the optimal design (best - design) that produces the maximum throughput

(max - throughput), and does not exceed the maximum latency or maximum area

requirements, if any were given.

4.3.1 Throughput Derivation

Quarter-cycle timing is used to determine the worst-case achievable throughput of

a pipelined NCL system. The name is derived from the fact that the analysis requires each

NCL cycle to be broken into its four sub-cycles. The NCL cycle is comprised of the

DATA and NULL propagation through the combinational circuitry, as well as the

generation of the request for DATA and request for NULL fkom the completion circuitry.

The four sub-cycles that are contained in the NCL cycle are shown in Figure 54. D

denotes the interval when any DATA bits are propagating through the combinational

circuit, N denotes the interval when any NULL bits are propagating through the

combinational circuit, RFD is the request for DATA generation, and RFN is the request

for NULL generation. Assuming KO = rfd, the cycle starts with DATA propagation and

the sequence of the four sub-cycles is as follows: D, RFN, N, and RFD. The propagation

delays associated with this sequence are labeled as follows: TD, TRFN, TN, and TRFD,

respectively. TD and TN are defined to be the delay experienced by the slowest bit

through their respective sub-cycles. In this chapter TD, TRFN, TN, and TRFD are

calculated in terms of gate delays, making the predicted throughput an estimate since

different gates do have slightly different delays. If this method were to be automated, the

actual delay of each gate would be used to calculate the predicted throughput.

DATA-to-DATA Cycle

DATA DATA NULL NULL
Combinational Completion Com binational Completion

Figure 54. Sub-cycles of the NCL cycle.

Evaluation

D

The NCL cycle is bounded by the current registration stage, denoted as i, and the

previous registration stage, denoted by i-I, as depicted in Figure 55. The calculation

Acknowledgement

RFN

resulting in the maximum cycle time forms a lower bound on the throughput of the i" and

i- 1" registration pair. This process of bounding the throughput for registration pairs is

repeated for all adjacent registration pairs in a pipelined configuration. The maximum

value calculated over all adjacent registration pairs determines a lower bound on steady-

Evaluation

N

state throughput for the entire design.

Acknowledgement

RFD

Stage i-1 Stage i ,---------------------------------. -----------------------------------
I I I I

Registration Registration / I TD,,, TN,, Stage i-2 Stage i-I , I "19 T N ~
I

Registration
Stage i

I

I
I

[Circuit
- In Out

I

' :
I

I I
I I
I ; I

I
I

,

-
I

TRFD,,TRFN
I
I
I

KO Ki - Completion KO Ki

I I
I I

I
I

I*

I

Completion
I

I I - : I I I I I
I I I L---------------------------------I L---------------,------------------I

Figure 5 5. Pipeline showing NCL sub-cycle times.

Using the above terminology, the worst-case DATA-to-DATA cycle time for

4.3.1.1 Idealized Completion Circuitry

Consider the idealized case where TRFN and TRFD are assumed to be zero. The

discrete timing chart in Table VIII identifies the interaction of stagq and ~tage,.~ under

these idealized conditions. For the initial state, the analysis begins with stagei and stagei.1

both reset to NULL. At wavefront #1, DATA propagates through the combinational

circuitry of stagei.1, while stagei remains idle. At wavefiont #2, NULL propagates

through the combinational circuitry of ~tagei.~, while DATA propagates through the

combinational circuitry of stagei. At wavefront #3, DATA propagates through the

combinational circuitry of ~ tage~.~ , while NULL propagates through the combinational

circuitry of stage;. This pattern of NULL propagating through ~tagei.~, while DATA

propagates through stagei, followed by DATA propagating through ~tagei.,, while NULL

propagates through stagei, repeats continuously and forms the simplified NCL cycle,

shown in boldface in Table VIII.

Table VIII. Discrete timing chart for the idealized NCL cycle.

stagei assuming idealized completion is:

T~~~ idealized = MAX (TNi-1, TDi) + MAX (TDi.l , m i) (eq. 4.1).

Interpreting Equation 4.1 as a set of exclusive events implies exactly one of the following

relationships:

either TDD~ idealized = TNi-l + TDi-l

idealized
Tooi = TNi-l + TNi

TDDi idealized = TDi + TDi-l

idealized
TDD, = TDi + TNi

(eq* 4.4),

(eq. 4.5).

Notice that Equations 4.2 and 4.5 are equivalent except for their stage index. Under the

proposed method of evaluating each stage pair in increasing order to determine the global

maximum value, Equation 4.2 would therefore have been evaluated in the previous

registration pair calculations, so it does not need to be reevaluated in the current

registration pair calculations. This is true for every registration pair except the first pair,

stage 1 and stage 2. For the first registration pair, Equation 4.2 does need to be

considered since there is no previous registration pair that incorporates this calculation.

Equation 4.3 considers the case of adjacent NULL propagation delays.

Equation 4.4 considers the case of adjacent DATA propagation delays. Equation 4.5

considers the case of NULL and DATA propagation delays for a single registration stage.

The pseudocode listed in Algorithm 4.1 calculates the worst-case throughput for an

idealized N-stage NCL pipeline.

max-cycle-time = TDI + TNI
for (i = 2 to N) loop

temp-cycle-time = ML~X(TN,.~ + TNi, TDi.l + TDi, TDi + TNi)
if (temp-c ycle-time > max-c ycle-time) then

max-cycle-time = temp-cycle-time
end if

end loop
worst-case-throughput = 1 l max-cycle-time

Algorithm 4.1. Calculation of worst-case throughput for an idealized N-stage pipeline.

Evaluation of the above loop is followed by taking the reciprocal of the maximum

adjacent stage pair delay to obtain a lower bound on the pipeline's throughput.

4.3.1.2 Non-Zero Delay Completion Circuitry

Now the general case will be examined, where TRFN and TRFD are not zero. The

discrete timing chart in Table IX shows the interaction of stage, and stagei.1. For the

initial state, assume stage, and ~ t a g e ~ . ~ are both reset to NULL, so both stages will initially

be requesting DATA. At wavefront #1, DATA propagates through the combinational

circuitry of stagei.1, while stagei remains idle. At wavefiont #2, DATA propagates

through the combinational circuitry of stagei, while stagei.1 requests NULL. At

wavefiont #3, NULL propagates through the combinational circuitry of stagq.], while

stage, requests NULL. At wavefiont #4, NULL propagates through the combinational

circuitry of stagei, while requests DATA. At wavefiont #5, DATA propagates

through the combinational circuitry of stagei.1, while stage, requests DATA. This pattern,

from wavefront #2 to wavefiont #5, repeats continuously and forms the generalized NCL

cycle, shown in boldface in Table IX.

Table IX. Discrete timing chart for the general NCL cycle.

The worst-case cycle time for the generalized case of stagei is then given by:

TDoj = MAX (TDiy TRFNj-1) + MAX (TNi-~, TRFNi) +
MAX (TNiy TR.F'Di.l) + MAX (TDi-1, TRFDi) (eq. 4.6).

Interpreting Equation 4.6 as a set of exclusive events implies exactly one of the following

relationships:

either TDoi = TDi + TNi.1 + TNj + TDj.1

TDDi = TDi + TNi.1 + TNi + TWDi

TDDi = TDi + TNi.1 + TRFDi.l + TDi.]

(eq. 4.7), or

(eq.4.8), or

(eq. 4.9), or

(eq. 4. lo), or

(eq. 4.1 I), or

(eq. 4.12), or

(eq. 4.13), or

(eq. 4.14), or

(eq. 4.19, or

(eq. 4.16), or

(eq. 4.17), or

(eq. 4.18), or

(eq. 4.19), or

(eq. 4.20), or

(eq. 4.21), or

TDDi = TRFNi.l + TWNi + TRFDi.1 + TRFDi (eq. 4.22).

Observe that Equations 4.17 and 4.12 are equivalent except for their stage index, as in the

simplified case. Thus, Equation 4.17 would have been evaluated in the previous

registration pair calculations, so it does not need to be reevaluated in the current

registration pair calculations, except for the first pair, stage 1 and stage 2. Equations 4.7

through 4.1 1,4.14,4.15, and 4.1 8 through 4.22, inclusive, can also be omitted based on

the fact that they contain terms with overlapping time intervals. For example, consider

Equation 4.11 containing TNi, then from Equation 4.6, TNi > TRFDi.1, which means that

RFDi-1 completes before Ni. Since Di.l can begin as soon as RFDi.1 completes and RFDi.1

completes before Ni, then the intervals labeled Di.1 and Ni must at least partially overlap.

Thus, Equation 4.11 can be disregarded since it does not take into account this overlap.

To remove the overlap, TNi could be replaced with TRFDi.1, which would yield the

existing equation, 4.13. Through a similar analysis, three other overlapping terms can be

found. Therefore, any equation containing one or more of these overlapping pairs:

TNi and TDi-1, TDi and 'INi., , TRFNi and TRFNi.,, or TRFDi and TRFDi.1 must also be

invalid, leaving only three valid equations, 4.12,4.13, and 4.1 6.

In particular, Equation 4.16 considers the case of adjacent NULL propagation

delays, including the request times. Equation 4.13 considers the case of adjacent DATA

propagation delays, including the request times. Equation 4.12 considers the case of

NULL and DATA propagation delays for a single registration stage, including the request

times. Based on thls analysis, the pseudocode listed in Algorithm 4.2 can be used to

calculate the worst-case throughput for a generalized N-stage NCL pipeline.

max-cycle-time = TRFDl + TDl + TRFNl + TNI
for (i = 2 to N) loop

temp-cycle-time = MAX(TRFDi + TDi + TRFN, + TN,,
TRFDi.l + TDi.* + TDi + TRFN,,
TRFNi.1 + + TN, + TRFDi)

if (temp-cycle-time > max-cycle-time) then
max-cycle-time = temp-cycle-time

end if
end loop
worst-case-throughput = 1 / max-cycle-time

Algorithm 4.2. Calculation of worst-case throughput for a generalized N-stage pipeline.

Evaluation of the above loop is followed by taking the reciprocal of the maximum

adjacent stage pair delay to obtain a lower bound on the pipeline's throughput.

4.3.2 Bit-Wise Completion

In addition to minimizing stage delay, throughput may be further increased using

bit-wise completion, briefly mentioned in [40]. Until now only full-word completion has

been utilized, where the completion signal for each bit in register, is conjoined by the

completion component, whose single-bit output is connected to all Ki lines of registeri.1.

On the other hand, bit-wise completion only sends the completion signal from bit b in

register, back to the bits in register,., that took part in the calculation of bit b. Thls method

may therefore require fewer logic levels than that of full-word completion, thus

increasing throughput. Bit-wise completion will never reduce throughput, since in the

worse case all bits of registeri., are used to calculate each bit of registeri, such that the

completion logic and therefore throughput does not change by selecting bit-wise

completion rather than full-word completion. Bit-wise completion may or may not

require more logic gates and therefore transistors than full-word completion, thus bit-wise

completion will be used if it increases throughput, or if throughput is the same as for full-

word completion but area is reduced.

Figure 56 shows full-word completion for a combinational stage of six 2-input

AND hct ions, generating all combinations of the 4-bit input X. Figure 57 shows bit-

wise completion for the same six AND fbnctions. There is only one level of logic in the

completion components for the bit-wise completion approach verses two levels of logic

in the completion component for the full-word completion approach. Also notice that

four gates are required for bit-wise completion verses three gates for full-word

completion, a difference of 8 additional transistors. To maximize throughput in this case,

bit-wise completion would be selected in spite of its larger size since it reduces the

completion logic path from two gate delays down to only one gate delay, which translates

to an increase in throughput by Algorithm 4.2.

41

NCL Compbtbn rs

KO NCL IKO NCL IK0 NCL IM NCL I& NCL I W NCL
~1 Register 1 KI Register I Register I KI Register I KI Register I KI Register

I I f 1 f f 1 t 1
Ki 4 5) 4 4) 4 3) m A(1) A&')

Figure 56. Full-word completion.

U 3) 4 3) Ki(2) W) U 1) A(1) WO) 4 0)

Figure 57. Bit-wise completion.

4.4 A~plication to Unsi~ned Multi~lier

A number of designs based on the 4-bit by 4-bit multiplier shown in Figure 58

have been evaluated as a case study to assess the impact of GLP methods on throughput.

The specifications for this multiplier were simply to perform an unsigned multiply of the

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. As with all NCL

systems, a full NCL interface with request and acknowledge signals labeled Ki and KO,

respectively, is included for requesting and acknowledging complete DATA and NULL

wavefkonts.

Remember that the number of gate delays in the completion logic for an N-bit register is

Figure 5 8 . 4 ~ 4 multiplier block diagram.

The non-pipelined version of the 4x4 multiplier is shown in Figure 59. It consists

of incomplete AND functions, denoted as I and depicted in Figure 10, as well as

complete AND functions, denoted as C and developed in Chapter 3. The multiplier also

utilizes half adders, as shown in Figure 60 and denoted HA, as well as full adders, as

shown in Figure 30 and denoted FA. The last components of the multiplier include

GEN-S7, as shown in Figure 61, and the completion components, denoted as COMP.

[log4 ~ 1 , as discussed in Chapter 2.

Ki S, S~ Ss S4 sa Sz s, So

Figure 59. Non-pipelined, 1 -stage 4x4 multiplier using full-word completi

10 gate
delays

z' -
Figure 6 1. GEN-S7 component.

Figure 60. Half adder

4.4.1 Pipelined Multipliers with Full-Word Completion

The throughput for the non-pipelined design is calculated using Algorithm 4.2,

and is determined to be (24 gate delays)-'. Here, TWDl = TRFNl = [log4 81 = 2 gate

delays and TNI = TDI = 10 gate delays as given by the I, FA, FA, HA, FA, FA, and FA

components along the critical path shown in bold face in Figure 59. Thus,

Too = TWDl + TDI + TRFNl + TNI = 2 + 10 + 2 + 10 = 24. Since the 4x4 multiplier has

a longest path delay of 10 threshold gates, then &om the flowchart in Figure 53, the

4x4 multiplier can be pipelined with either 5,4, 3,2, or 1 gate delays per stage, if

completeness of input can be achieved for each such partition.

For a partition of 5 gate delays per stage, 2 stages are required, as shown in

Figure 62. The throughput of this 2-stage design is determined to be (14 gate delays)-', as

all equations from Algorithm 4.2 yield this same maximum cycle delay. For a partition of

4 gate delays per stage, 3 stages are required, as shown in Figure 63. The first and second

stages only have 3 gate delays, while stage 3 has 4 gate delays. The throughput of this

3-stage design is determined to be (12 gate delays)", as calculated from Algorithm 4.2 for

stage 3. For a partition of 3 gate delays per stage, 4 stages are required, as shown in

Figure 64. The first stage has 3 gate delays, stage 2 only has 2 gate delays, and stage 3

and stage 4 both have 3 gate delays. The throughput of this 4-stage design is determined

to be (10 gate delays)-'. The equations from Algorithm 4.2 for stage 1, stage 3, stage 4,

and stages 3 and 4 combined all yield this result. For a partition of 2 gate delays per

stage, 7 stages are required, as shown in Figure 65. The first stage and the fourth stage

only have 1 gate delay, while the other stages all have 2 gate delays. The throughput of

this 7-stage design is determined to be (8 gate delays)-'. The equations from

Algorithm 4.2 for stages 2,3, 5,6, and 7, as well as those for stages 2 and 3 combined,

stages 5 and 6 combined, and stages 6 and 7 combined yield this result.

A partition into a single gate delay per stage cannot be achieved since the

completeness of input criterion is unattainable using only one level of logic with a

maximum gate fan-in of 4 inputs. This would require inserting a register between the two

levels of logic within the full adder, which would violate the completeness of input

criterion upon which it was designed.

HA FA FA FA HA

1 COMP 1 C S C S, C S C S

I I- 11 r I I
HA HA HA FA HA

C S C S . C S C S . C S

12 bit NCL Register

Stage I :
5 gate
delays

Stage 2:
5 gate
delays

Figure 62.2-stage 4x4 multiplier using full-word completion.

Stage 1 :
3 gate
delays

I

Ki I I I
I

I -
HA HA HA FA
C S

HA
C S C S C S C S

I I

HA
C S

12 bit NCL Register I
I

Ki I - -
a C

C X Y Z FA
C S

GEN-S7
FA FA

C S C S
S

8 bit NCL Register I

Figure 63. 3-stage 4x4 multiplier using full-word completion.

Stage 2:
3 gate
delays

Stage 3:
4 gate
delays

Figure 64.4-stage 4x4 multiplier using fill-word completion.

stage 1:
3 gate
delays

T
Stage 2:
2 gate
delays

t

stage 3:
3 gate
delays

stage 4:
3 gate
delays

16 bit NCL Register I

13 bit NCL Register

1 I I I I I
I I

FA HA
C S C S

12 bit NCL Register

12 bit NCL Register I

11 bit NCL Register

10 bit NCL Register I
L
Ki I I

1 1

0

I
C X Y Z

GEN-S7
FA

s
C S

L L

(COMP 1
I

8 bit NCL Register
. . .

Ki S, 4 s5 6, S, S, 5, 5,

Figure 65. 7-stage 4x4 multiplier using 111-word complet

T
Stage 1:
1 gate
delay

t

T
Stage 2:
2 Qate
delays

t

T
Stage 3:
2 gate
delays

t

T
Stage 4:
1 gate
delay

t

T
Stage 5:
2 gats
delays

t

T
Stage 6:
2 gate
delays

stage 7:
2 gate
delays

4.4.2 Summary of Multiplier Desipns using Full-Word Completion

The maximum throughput when pipelining the 4x4 multiplier using fill-word

completion was (8 gate delays)-' as attained by the 7-stage design. Table X compares the

throughputs attained from Synopsys simulation and shows that the 7-stage design indeed

outperforms all other configurations, as expected by comparing the analytically predicted

throughputs. This design has a 19% increase in throughput over the next highest

throughput from the 4-stage multiplier, and an 83% increase in throughput over the

original non-pipelined design. This increase in throughput was achieved at the expense of

inserting 6 asynchronous registers along with corresponding completion logic, as dictated

by the flowchart of Figure 53. The simulated throughput was obtained by averaging the

throughputs resulting from all 256 possible combinations of input pairs.

Table X. Stage delay and throughput for various multiplier designs.

4.4.3 Amlying Bit-Wise Completion

Multiplier
Design
1 -stage
2-stage
3-stage
4-stage
7-stage

After traversing the loop of Figure 53 such that i=O, the highest throughput design

utilized full-word completion. Bit-wise completion was applied to this design as specified

by the flowchart. When switching from full-word completion to bit-wise completion the

Maximum Combinational
Delay per Stage

(gate delays)
10
5
4
3
2

Maximum Completion
Delay per Stage

(gate delays)
2
2
2
2
2

Predicted
Throughput

(gate delays)"
1/24 = 0.042
1/14 = 0.071
1/12=0.083
1/10 = 0.100
118 = 0.125

Simulated
Throughput

(ns)-'
0.1 14
0.1 50
0.172
0.176
0.209

incomplete AND functions had to be replaced with complete AND functions to satisfy

the completeness of input criterion over the new completion sets. The resulting design,

shown in Figure 66, reduced the completion logic fiom 2 gate delays to only 1 gate delay

for all registers, thus increasing the throughput fiom (8 gate delays)" to (6 gate delays)".

From Synopsys simulation throughput was determined to be 0.257 ns-', an increase of

2 1 % over the design with an identical number of stages using full-word completion.

Thus, the 7-stage 4x4 multiplier utilizing bit-wise completion optimizes throughput.

4.5 Conclusion

Since increasingly finer pipelining of the multiplier did not increase the

completiondelay, the most finely grained pipelined design was optimal. The non-

pipelined design (Figure 59) required a maximum register width of 8 bits while the

7-stage pipelined design (Figure 65) required a maximum register width of 16 bits, and

rloB 81 = [log4 161 = 2. However, if the 7-stage design required a maximum register

width of 17 bits instead of 16 bits, the throughput for the 7-stage design using full-word

completion would have been the same as for the 4-stage design using fill-word

completion. Thus, the 4-stage design using M1-word completion would have been

preferable over its 7-stage counterpart, since it would have had less latency. Bit-wise

completion would still have had to be performed on the 7-stage design and possibly the

4-stage design to determine the overall optimal throughput design.

1 I + I 1 1 4 I + I 1 I 1
NCL NCL NCL NCL NCL NCL

a R-r a R w W r KI R.O#.r a R-r a R- a R.gi (N
I . I . I . I * I . I . I

1 I 1 I 1 I ' i 1 1

Figure 66. 7-stage 4x4 multiplier using bit-wise completion.

5.0 NULL CYCLE REDUCTION TECHNIQUE

A NULL Cycle Reduction (NCR) technique is developed to increase the

throughput of delay-insensitive digital systems. NCR reduces the time required to flush

complete DATA wavefionts, commonly referred to as the NULL or Empty cycle. The

NCR technique exploits parallelism by partitioning input wave fronts such that one circuit

processes a DATA wavefiont, while its duplicate processes a NULL wavefiont. To

illustrate the technique, NCR is applied to a case study of a dual-rail non-pipelined

4-bit by 4-bit unsigned multiplier, yielding a speedup of 1.61 over the standalone version.

while maintaining delay-insensitivity.

5.1 Introduction

Most multi-rail delay-insensitive logic paradigms employ both a DATA

wavefiont and a NULL wavefiont in order to maintain delay-insensitivity [4,6,7, 8,9,

2 11. The DATA wavefiont realizes circuit functionality, while the NULL wavefiont

flushes the previous DATA wavefkont. The NULL cycle accounts for approximately half

of the total cycle time, thus decreasing attainable throughput by a factor of two. The

objective of this chapter is to develop and illustrate a technique for reducing the NULL

cycle time such that throughput does not depend as heavily on the DATA flush time, yet

still maintains delay-insensitivity.

Many architectures and algorithms employ the well-known divide and conquer

strategy. The divide and conquer technique partitions a problem into smaller sub-

problems that can be solved simultaneously, then merges their outputs to construct the

solution to the original problem, thus reducing computation time. The NCR technique

described herein also employs this divide and conquer strategy to increase the throughput

of NCL systems. Successive input wavefronts are partitioned such that one circuit

processes a DATA wavefront, while its duplicate processes a NULL wavefkont. The first

DATANULL cycle flows through the original circuit, while the next DATA/NULL

cycle flows through the other circuit. The outputs of the two circuits are then multiplexed

to form a single output stream.

5.2 NULL Cycle Reduction

The technique for reducing the NULL cycle, thus increasing throughput for any

NCL system is shown in Figure 67. NCL Circuit #I and NCL Circuit #2 have identical

functionality and are both initialized to output NULL and request DATA upon reset. Both

have an asynchronous NCL register at the input and output, while the combinational

functionality can be designed using TCR described in Chapter 3. These circuits may also

be pipelined as described in Chapter 4, to Wher increase throughput. The Demultiplexer

partitions the input, D, into two outputs, A and B, such that A receives the first

DATAMULL cycle and B receives the second DATA/NULL cycle. The input

continuously alternates between A and B. The Completion Detection circuitry detects

when either a complete DATA or NULL wavefiont has propagated through the

Demultiplexer, and requests the next NULL or DATA wavefiont, respectively.

Sequencer #I is controlled by the output of the Completion Detection circuitry and is

used to select either output A or B of the Demultiplexer. Output A of the Demultiplexer is

input to NCL Circuit #1 when requested by Kil ; and output B of the Demultiplexer is

input to NCL Circuit #2 when requested by Ki2. The outputs of NCL Circuit #1 and NCL

Circuit #2 are allowed to pass through their respective output registers, as determined by

Sequencer #2, which is controlled by the external request, Ki. The Multiplexer rejoins the

partitioned datapath by passing a DATA input on either A or B to the output, or asserting

NULL on the output when both A and B are NULL. Figure 67 shows the state of the

system when a DATA wavefiont is being input, before its acknowledge flows through the

Completion Detection circuitry, and when a DATA wavefiont is being output, before it is

acknowledged by the receiver.

Figure 67. NCR architecture.

Input DATA

Demultiplexer

A

K I ~

I
Reset

DATA

Multiplexer
DATA NULL

A

r
KO - RemttoNULL !f

rfd

*

B

lfn

KO - Compleuon
rfn NULL

KO B

S l S2 KIZ
rfn

D

DATA

1: Resetto NULL %
rfd

Sf sz
1000 0010

Sequemr#l

Retst

R o w

s2 S1
WlO 1000

S m m # 2

R-t KI.
10

5.2.1 Demultiplexer

A logic diagram for one bit of the Demultiplexer is shown in Figure 68. Upon

reset both A and B are initialized to NULL. When S1 is asserted and Kil is rfd, a

DATA input on D will be passed to output A. Likewise, when S2 is asserted and Ki2 is

~ d , a DATA input on D will be passed to output B. KO becomes rfd when both A and B

are NULL, and becomes rfn when either A or B is DATA. When A becomes DATA, it

will return to NULL only after Sl is de-asserted, Kil becomes rfn, and the input, D,

becomes NULL. Likewise, when B becomes DATA, it will return to NULL only after S2

is de-asserted, Ki2 becomes rfi, and the input, D, becomes NULL. Therefore, A and B

can never both be DATA since S1 and S2 can never be simultaneously asserted and both

A and B must be NULL before the next DATA wavefront is requested. Each bit of the

Demultiplexer is the same, and the number of bits is determined by the width of the input

datapath.

Figure 68. 1 -bit Demultiplexer.

5.2.2 Completion Detection Circuitw

The Completion Detection circuitry is the same as that explained in Chapter 2 and

shown in Figure 23. The number of KO lines from the Demultiplexer is also determined

by the width of the input datapath.

5.2.3 Sequencer #1

Sequencer #I is controlled by the output of the Completion Detection circuitry

and is used to select either output A or B of the Demultiplexer. Upon reset it selects

output A to receive the first DATAINULL cycle, after Ki becomes rfd. It then selects

output B to receive the second DATANULL cycle. Sequencer #1 continuously alternates

the DATA/NCTLL cycles between outputs A and B. A logic diagram of Sequencer #1 is

shown in Figure 69. This is a 4-stage single-rail ring structure with one token, where a

token is defined as a DATA wavefront with corresponding NULL wavefiont, and two

bubbles, where a bubble is defined as either a DATA or NULL wavefiont occupying

more than one neighboring stage [38]. When Ki becomes rfd, the DATA wavefront

moves through the two NULL bubbles ahead of it, creating two DATA bubbles in its

wake. Likewise, when Ki becomes rfn, the NULL wavefront moves through the two

DATA bubbles ahead of it, creating two NULL bubbles in its wake. The DATNNULL

wavefiont restricts the forward propagation of the NULLDATA wavefiont, respectively,

for each change of Ki, limiting the forward propagation to only the two bubbles. A

complete cycle of the Sequencer is shown in boldface and italics in Table XI. The cycle

for SI is 1000, while the cycle for S2 is 0010.

Reset

Ki

Figure 69. Sequence generator.

Table XI. Sequencer output.

5.2.4 Multiplexer

A logic diagram for one bit of the Multiplexer is shown in Figure 70. It simply

consists of two OR gates that pass a DATA input on either A or B to the output, D, or

assert NULL on the output when both A and B are NULL. The Multiplexer does not

require any select signals, since A and B can never simultaneously be DATA. This mutual

exclusion is ensured by Sequencer #2, which controls the outputs of NCL Circuit #1 and

NCL Circuit #2. Each bit of the Multiplexer is the same, and the number of bits is

determined by the width of the output datapath.

Figure 70. 1 -bit Multiplexer.

5.2.5 Sequencer #2

Sequencer #2 is controlled by the external request, Ki, and is used to allow DATA

and NULL wavefronts to flow through the output register of NCL Circuit #1 and NCL

Circuit #2. Upon reset it selects NCL Circuit #1 to output the first DATA/NULL cycle,

after Ki becomes fld. It then selects NCL Circuit #2 to receive the second DATANULL

cycle. Sequencer #2 continuously alternates the DATA/NULL cycles between NCL

Circuit #1 and NCL Circuit #2. When SI is asserted, DATA will be output from NCL

Circuit # l . Likewise, when S2 is asserted, DATA will be output from NCL Circuit #2.

When the output of NCL Circuit #1 becomes DATA, it will return to NULL only after Sl

is de-asserted. Likewise, when the output of NCL Circuit #2 becomes DATA, it will

return to NULL only after S2 is de-asserted. Therefore, NCL Circuit #1 and NCL

Circuit #2 can never both output DATA since SI and S2 can never be simultaneously

asserted and the outputs of both circuits must be NULL before the next DATA wavefiont

is requested by asserting either Sl or S2. The structure of Sequencer #2 is the same as that

of Sequencer #1 shown in Figure 69.

5.3 Simulation Results

A case study of a dual-rail non-pipelined 4-bit by 4-bit multiplier, shown in

Figure 59, has been evaluated to assess the impact of the NCR technique on throughput.

The specifications for this multiplier were simply to perform an unsigned multiply of the

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. A full NCL

interface with request and acknowledge signals labeled Ki and KO, respectively, is

provided for requesting and acknowledging complete DATA and NULL wave fronts.

From Synopsys simulation it was determined that the standalone version of the dual-rail

non-pipelined 4-bit by 4-bit multiplier had an average DATA-to-DATA cycle time of

8.75 ns with approximately equal DATA and NULL cycles. When the NCR technique

was applied to this design, the NULL cycle was reduced to approximately ?4 of the

DATA cycle. This resulted in an overall average DATA-to-DATA cycle time of only

5.43 ns, which corresponds to a 61% increase in throughput. Values for average

throughput were obtained fiom the arithmetic mean of throughputs corresponding to all

256 possible pairs of input operands.

Table XI1 compares the throughput of the multiplier using NCR with the

throughputs achieved by pipelining the multiplier as explained in Chapter 4. Table XI1

shows that the NCR technique is roughly comparable to pipelining for some applications,

since it falls in between the Cstage and 7-stage pipelined designs in terms of both

throughput and gate count. Furthennore, it is not necessary to duplicate the entire circuit

when applying the NCR technique. Rather, its benefits can be obtained without doubling

area and power requirements by applying it to selective portions of a circuit, which

cannot be pipelined more finely due to the completeness of input criterion. However, if

NCR was applied to stagei to boost throughput, both stage., and stagei+l may have to be

non-functional stages to realize the full increase due to the adjacent DATA propagation

delays of Equation 4.13 for determining throughput, as explained in Chapter 4. A non-

functional stage can be easily added by inserting an additional asynchronous register.

Thus, throughput of a pipelined design with a small number of slow stages can be readily

boosted with relatively little cost by using NCR.

Table XII. NCR vs. pipelining for multiplier application.

I Maximum Combinational I Maximum Comdetion I Simulated I
)I Delay per Stage I Delay per stage I Throughput 1-1

To illustrate this point, NCR was applied to only a single stage of the pipeline

Design
4-stage

NCR (1 -stage)
7-stage

shown in Figure 71. Multiplier #1 and Multiplier #3 are both 2-stage unsigned multipliers

with a worse-case stage delay of 5 gate delays, as depicted in Figure 62. Multiplier #2 is a

non-pipelined unsigned multiplier consisting of 10 gate delays, as depicted in Figure 59.

Therefore, the 10 gate delays of Multiplier #2 is much longer than the 5 gate delays per

stage of the other multipliers, making Multiplier #2 a good candidate for NULL Cycle

(gate delays)
3
I 0
2

Reduction. Without NCR, the pipeline of Figure 7 1 operates with TDD = 8.42 ns;

however, with NCR only applied to Multiplier #2, Too is decreased to 6.96 ns, a speedup

of 1.21. Henceforth, applying NCR to only slow stages in a pipeline can boost throughput

(gate delays)
2
2
2

(ns)"
0.1 76
0.184
0.209

Count
264
365
390

for the pipeline as a whole. Note that additional registration was not needed to form non-

functional stages around the NCR stage, since these non-functional stages already existed

when the multipliers were connected to form the pipeline of Figure 71, since each

multiplier contains both an input and output register.

- 7 - - - -
#.I m Ma. 5m48

rWnv -m
sa- NCL
Y m

5-
kpcr m

Ma. - --
i u u u u U I I U u u u U(

Figure 71. NCL pipeline with one slow stage.

6.0 NCL MULTIPLY AND ACCUMULATE UNIT

The TCR and GLP techniques developed in earlier chapters are illustrated in the

context of a sophisticated arithmetic application. Approaches for maximizing throughput

of self-timed multiply and accumulate units (MACs) are developed and assessed using

NCL. It is shown that the self-timed MAC throughput optimization problem can be

transformed into the selection of the multiplication algorithm requiring the fewest

number of gates. A number of alternative MAC algorithms are compared and contrasted

in terms of throughput and area to determine which design will yield the maximum

throughput with the least area. It was determined that two algorithms that meet these

criteria well are Modzfied Baugh- Wooley and Modzfied Booth2. Dual-rail non-pipelined

versions of these algorithms were first designed using the Threshold Combinational

Reduction (TCR) method described in Chapter 3. The non-pipelined designs were then

optimized for throughput using the Gate-Level Pipelining (GLP) method described in

Chapter 4. Finally, each design was simulated using Synopsys to quantify the advantage

of the dual-rail pipelined Modified Baugh- Wooley MAC, which yielded a speedup of 2.5

over its initial non-pipelined version. This design also required 20% fewer gates than the

dual-rail pipelined Modified Booth2 MAC that operated at the same throughput. The

resulting design employs a three-stage feed-forward multiply pipeline connected to a

four-stage feedback mult i~ct ional loop to perform a 72+32x32 MAC in 12.7 ns on

average using a 0.25 pm CMOS process at 3.3V, thus outperforming other delay-

insensitivelself-timed MACs in the literature.

6.1 Introduction

This chapter evaluates a number of both bitwise and digitwise multiplication

algorithms suitable for self-timed MAC design. The bitwise algorithms include Array

Structured multiplication and multiplication using the Modified Baugh- Wooley algorithm.

Digitwise algorithms include Modified Booth multiplication as well as combinational

N-Bit x M-Bit multiplication. These algorithms are compared in terms of throughput and

area to fimt maximize steady-state throughput and then minimize total gate count within

the NCL multi-rail paradigm. This chapter considers 2S-complement operands with

rounding, scaling, and saturation of the output.

The chapter is organized into six sections. An overview of previous work is given

in Section 6.2. In Section 6.3, the non-pipelined and pipelined versions of both the

Modified Baugh-Wooley and Modified Booth2 MACs are designed; and their

throughputs are estimated analytically and also simulated. Section 6.4 details the

rationale for selecting a ripple-carry adder over a cany-lookahead adder for carry-

propagation. In Section 6.5 the above designs, along with a variety of others, are

compared in terms of gate count. Section 6.6 provides conclusions and compares the

NCL MAC developed herein to other delay-insensitivelself-timed MACs.

6.2 Previous Work

Approaches to self-timed MAC design are an area of recent interest [4 1,42,43].

Self-timed MAC design itself presents some interesting design considerations such as

feedback loop throughput maximization, carry-propagate adder selection, and

multiplication algorithm selection. As detailed in Section 6.3.3.2, throughput is

maximized for a self-timed feedback loop by inserting enough, but not too many,

asynchronous registers. In Section 6.4 it is shown that for NCL, a ripple-cany adder is

better than a carry-lookahead adder since timing is based on average-case scenarios. And

as explained in Section 6.3.5, the throughput of a pipelined self-timed MAC is

independent of the selected multiplication algorithm, making the best choice the

algorithm requiring the least area.

The Modified Baugh- Wooley algorithm, the Array algorithm, and the Modrfed

Booth algorithm for multiplication are all described in [44]. The Modzfed Baugh- Wooley

algorithm removes the need for negatively weighted bits present in the traditional

2'-complement multiplication algorithm by modifying the most significant bit of each

partial product and the last row of partial products, and by adding two extra bits to the

partial product matrix. This allows for summation of the partial products without using

special adders equipped to handle negative inputs and without increasing the height of a

tree of 3-input, 2-output carry-save adders.

Array multiplication of 2'-complement numbers also begins with each partial

product bit generated according to the Modified Baugh-Wooley algorithm. Its

distinguishing characteristic is the technique for partial product summation. In the

Modified Baugh-Wooley algorithm the partial products are summed using a Wallace tree

[44], which reduces the number of partial products by a factor of 5 after each level of the

tree and requires O(log2 N) time and O(N) space, where N denotes the number of partial

products [45]. On the other hand, Array multiplication reduces the number of partial

products by one at each level, therefore this method requires both O(N) time and space

The Modified Booth algorithms reduce the number of partial products to be

summed by partitioning the multiplier into groups of overlapping bits, which are then

used to select multiples of the multiplicand for each partial product. Consider, for

example an N-bit by N-bit 2'-complement multiply. Using the Modified Booth2

algorithm the multiplier is partitioned into overlapping groups of three bits, each of which

selects a partial product from the following list: +0, +M, +2M, -2M, -M, and -0, where M

represents the multiplicand. This recoding reduces the number of partial products fiom N

to L 1. The tradeoff is more logic in the recoding portion of the multiplier in exchange

for fewer partial products to sum.

6.3 Self-Timed MAC Desipn Methods

A block diagram for the MACs developed in this chapter is shown in Figure 72.

Each MAC unit performs a 32-bit by 32-bit fixed-point fractional multiply, accepting

(signed x signed), (signed x unsigned), and (unsigned x unsigned) 2'-complement

operands. The product may be added to or subtracted from the 72-bit accumulator. The

MAC also supports 2'-complement and convergent rounding, up-scaling and down-

scaling, output saturation, and it includes a multiply only option. The output is the 72-bit

2'-complement result along with a bit to detect overflow.

The taxonomy in Figure 73 is usehl to illustrate relationships between some

possible multiplication algorithms that could be used in a self-timed MAC design. These

include bitwise algorithms such as Array multiplication and the Modfied Baugh- Wooley

algorithm; and digitwise algorithms like Modzfied Booth as well as combinational

N-Bit x M-Bit multiplication. The Modified Booth algorithms [44] considered were

Booth.2, Booth3, and Booth4, as higher radix Booth recodings incur an excessive number

of gates, as discussed in Section 6.4.5. The N-Bit x M-Bit algorithms considered were

2-Bit x 2-Bit, 2-Bit x 3-Bit, 2-Bit x 4-Bit, and 3-Bit x 3-Bit combinational multiplication,

since larger operand implementations are not competitive in terms of gate count, as

discussed in Section 6.4.9. For all of these algorithms both dual-rail and quad-rail

encodings were assessed and compared in terms of throughput and area to determine that

the dual-rail pipelined Modified Baugh-Wooley MAC achieves highest throughput with

the fewest number of gates. The next best performing approach is dual-rail Modified

Booth2, which was also implemented as both a pipelined and non-pipelined design for

comparison. For each design in Section 6.3, the circuit operation, optimization, and

performance are discussed in that order. Unless otherwise stated, designs are

implemented in dual-rail logic.

X(31:O)
Y(31 :O)
Round
Rnd-Ty~e Aout(71:O)
Scale(1:O)

Saturate OV
Sign(1:O)
AddISub

M ~ ~ P Y

Figure 72. MAC block diagram.

72+3h32 MAC

ModWkd r

h v
=eW*o*a* &--

-3,-

Modifhd
-aery- Bootk N-BitxMait
.-a- -

Booth2 BootM

Figure 73. Taxonomy of 72+32x32 MAC.

6.3.1 Non-Pipelined Modified Bau~h- Woolev MAC

6.3.1.1 Operation

The structure of the non-pipelined Modified Baugh-Wooley MAC is shown in

Figure 74. NCL enables several optimizations as discussed in Section 6.3.1.2. In Phase 1,

the multiplication begins by generating all of the partial products that can be generated in

one gate delay. Next, these partial products are used in the first level of the Wallace tree,

while the last row of partial products and most significant bit of each partial product.

requiring two gate delays, are generated. Concurrently, the previous value in the

accumulator is shifted, if necessary, to account for the type of multiplication being

performed. It is complemented if the result is to be subtracted fiom the accumulator, or is

zeroed if multiply only is specified. Next, the modified accumulator and the uncombined

partial products are used, along with the output from the first level of the Wallace tree, as

the input to the second level of the Wallace tree. After this, there are six more Wallace

tree levels before the partial products are reduced to two 65-bit words, where a ripple-

carry addition is performed. The rationale for selecting a ripple-carry adder is detailed in

Section 6.4.

During the summation of the partial products in Phase 1, Phase 2 begins with the

multiply sign and the accumulate sign being generated as inputs to overflow detection.

Also, the control signals are ensured for input-completeness in order for the MAC to

remain delay-insensitive, as described in Chapter 2. After the ripple-cany addition, the

result is again shifted if necessary to account for the type of multiplication being

performed and is complemented if the result is to be subtracted fiom the accumulator.

Am# ev 5

Figure 74. Non-pipelined Modified Baugh-Wooley MAC.

In Phase 3, the result can then be rounded and saturated if required. To round the

result it is determined if the lower portion (LSB) is greater than or equal to 0.5, greater

than 0.5, or less than 0.5. The LSB is contained in either the lower 3 1, 32, or 33 bits,

depending on whether up-scaling, no scaling, or down-scaling is selected, respectively, as

shown in Figure 75. After this is determined, a rounding bit is generated to be added to

the upper portion of the result (MSB), based on the LSB and the selected rounding

algorithm, either 2S-complement or convergent rounding, described in Algorithm 6.1 and

Algorithm 6.2, respectively. Next, this bit, either RND3 1, RND32, or RND33, is added to

the MSB of the result using a carry-lookahead adder. After the carry-lookahead addition,

the result can then be saturated as shown in Table XIII, by checking bits 7 1,64, and 63.

While the result is processed by the saturation logic, the overflow bit is generated fiom

bit 71 and the multiply and accumulate signs calculated earlier. The result is then output

and fed back to the input register through an additional asynchronous register such that

there are three registers in the feedback loop to prevent a lockup scenario as explained in

Chapter 2.

71 64
Extension

71 64
Extension

Figure 75. Output divisions for a) up-scaling, b) no scaling, and c) down-scaling.

63 31
MSB

71 64
Extension

if (LSB >= 0.5) then
MSB = MSB + 1

else if (LSB < 0.5) then
MSB = MSB

end if
LSB = 0

30 0
LSB

63 32
MSB

Algorithm 6.1. 2s-complement rounding.

31 0
LSB

63 33
MSB

32 0
LSB

if (LSB > 0.5) then
MSB = MSB + 1

else if (LSB < 0.5) then
MSB = MSB

else if (LSB = 0.5) and (the least significant bit of MSB = 0) then
MSB = MSB

else if (LSB = 0.5) and (the least significant bit of MSB = 1) then
MSB = MSB + 1

end if
LSB = 0

Algorithm 6.2. Convergent rounding.

Table XIII. Saturation table.

6.3.1.2 Desi~n Optimizations

There are two optimizations considered: the first is architectural and the second is

B7,
0
0
0
0
1
1
1

NCL-specific. The first optimization deals with accumulation. The accumulator is shifted

and complemented at the beginning and added to the second level of the Wallace tree,

and the result is then shifted and complemented again following the ripple-carry addition

to reduce the circuit delay. The shifting accounts for the various multiply types:

(signed x signed), (signed x unsigned), and (unsigned x unsigned), while the

Ba4
0
0
1
1
0
0
I

1 1 1

complementing is used for subtraction from the accumulator. The alternative is to shift

BBj
0
1
0
1
0
1
0

Saturated Result
No Change

007FFF FFFF
007FFF FFFF
007FFF FFFF
FF 8000 0000
FF 8000 0000
FF 8000 0000
No Change

Saturated and Rounded Result
Result of Rounding Algorithm

007FFFOOOO
00 7FFF 0000
007FFFOOOO
FF 8000 0000
FF 8000 0000
FF 8000 0000

Result of Rounding Algorithm

and 2S-complement the two outputs of the Wallace tree and then accumulate. This

approach results in four words to be summed before the ripple-cany addition: the

accumulator, the two shfted and complemented partial products, and the extra bit to be

added to the least significant bit of each partial product due to their required

2S-complementing. In the second approach, the four extra words that need to be summed

before the ripple-carry addition can begin require two carry-save adders. This

optimization will always reduce the critical path by twice the worst-case propagation

delay of a fill adder. In this design four gate delays were eliminated fiom the critical

path.

Other optimizations include partial product generation facilitated through

completeness optimizations in NCL. All partial products except for the most significant

bits atid the last partial product are directly generated by AND functions. To ensure

completeness of the X and Y inputs only the 45 partial products, where i = j and

30 2 i, j 2 0, require the use of complete AND functions, developed in Chapter 3. The rest

of the partial products, XI;., where i # j , can be generated using incomplete AND

functions, depicted in Figure 10. Since the incomplete AND functions require 14 fewer

transistors than the complete AND functions, and can be used for 930 of the 961 AND

functions required for partial product generation, a net total of 13,020 transistors were

saved in this design.

6.3.1.3 Average Cycle Time Determination

To determine the average cycle time for the MAC, the average cycle time for a

ripple-cany adder was required. A C-language program was written that calculates the

number of occurrences of each possible number of gate delays for an N-bit ripple-carry

adder, from the minimum number of three gate delays for no carries, to the maximum

number of N+l gate delays for a carry occurring at each adder. The program then

calculates the weighted average of the number of occurrences of each scenario to

determine the expected average number of gate delays for the N-bit ripple-carry adder,

assuming that all inputs are equiprobable. With N = 65, as in this design, the program

calculates Too = 8.33 gate delays. With the average number of gate delays for the ripple-

cany adder known, the calculation of TDD follows Algorithm 4.2 in Chapter 4, as the

average number of gate delays through the combinational logic for both DATA and

NULL plus the number of gate delays through the completion circuitry for both DATA

and NULL. Since the delay in the completion logic is 4 gates and the number of gate

delays through the combinational circuitry is 34 plus the average delay of the ripple-carry

adder, determined to be 8.33 from the program, TDD = (2 x 4) + (2 x (34 + 8.33)) = 92.66

gate delays, accounting for both the DATA and NULL cycle. Simulation results are

presented in Section 6.3.5. Experience with the program for a range of values of

parameter N indicates logarithmic behavior for the ripple-carry addition as corroborated

6.3.2 Non-Pipelined Modified Booth2 MAC

6.3.2.1 O~eration

The structure of the non-pipelined Modified Booth2 MAC is shown in Figure 76.

In Phase 1, the multiplication begins by generating all of the partial products and the

shifted and complemented, or zeroed, accumulator value, since both of these operations

require three gate delays. Next, the partial products and the momfied accumulator are

combined through the first of six levels of the Wallace tree. The two partial products

output fiom the Wallace tree are used in a 67-bit ripple-carry addition. The Modified

Booth2 MAC requires a 67-bit ripple-carry addition, verses the 65-bit ripple-carry

addition required in the Modified Baugh-Wooley MAC, since the Modified Booth2 MAC

has two less Wallace tree levels, each of which reduces the length of the ripple-carry

addition by one.

During the summation of the partial products in Phase 1, Phase 2 begins with the

multiply sign and the accumulate sign being generated as inputs to overflow detection.

Also, the control signals and the multiplier and multiplicand, X and Y, respectively, are

ensured for completeness in order to maintain delay-insensitivity. Both X and Y must be

ensured here because they are not implicitly complete in the partial product generation

circuitry, as they are in the Modified Baugh-Wooley design, ensured by selectively

complete AND functions. After the ripple-cany addition, the result is again shifted, if

necessary, to account for the type of multiplication being performed and is complemented

if the result is to be subtracted fkom the accumulator.

145 Bt N U RagLtr

R.+NwbC.v
Wn

kl -,-.
lllM

M w *
Figure 76. Non-pipelined Modified Booth2 MAC.

In Phase 3, the result can then be rounded and saturated if required and the

overflow bit generated in exactly the same manner as for the Modified Baugh-Wooley

MAC. The result is then output and fed back to the input register through an additional

asynchronous register such that there are the required three registers in the feedback loop.

6.3.2.2 Design Optimizations

The same optimizations for selecting multiplication type and addinglsubtracting

the partial products to/from the accumulator used in the Modified Baugh-Wooley design,

explained in Section 6.3.1.2, were implemented in the Modified Booth2 design.

6.3.2.3 Average Cycle Time Determination

TDD can be calculated from Algorithm 4.2 in Chapter 2, as described in

Section 6.3.1.3. Since the delay in the completion logic is 4 gates and the number of gate

delays through the combinational circuitry is 32 plus the average of the ripple-carry adder

determined to be 8.3 8 from the C-program, TDD = (2 x 4) + (2 x (32 + 8.3 8)) = 88.76 gate

delays, accounting for both the DATA and NULL cycle. Therefore, the Modified Booth2

algorithm should be faster than the Modified Baugh-Wooley algorithm for the non-

pipelined MAC designs.

6.3.3 Pipelined Modified Bau~h-Woolev MAC

6.3.3.1 Operation

The structure of the pipelined Modified Baugh-Wooley MAC is shown in

Figure 77. The first stage begins by generating all of the partial products that can be

generated in one gate delay. Next, these partial products are used in the first level of the

Wallace tree, while the remaining partial products that require two gate delays are

generated. The remaining partial products, along with the output from the first level of

the Wallace tree, are then used as the input to the second level of the Wallace tree.

IS

73 Bn NCL R.glrtw 14

- -wRW

pry- &-&
(la--) @-,,,,",,

C4*I con*unLop
ulrrrrry, (rr*-)

@or-) ?'--- --------*-
r*.IW

C U - l s d w.lrr T r r

----___ -----____ (dB--]

378 BR NW Rqis tu

cn***nm
1 -=

W r r * I -y*.

1
147 B* NCL Rq is tu

4*
can*.bnw 8-

T
-4C-

(dm-) B B - m

219 Bit NCL R.ghtr 1
14

i
b u n k 1
whk

C4Yaw (1 *-I -
(4 Z d h) 1 kamk*

-r -4

sbn
-4C.

CM-3mds' (1 r r - w)
(zord.l*.)

K.
. 1

154 811 NCL R q i r t a

T
4

\
7 t u a l w b c m v w

ca*ua L*
(dm-)

(-*')em-)
(mrhwmU.l- I Igrr)

-r -a

(-# lr3FI)
-4C-

I r. 1
83 B# NCL Rqlstm T

4
1
I c.&y

CanpwmhaoS*
Lao .. tR md

(dm-)
Lam l n T n m c

B (I& -1 -w=
I

c.by Rwml.aa

A @ordh)

1
C 'L

W Bit NCL R q M U

I
14

I / '.
E n v n

cn*ulrr
dbrW

ca*uaLq*
(dB--)

73 Bd NCL Reg~stu

-r
T

- y a m

- h b
CB-d.*rl

I
t I

m ov 4

Figure 77. Pipelined Modified Baugh-Wooley MAC.

Stage 1 also contains the third level of the Wallace tree along with the multiply sign

generation. The second stage consists of four more levels of the Wallace tree. Stage 3

begins with the final level of the Wallace tree, followed by the shifting and

2S-complementing of the Wallace tree output, if necessary, to account for the type of

multiplication being performed and for subtraction fiom the accumulator. The third stage

also contains another cany-save adder, required because of the 2s-complement operation.

Stage 4 begins the feedback loop and contains the circuitry to zero Ain for the multiply

only function and the final camy-save adder to add Ain to the Wallace tree output. The

fourth stage also generates the accumulate sign. The fifth stage consists solely of a 71 -bit

ripple-carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7

contains the remaining rounding logic along with the saturation circuitry, control signal

completeness logic, and overflow detection circuitry, as explained in Section 6.3.1.1.

6.3.3.2 Throughput Maximization

An effective approach for pipelining a self-timed MAC begins with minimization

of the feedback loop. This is in part because the feed-forward portion of the MAC can be

pipelined to a fine granularity as long as completeness is ensured at each stage boundary.

This enables the throughput of the feed-forward path to be at least as great as that of the

feedback loop. To do this, it is preferable to postpone the addition of Ain with the partial

products until absolutely necessary. Moreover, the subtraction and multiply mode

selection method can be revised such that it reduces the number of operations required in

the feedback loop. To increase throughput in the non-pipelined design, Ain was

complemented and shifted, or zeroed, and the result fkom the ripple-carry adder was

complemented and shifted. However, for the pipelined design, the two outputs of the

Wallace tree can be 2S-complemented and shifted, allowing the shifting and

complementing of Ain followed by the shifting and complementing of the result to be

removed from the feedback loop. This is replaced instead by the 2S-complementing and

shifting of the final two partial products, followed by an extra carry-save adder in the

feed-forward portion of the design. The zeroing of Ain for the multiply only function is

still required to be performed within the feedback loop. In the pipelined implementation,

this change eliminates five gate delays fkom the feedback path with no additional latency

in the pipeline. The corresponding logic is relocated to the feed-forward portion of the

design. Partitioning the feed-fomard portion into three stages with a maximum of 8 gate

delays per stage allows the inclusion of the additional logic without decreasing overall

throughput.

After the feedback logic of the MAC is minimized, it can be pipelined by

inserting asynchronous registers as described in Chapter 4. It was shown in [38] that a

feedback loop containing N tokens, where a token is defined as a DATA wavefiont with

corresponding NULL wavefront, requires 2N bubbles for maximum throughput, where a

bubble is defined as either a DATA or NULL wavefront occupying more than one

neighboring stage. This allows for each DATA and NULL wavefiont to move through

the feedback loop independently. Since the feedback loop in the MAC design only

contains one token, two bubbles are necessary to maximize throughput. A token requires

two stages, one stage for the DATA portion and one stage for the NULL portion, while

each bubble requires one stage. Therefore, the feedback loop was partitioned into four

stages for maximum throughput.

The front end of the feedback loop was partitioned as shown in Figure 77.

Partitioning of the ripple-carry adder is not advisable since this would incur extra gate

delays on the critical path. Inserting a register in the middle of the ripple-carry addition

would tend to lessen the benefits of its asynchronous behavior by increasing the

O(log2 N) average time for an N-bit ripple-cany addition, since

log2 N1+ log2 N2 > log2 N; where N = N1+ N2, N 2 6, and N1, N2 2 3. The last two

stages were divided to minimize the worst-case delay of each stage. The Upper Rounding

logic for the most significant 41 bits of the result can be partitioned into a 5 gate delay

circuit followed by a 1 gate delay circuit, without violating the input-completeness

criteria. Altemately, inserting a register between this partition would result in Stage 6

having 10 gate delays and Stage 7 having 4 gate delays. The 10 gate delays of Stage 6 in

this alternate design would exceed the 9 gate delays of Stage 7 in the current design.

Furthennore, simulation shows both finer and coarser partitionings decrease throughput.

Throughput can be further increased using partial bitwise completion, described

in Chapter 4, where the feed-forward output joins the feedback input. Two separate

completion logic blocks are appropriate. The first, whose input is KO*, only

acknowledges the inputs fiom the feed-forward circuit; the second, whose input is Ko2.

only acknowledges the feedback inputs. This optimization can decrease the inter-

dependencies between the feedback loop and the feed-forward path to boost throughput

an additional 2%.

Finally, the feed-forward portion is pipelined such that its throughput is at least as

great as that of the feedback loop. In other words, the output fiom the feed-forward

portion of the design must always be available when the feedback input is ready.

Therefore, the minimum forward path through the feedback loop must be determined.

Since the minimum delay through a ripple-carry adder is 3 gates and the delay for each

register is 1 gate, the minimum forward path through the feedback loop is

3 + 3 + 5 + 9 + (5 x 1) = 25 gate delays, as indicated on the right side of Figure 77. In

order to ensure that the feedback loop will never wait on input from the feed-forward

portion, the maximum cycle time of the feed-forward pipeline must not exceed 25 gate

delays. Decreasing the cycle time of the feed-forward portion to less than 25 gate delays

will not increase the throughput as a whole. Therefore, this MAC optimization problem is

transformed to ensuring a maximum cycle time of 25 gate delays for the feed-forward

portion of the design, while adding as few asynchronous registers as possible. Following

the method described in Chapter 4 for pipelining NCL circuits, it was determined that the

addition of two asynchronous registers, as shown in Figure 77, would result in a

maximum cycle time of 24 gate delays for the feed-forward circuitry. Furthermore,

simulation shows that finer partitioning does not increase throughput, while coarser

partitioning decreases throughput.

6.3.4 Pipelined Modified Booth2 MAC

6.3.4.1 Operation

The structure of the pipelined Modified Booth2 MAC is shown in Figure 78. The

first stage begins by generating all of the partial products, which are then input to the first

of two levels of the Wallace tree. Stage 1 also contains the multiply sign generation and

the completeness generation for the multiplier and multiplicand, X and Y, respectively,

since they are not implicitly complete in the partial product generation circuitry. The

second stage consists of three more levels of the Wallace tree. Stage 3 begins with the

final level of the Wallace tree, followed by the shifting and 2'-complementing of the

Wallace tree output, if necessary, to account for the type of multiplication being

performed and for subtraction from the accumulator. The third stage also contains

another cany-save adder, required because of the 2"complement operation. Stage 4

begins the feedback loop and contains the circuitry to zero A2n for the multiply only

function and the final cany-save adder to add Ain to the Wallace tree output. The fourth

stage also generates the accumulate sign. The fifth stage consists solely of a 71-bit ripple-

carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7 contains

the remaining rounding logic along with the saturation circuitry, control signal

completeness logic, and overflow detection circuitry, as detailed in Section 6.3.1.1.

73 Bil NCL R.pirbw

320 BU NCL Rogllhr

---- I I I I

155 Bil NCL Raglrtr

71UrrCCcnrF&m

(dm-I
(= w w q = I M r U
(--Y-~-I
(-rh-3p*.)

87 Bit NCL Rq is tu

W, 73 Bit NCL Rq ls tu

t I
W w

Figure 78. Pipelined Modified Booth2 MAC.

6.3.4.2 Throu~hput Maximization

The throughput maximization procedure for the feedback loop follows that of the

pipelined Modified Baugh-Wooley design, explained in Section 6.3.3.2. The minimum

forward path through the feedback loop is also 25 gate delays, and is independent of the

selected multiplication algorithm. Addition of as few as two asynchronous registers, as

shown in Figure 78, results in a maximum cycle time of 24 gate delays for the feed-

forward portion. Since the feedback loop for the pipelined Modified Booth2 and Baugh-

Wooley designs are the same, and the feedback loop is the limiting factor of throughput

maximization for each, the two designs should have the same throughput.

6.3.5 Simulation Results

-Before the average cycle time was determined for the designs, each was

extensively tested with various data patterns and control inputs to verify correct

operation. Once correct operation is established, representative MAC operations need to

be selected to provide an adequate comparison of their throughputs. A candidate

operation is Aout = 5 (X x X) ; where Xi = & + (2-21 x i) and Yi = Yo + (2.' x i) with N
i = O

chosen to be 255. This allows a variety of computations to be performed such that any

unusually short or long operations will not significantly skew the average cycle time. For

instance, in my testbench Xo and Yo were randomly selected such that

Xo = A61C039Dh = -0.702270077076 and Yo = F0046718h = -0.124865639955. Also,

(signed x signed) multiplication was selected and rounding, scaling, and saturation were

disabled. The same operation was also performed in a C-language program and the result

fi-om this program agreed with the results fi-om each of the simulated designs:

Aout = 05AOB 13COE04A37000h = 1 1.2554087704.

Both the non-pipelined and pipelined Modified Baugh-Wooley and Booth2 MAC

designs were simulated using Synopsys in order to compare their throughputs to ensure

that the relative values were consistent with the predicted results. The Synopsys

technology library for the NCL gates is based on static 3.3V, 0.25 pm CMOS

implementations. The average cycle time, TDD, for the non-pipelined Modified Baugh-

Wooley MAC was determined to be 3 1.8 ns; while TDD for the non-pipelined Modified

Booth2 MAC was determined to be 3 1.2 ns. Therefore, the non-pipelined Modified

Booth2 MAC is faster than the non-pipelined Modified Baugh-Wooley MAC, as

anticipated in Section 6.3.2.3. As for the pipelined designs, the Modified Baugh-Wooley

and Booth2 MACs were anticipated to run at the same speed due to the fact that the

feedback path was the same in both designs. The simulations of the two pipelined designs

confirm this since they both have an average cycle time of 12.7 ns.

6.4 Carry-Prooa~ate Adder Cornoarison

In [45] it was shown that the worse-case throughput for an N-bit ripple-carry

adder was 0 0 , verses the O(log2 N) worse-case throughput for an N-bit carry

lookahead adder, when using 2-input gates. Since NCL uses gates with a maximum of 4

inputs, the worse case throughput for an NCL carry-lookahead adder is proportional to

log4 N. Consider the 4-bit carry-lookahead adder depicted in Figure 79. Each of the AND

and OR gates can be replaced with incomplete versions of the NCL AND and OR

functions, respectively, described in Chapter 2, while the XOR gates can be replaced with

the NCL XOR function, developed in Chapter 3. The resulting design is complete with

respect to all inputs. Likewise, a 4-bit ripple-carry adder can be constructed by

connecting 4 full adders, shown in Figure 30, in series.

w
Figure 79.4-bit carry-lookahead adder.

Table XIV compares the 4-bit versions of the carry-lookahead adder and the

ripple-carry adder. It demonstrates that the two are comparable in terms of worse-case

gate delays, but that the carry-lookahead adder requires more than three times as many

gates. Comparing an N-bit addition using 4-bit carry-lookahead adders in series verses an

N-bit ripple-carry adder, shows that the two approaches will require the same number of

gate delays in the worst-case within a tolerance o f f 1, depending on the size of N.

Furthermore, the 4-bit carry-lookahead adder described above is not hlly observable due

to redundancies in the cany calculations. To make it fully observable would require

additional logic gates and logic levels, thus making it even less desirable.

Table XIV. Propagation delay and gate count for 4-bit adders.

Gate Delays Gate
So St S2 S3 C4 Count

Carry-Lookahead Adder 2 4 4 4 4 54
Ripple-Carry Adder 2 3 4 5 4 16

Another option is to construct an N-bit carry-lookahead adder, such that all canies

are generated in parallel. Take for example the 71 -bit addition required for the pipelined

MACs designed in this chapter. To generate S70 requires a 71-bit AND function and a

71-bit OR function. Both of these functions require O(log4 71), however portions can be

performed in parallel, such that the two functions together only require 7 gate delays.
.

Adding an additional gate delay for the generate and propagate calculation as well as for

the final XOR function, causes the worse-case delay to be 9 gates. This is much smaller

than the 72 gate worse-case delay of a 71 -bit ripple-cany adder. However, since NCL is a

delay-insensitive paradigm, its throughput is determined by the average-case delay and

not the worse-case delay. Furthermore, the average-case delay for an N-bit ripple cany

adder is only O(log2 N) [45], which is 8.46 gate delays for a 71-bit ripple-carry addition,

as determined by the C-language program described in Section 6.3.1.3. The average-case

delay for the carry-lookahead adder would also be slightly reduced, but not by much

since many of the path lengths are synonymous with the worse-case delay. Therefore, the

average-case delays for the 71-bit ripple-carry adder and carry-lookahead adder are

comparable.

Above it was shown that the 4-bit carry-lookahead adder required more than three

times the number of gates required by the 4-bit ripple-carry adder; therefore the 71-bit

carry-lookahead adder will require at least three times the number of gates as the 71-bit

ripple-carry adder. This indicates that the 71 -bit ripple-carry adder would be preferred

over the 7 1 -bit carry-lookahead adder since they have comparable average-case delays

and the ripple-carry adder is much smaller. Moreover, the 7 1 -bit carry-lookahead adder

described above is not hlly observable. To make it fully observable would require

additional logic gates and logic levels, thus making it even less desirable. Extending the

above analysis to adders of arbitrary length, it can be stated that for any value of N, a

NCL 'ripple-carry adder should outperform the identically sized NCL carry-lookahead

adder.

6.5 Gate Requirements for Proposed Designs

In Section 6.3.3.2 and Section 6.3.4.2 it was shown that the throughput of a

pipelined self-timed MAC design is limited by the feedback loop, independent of the

feed-forward portion. This is due to the fact that the feed-forward portion can be readily

pipelined to a fine granularity to match or exceed the throughput of the feedback loop.

Since the feedback loop perfoms accumulation independent of the selected

multiplication algorithm, the throughput of the MAC as a whole is independent of the

multiplication algorithm. This is demonstrated by the pipelined versions of the Modified

Baugh-Wooley and Booth2 MACs operating with the same cycle time.

The design objective stated in the abstract is to obtain the highest throughput

MAC using the fewest gates. Since the throughput of the pipelined MAC does not depend

on the multiplication algorithm, the MAC throughput optimization problem can be

transformed into the selection of the multiplication algorithm that requires the least

amount of area to implement. The following sections will compare various algorithms to

determine which requires the least gate count.

6.5.1 Modified Bau~h-Wooley MAC

Since both the non-pipelined and pipelined designs were implemented in VHDL,

the actual number of gates can be tabulated. The non-pipelined design requires 10,703

gates, while the pipelined design uses 13,613 gates, as shown in Figure 73. For both of

these designs approximately 2,048 gates were from partial product generation with 32

complete AND functions and 992 incomplete AND functions.

6.5.2 Modified Booth2 MAC

Since both the non-pipelined and pipelined versions of this design were also

implemented in VHDL, the actual number of gates can again be tabulated. The non-

pipelined design used 14,lO 1 gates, while the pipelined design used 17,O 1 5 gates, as

shown in Figure 73. For both of these designs approximately 7,854 gates were from the

partial product generation. Even though the Booth2 recoding eliminates two levels in the

Wallace tree, the additional gates required in the partial product generation outpace the

savings. This causes the pipelined Modified Booth2 design to contain 3,402 more gates

than the pipelined Modified Baugh-Wooley design. The Modified Booth2 MAC requires

405 fewer adders, which is 1,620 fewer gates, since each adder contains four gates.

However, it requires approximately 5,806 additional gates for partial product generation.

Since both designs operate with the same cycle time, the preferred design is the pipelined

Modified Baugh-Wooley MAC, since it requires less area. Thls is even more evident

when the number of transistors for partial product generation is compared. Since the

number of transistors for the Modified Baugh-Wooley partial product generation can be

greatly reduced as explained in Section 6.3.1.2, even though the number of gates remain

the same, the transistor requirement for partial product generation of the two designs

magnifies this differential, as shown in Figure 73. The partial product generation for the

Modified Booth2 design requires 3.8-fold more gates than for the Modified Baugh-

Wooley design, but 6.8-fold more transistors, due to the more sophisticated gates

required in the recoding logic.

6.5.3 Arrav MAC

Both the Array MAC and the Modified Baugh-Wooley MAC use the same logic

to generate the partial products and both require O(N) area for the partial product

summation, as explained in Section 6.2. However, the Modified Baugh- Wooley MAC

only requires O(log2 N) gate delays for the partial product summation, while the Array

MAC requires O(N) gate delays. Therefore, many more asynchronous registers would be

required to partition the feed-forward circuitry of the Array MAC than the two required

for the Modified Baugh-Wooley MAC, in order to achieve the same throughput. Hence,

the Array MAC would require approximately the same number of adders as the Modified

Baugh-Wooley MAC, but would require many more asynchronous registers, causing it to

contain many more gates than the Modified Baugh- Wooley MAC. However, the structure

of the Array MAC is very regular compared to the irregular structure of the Modified

Baugh-Wooley MAC, which could make it more desirable when layout is taken into

consideration, despite its larger size.

6.5.4 Modified Booth3 MAC

The Modified Booth3 multiplication algorithm partitions the multiplier into

overlapping groups of four bits, each of which selects a partial product fiom the

following list: +0, +M, +2M, +3M, +4M, -4M, -3M, -2M, -M, and -0, where M

represents the multiplicand. For the 32-bit x 32-bit multiplication, this decoding

theoretically reduces the number of partial products from 17 for the Modified Booth2

algorithm to only 1 1. However, the +3M and -3M partial products cannot be obtained by

simple shifting andlor complementing, like the others. These partial products are referred

to as hard multiples. Therefore, two actual partial products must be used to represent each

theoretical partial product to avoid the ripple-carry addition that would be required to

compute both the +3M and -3M partial products. Any +3M partial product is represented

by a +2M and a +M partial product, while any -3M partial product is represented by a

-2M and a -M partial product. Since each theoretical partial product must be represented

by two partial products, the actual number of partial products for the Modified Booth3

MAC is 22, and the number of Wallace tree levels required to sum these partial products

is 7. This is more than the 17 partial products required for the Modified Booth2 design,

which can be summed using only 6 Wallace tree levels. Therefore, a Modified Booth3

MAC requires more adders to sum the partial products than would the Modified Booth2

MAC. Furthermore, the partial product generation requires scanning four multiplier bits

at a time for the Modified Booth3 algorithm, verses only three bits which are

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex

recoding logic for the Modified Booth3 algorithm. Since the Modified Booth3 algorithm

requires more adders and more recoding logic than the Modified Booth2 algorithm, and

increases the depth of the Wallace tree, it requires more gates than the Modified Booth2

design-.

6.5.5 Modified Booth4 MAC

The Modified Booth4 multiplication algorithm also suffers from the problem of

hard multiples. It partitions the multiplier into overlapping groups of five bits, each of

whlch selects a partial product from the following list: +0, +M, +2M, +3M, +4M, +5M,

+6M, +7M, +8M, -8M, -7M, -6M, -5M, -4M, -3M, -2M, -M, and 4, where M represents

the multiplicand. The hard multiples are +3M, +5M, +6M, +7M, -7M, -6M, -5M, and

-3M. However, if the hard multiples were to be generated through ripple-carry addition,

the +6M and -6M multiples could be obtained simply by shifting the +3M and -3M

multiples, respectively. For the 32-bit x 32-bit multiplication, this decoding theoretically

reduces the number of partial products fkom 1 7 for the Modified Booth2 algorithm to

only 9. However, since the hard multiples require two partial products to represent each

theoretical partial product, the actual number of partial products required is 17. The most

significant partial product cannot be a hard multiple and therefore only requires one

partial product for its representation. The actual number of partial products for the

Modified Booth4 MAC is the same as for the Modified Booth2 MAC. The only

difference is the partial product generation, whch requires scanning five multiplier bits at

a time for the Modified Booth4 algorithm, verses only three bits which are

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex

recoding logic for the Modified Booth4 algorithm. Therefore, the Modified Booth4 MAC

requires more gates than the Modified Booth2 MAC. Furthermore, higher radix Modified

Booth algorithms can be expected to exhibit similar characteristics.

6.5.6 Combinational 2-Bit x 2-Bit MAC

The 2-Bit x 2-Bit partial product generation partitions both the multiplier and

multiplicand into 16 groups of two bits that do not overlap. Each 2-bit multiplier, 2-bit

multiplicand pair generates 4 bits of partial product. Every 2-bit multiplier group

generates two rows of partial products since each 2-bit multiplier, 2-bit multiplicand pair

generates 4 bits and each consecutive group of 4 bits is shifted two places due to the 2-bit

partitioning of the multiplicand. This results in consecutive groups of 4 bits generated

fiom one 2-bit multiplier group to be overlapped by two bits. Since there are sixteen 2-bit

multiplier groups and each group generates two partial products, there are a total of 32

partial products. Since this number of partial products is the same as for the Modified

Baugh-Wooley design, both designs will require the same number of gates to sum the

partial products. Therefore, the only difference between the two designs is the partial

product generation. The 2-Bi t x 2-Bit parti a1 product generation requires approximately

2,8 16 gates, while the Modified Baugh-Wooley partial product generation only requires

approximately 2,048 gates, as shown in Figure 73. Hence, the 2-Bit x 2-Bit algorithm

requires approximately 768 more gates than does the Modified Baugh-Wooley algorithm,

making it less area efficient. This is even more evident when the transistor count for the

partial product generation is compared. The Modified B augh- Wooley partial product

generation requires approximately 18,880 transistors, while the 2-Bit x 2-Bit partial

product generation requires approximately 38,400 transistors, more than twice as many.

6.5.7 Combinational 2-Bit x 3-Bit MAC

The 2-Bit x 3-Bit partial product generation partitions the multiplier into 16

groups of two bits, and the multiplicand into 10 groups of three bits with 1 group of two

bits, such that no groups overlap. Each 2-bit multiplier, 3-bit multiplicand pair generates

5 bits of partial product. Every 2-bit multiplier group generates two rows of partial

products since each 2-bit multiplier, 3-bit multiplicand pair generates 5 bits and each

consecutive group of 5 bits is shifted three places due to the 3-bit partitioning of the

multiplicand. All two-row partial products generated from one 2-bit multiplier group

contain an unused slot every third bit position, such that every third bit position in a two-

row partial product only contains one bit rather than two bits, as in the other bit positions.

Since there are sixteen 2-bit multiplier groups and each group generates two partial

products, 32 partial products are anticipated. However, because of the unused slots, there

are actually only 26 rows of partial products, which can be summed in 7 Wallace tree

levels. The multiplier could also be partitioned into 10 groups of three bits with 1 group

of two bits, with the multiplicand partitioned into 16 groups of two bits, such that no

groups overlap. This alternate partitioning also produces 26 rows of partial products.

Recall that the Booth2 design, which has 17 rows of partial products that can be summed

in 6 levels of Wallace tree, saved 405 adders or 1,620 gates in the partial product

summation, as discussed in Section 6.5.2. Since the 2-Bit x 3-Bit algorithm requires 26

rows of partial products, which can be summed in 7 Wallace tree levels, this algorithm

cannot utilize fewer adders than the Booth2 algorithm. Therefore, the number of gates

saved'by the reduced Wallace tree of the 2-Bit x 3-Bit algorithm is no more than 1,620.

The number of gates required to generate the partial products for the 2-Bit x 3-Bit

algorithm is approximately 4,768, a difference of approximately 2,720 additional gates

than for the Modified Baugh-Wooley partial product generation. Therefore, the

2-Bit x 3-Bit algorithm would require at least 1,100 more gates than the Modified Baugh-

Wooley design since it can save no more than 1,620 gates in the Wallace tree and

requires an additional 2,720 gates for partial product generation.

6.5.8 Combinational 2-Bit x 4-Bit MAC

The 2-Bit x 4-Bit partial product generation partitions the multiplier into 16

groups of two bits, and the multiplicand into 8 groups of four bits, such that no groups

overlap. Each 2-bit multiplier, 4-bit multiplicand pair generates 6 bits of partial product.

Every Zbit multiplier group generates two rows of partial products since each 2-bit

multiplier, 4-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is

shifted four places due to the 4-bit partitioning of the multiplicand. All two-row partial

products generated kom one 2-bit multiplier group contain two unused slots every fourth

bit position, such that for every four bit positions in a two-row partial product only two

contain two bits while the other two contain only one bit. Since there are sixteen 2-bit

multiplier groups and each group generates 2 partial products, 32 partial products are

anticipated. However, because of the unused slots, there are actually only 23 rows of

partial products, which can be summed in 7 Wallace tree levels. The multiplier and

multiplicand could also be partitioned vise-versa, resulting in the same number of partial

product rows. Since this design also requires 7 Wallace tree levels, as did the

2-Bit x .3-Bit design, it could not possibly save more than 1,620 gates in the Wallace tree,

as explained in Section 6.5.7. The partial product generation is also more complicated

than for the ZBit x 3-Bit partial product generation since more inputs are required.

Therefore, partial product generation for this design requires at least as many gates as for

the 2-Bit x 3-Bit design. Hence, this design must require more gates than the Modified

Baugh-Wooley MAC, following the logic of Section 6.5.7.

6.5.9 Combinational 3-Bit x 3-Bit MAC

The 3-Bit x 3-Bit partial product generation partitions both the multiplier and

multiplicand into 10 groups of three bits, with one group of two bits, such that no groups

overlap. Each 3-bit multiplier, 3-bit multiplicand pair generates 6 bits of partial product.

Every 3-bit multiplier group generates two rows of partial products since each 3 -bit

multiplier, 3-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is

shifted three places due to the 3-bit partitioning of the multiplicand, such that all

consecutive groups of 6 bits generated fkom one 3-bit multiplier group overlap by three

bits. The last multiplier group is only two bits, so for each 2-bit multiplier, 3-bit

multiplicand pair, 5 bits of partial product are generated. This 2-bit multiplier group

generates two rows of partial products since each 2-bit multiplier, 3-bit multiplicand pair

generates 5 bits and each consecutive group of 5 bits is shifted three places due to the

3-bit partitioning of the multiplicand. These last two rows of partial products contain an

unused slot-every third bit position, such that every third bit position in the last two-row

partial product only contains one bit rather than two bits, as in the other bit positions.

Since there are ten 3-bit multiplier groups and one 2-bit multiplier group, each of which

generates 2 partial products, 22 partial products are anticipated. However, because of the

unused slots generated by the 2-bit multiplier group, there are actually only 21 rows of

partial products, which can be summed in 7 Wallace tree levels. Since this design also

requires 7 Wallace tree levels, as did the 2-Bit x 3-Bit design, it could not possibly save

more than 1,620 gates in the Wallace tree, as explained in Section 6.5.7. The partial

product generation is also more complicated than for the 2-Bit x 3-Bit partial product

generation since more inputs are required. Therefore, partial product generation for this

design requires at least as many gates as for the 2-Bit x 3-Bit design. Hence, this design

must require more gates than the Modified Baugh-Wooley MAC, following the logic of

Section 6.5.7. Furthermore, any larger sized N-Bit x M-Bit algorithms would not be

likely to reduce the number of gates due to their increasing complexity.

6.5.1 0 Ouad-Rail MACs

To test the feasibility of quad-rail multiplication, a quad-rail 4-bit x 4-bit

unsigned multiplier was designed, implemented, and tested. The resulting design

operated with the same throughput as its dual-rail counterpart but required slightly more

than twice as many gates, showing that a quad-rail encoding is not as efficient for

realizing multiplication. Furthermore, quad-rail partial product generation circuitry was

designed for each of the algorithm types shown in Figure 73; and the resulting quad-rail

designs required at least 2% more gates and 10% more transistors than their dual-rail

counterparts.

6.6 Conclusion

In Section 6.3 it was shown how to design and then pipeline both a self-timed

Modified Baugh-Wooley MAC and Modified Booth2 MAC in order to achieve

maximum throughput. Throughput maximization was accomplished by first minimizing

the feedback loop and then partitioning the feed-forward path such that its throughput

was at least as great as that of the feedback loop, since the feedback loop was determined

to be the limiting factor to increasing throughput. Section 6.3 also showed that the

feedback loop did not depend on the chosen multiplication algorithm, and therefore the

throughput also did not depend on the multiplication algorithm, although a faster

multiplication algorithm would decrease latency of an isolated multiply. This was

substantiated through simulations of both the pipelined Modified Baugh-Wooley MAC

and the pipelined Modified Booth2 MAC, which both had the same throughput.

Since it was shown that the throughput of the MAC did not depend on the

multiplication algorithm, the self-timed MAC throughput optimization problem was

transformed into selecting the multiplication algorithm requiring the fewest gates.

Section 6.5 compared the area of multiple MAC designs using various multiplication

algorithms. The best design is therefore the one that requires the fewest number of gates

to implement. It was also shown in Section 6.5 that the pipelined Modified Baugh-

Wooley design required the least amount of area, and was therefore the best design based

on the criteria of the highest throughput with the least area. The dual-rail pipelined

Modified Baugh-Wooley MAC yielded a speedup of 2.5 over its initial non-pipelined

version and required 20% fewer gates than the dual-rail pipelined Modified Booth2 MAC

that operated with the same throughput.

Table XV compares this optimized NCL MAC to other delay-insensitive/self-

timed MACs in the literature, showing that the 3.3V, 0.25 pm CMOS NCL MAC

outperforms the other designs. [41] describes a serial-parallel MAC using the methods

and tools developed at Caltech [46] for design of delay-insensitive circuits. In [41] an

8+4x4 MAC was fabricated using 5V, 2 pm CMOS technology that operated at 37 ns;

and an extrapolation to larger word sizes was presented. Using this extrapolation it was

determined that a 64+32x32 MAC would operate at 901 ns, much slower than the NCL

MAC, as expected, since the implemented algorithm is not filly parallel. [42] describes a

self-timed 16+8x8 MAC designed using SCCVSL (single-rail CMOS cascode voltage

switch logic) and fabricated in 0.6 pm technology. This MAC employs the parallel

Booth2 algorithm, and has an average cycle time of about 90 ns. A third self-timed MAC

described in [43] was designed in single-ended dynamic logic [47], utilizing conditional

evaluation along with the traditional Array multiplication algorithm. Conditional

evaluation allows for rows with a zero bit product to be multiplexed around, to reduce

energy and delay. In [43] a 16+8x8 MAC was simulated using 3.3V, 0.35 pm CMOS

technology, to determine the average cycle time of 7.8 ns. This delay information was

then used in [43] to estimate the average cycle time for a 32+16x 16 MAC as

approximately 24 ns. These comparisons indicate that the NCL-based dual-rail pipelined

Modified Baugh-Wooley MAC developed herein outperforms the three above mentioned

methods, even after technology adjustments. Furthermore, the NCL MAC supports

rounding, scaling, and saturation, whereas the other MACs discussed herein do not.

Without the rounding, scaling, and saturation the NCL MAC performance could be more

than doubled.

Table XV. Algorithm, technology, and cycle time for various self-timed MACs.

MAC Type
72+32~32

64+32x32 [41]
16+8x8 [42:
16+8~8 [43:

32+16~ 16 [43]

Algorithm
Modified Baugh-Wooley

Serial-Parallel
Modified Booth2

Conditional Evaluation
Conditional Evaluation

Technology
3.3V, 0.25 prn CMOS

5V, 2 prn CMOS
0.6 pm CMOS

3.3V, 0.35 pm CMOS
3.3V, 0.35 pm CMOS

Avg. Cycle Time
12.7 ns
901 ns
90 ns
7.8 ns
24 ns

7.0 CONCLUSION

While much remains to be learned in regard to the application of NCL, the

techniques developed herein provide a basis for the design and optimization of NCL

systems. A method for designing optimized NCL combinational circuits was developed,

as well as a method for pipelining these combinational circuits such that optimum

throughput is achieved. Furthermore, a technique to mitigate the impact of the NULL

cycle on throughput was presented.

7.1 Summary

When full minterm generation is not required, TCR can produce delay-insensitive

circuits that require less area and fewer logic levels than alternative gate-level

approaches, as demonstrated in Chapter 3. TCR is applicable when composing logic

fbnctions where each gate is a state-holding element. The TCR method combines

techniques such as incomplete functions, quad-rail encodings, reduced minterm

expressions, and factored minterm expressions for reducing gate count. It then employs a

mapping of the factored minterm equations to a set of 27 macros, which constitute the set

of all functions consisting of four or fewer variables. A number of case studies validate

the utility and potential for automation of the proposed method. Using TCR methods,

design parameters including critical path delay, gate count, transistor count, and power

can be readily traded-off and optimized.

These results were further extended to a gate-level pipelining strategy for circuits

composed of state-holding elements to maximize throughput of combinational circuits

produced by TCR methods in Chapter 4. Since the GLP method successively partitions

an N-level NCL combinational logic design first into 2 stages, then further into as many

as N stages, it can produce an optimal pipelined NCL system with significantly increased

throughput over its original non-pipelined design. The GLP process may also be partially

applied to design maximum throughput systems under the constraints of latency and/or

area bounds. The GLP method combines both bll-word completion as well as bit-wise

completion for designing the optimal system. A case study of a 4x4 multiplier

substantiates the utility and potential for automation of the proposed method, as the

throughput of the non-pipelined 4x4 multiplier was increased by 125%. GLP was applied

to a dual-rail NCL design in Chapter 4; but it can also be applied to a quad-rail NCL

design, by inserting quad-rail registers, rather than dual-rail registers.

Although NCL requires both a DATA wavefiont and a NLnL wavefront, which

reduces the maximum attainable throughput by approximately half, a technique can be

used to reduce this inherent throughput loss. In Chapter 5, the NCR method of

partitioning delay-insensitive systems into two concurrent paths such that one circuit

processes a DATA wavefiont, while its duplicate processes a NULL wavefront, thus

significantly increasing throughput, was developed. A 4-bit by 4-bit multiplier case study

indicates a speedup of 1.61 over the standalone design. Furthermore, this technique could

also be applied to other delay-insensitive methods [4,6,7, 8,9] as well. Moreover, it is

not necessary to duplicate the entire circuit when applying the NCR technique. Rather, its

benefits can be obtained without doubling area and power requirements by applying it to

selective portions of a circuit, which cannot be pipelined more finely due to the

completeness of input criterion. Thus, throughput of a pipelined design with a small

number of slow stages can be readily boosted with relatively little cost by using NCR.

Finally, the methods presented herein were applied to design a 72+32x32 MAC

that outperformed other delay-insensitive/self-timed MACs in the literature, including a

32+ 16x 16 design using single-ended dynamic logic, utilizing conditional evaluation

along with the traditional Array multiplication algorithm. This method of conditional

evaluation was analyzed in the context of NCL showing that it would require additional

gates, greater power dissipation, and a larger cycle time when compared to the normal

Array multiplication algorithm, making it undesirable for NCL implementation. This is

due to the proportionality differences between the NCL full adder and select logic verses

the same two components implemented in single-ended dynamic logic. Furthermore, the

NCL MAC supports rounding, scaling, and saturation, whereas the other MACs

discussed herein do not. Without the rounding, scaling, and saturation the NCL MAC

performance could be more than doubled.

7.2 Future Work

The utility of the TCR and GLP methods has been demonstrated in Chapter 3 and

Chapter 4, respectively. The next step is to incorporate both of these methods into the

Synopsys design tools such that NCL circuits can be synthesized fkom high level,

algorithmic descriptions and can then be automatically pipelined to optimize throughput.

Moreover, the throughput of NCL systems can be further increased by applying

an early completion method described in [40] or by applying 2D-pipelining described in

[48]. Early completion performs the completion detection for registration stagq at the

input of the register, instead of at the output of the register as previously described. This

method requires that the single-rail completion signal from registration stagei+*, koi+, , be

used as an additional input to the completion detection circuitry for registration stagei, to

maintain delay-insensitivity. However, early completion necessitates an assumption of

equipotential regions [4], making the design potentially more delay-sensitive.

2D-pipelining not only partitions a circuit between functional component boundaries, but

also between bit slices, forming a complex 2-dimentional pipeline.

In Chapter 5, NCR was applied to a dual-rail NCL design utilizing full-word

completion. However, it can also be applied to a quad-rail NCL design, by modifying the

Demultiplexer and the Multiplexer to handle quad-rail signals, or to a design utilizing bit-

wise completion by modifying the Demultiplexer only. Finally, the current MAC design

utilizes combinational logic to determine if rounding, scaling, and saturation are required.

However, the datapath could be steered through the rounding, scaling, and saturation

logic, if required, through the use of a demultiplexer at the input and a multiplexer at the

output, similar to the NCR technique. This alternate approach would reduce the cycle

time for operations not requiring rounding, scaling, and saturation, at the expense of an

increase in the cycle time for operations where rounding, scaling, or saturation is

required.

LIST OF REFERENCES

Karl M. Fant and Scott A. Brandt, NULL Convention Logic Systems, US patent
5,305,463 April 19, 1994.

A. J. Martin, "Programming in VLSI," in Development in Concurrency and
Communication, Addison-Wesley, pp. 1 - 64, 1990.

K. Van Berkel, "Beware the Isochronic Fork," Integration, The VLSI Journal,
Vol. 13, No. 2, pp. 103-128, 1992.

C. L. Seitz, "System Timing," in Introduction to VLSI Systems, Addison-Wesley,
pp. 2 18-262, 1980.

D. E. Muller, "Asynchronous Logics and Application to Information Processing,"
in Switching Theory in Space Technology, Stanford University Press, pp. 2 89-297,
1963.

1lana David, Ran Ginosar, and Michael Yoeli, "An Efficient Implementation of
Boolean Functions as Self-Timed Circuits," IEEE Transactions on Computers,
Vol. 41, No. 1, pp. 2-10,1992.

T. S. Anantharaman, "A Delay Insensitive Regular Expression Recognizer," IEEE
VLSI Technology Bulletin, Sept. 1 986.

N. P. Singh, A Design Methodology for Self-Timed Systems, Master's Thesis,
MIT/LCS/TR-25 8, Laboratory for Computer Science, MIT, 198 1.

J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, Design of Delay Insensitive
Circuits using Multi-Ring Structures. Proceedings of the European Design
Automation Conference, pp. 1 5-20, 1 992.

[lo] A. J. Martin, "Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits," Distributed Computing, Vol. 1, No. 4, pp. 226-234, 1986.

[1 11 C. H. (Kees) van Berkel, Handshake Ciruits: An Intermediary Between
Communicating Processes and VLSI, Ph.D. Thesis, Eindhoven University of
Technology, 1992.

[12] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth,
U. Curnmings, and Tak Kwan Lee, "The Design of an Asynchronous MIPS R3000
Microprocessor," Proceedings of the 1 f h Conference on Advanced Research in
VLSI, pp. 164- 181, 1997.

[13] A. J. Martin, S. M. Bums, T. K. Lee, D. Borkovic, and P. J. Hazewindus, "The
Design of an Asynchronous Microprocessor," Advanced Research in VLSI:
Proceedings of the Decennial Caltech Conference on VLSI, pp. 351-373, 1989.

[1 41 W. Hardt and B. Kleinjohann, "FLY SIG: Dataflow Oriented Delay-Insensitive
Processor for Rapid Prototyping of Signal Processing," Proceedings of the Ninth
International Workshop on Rapid System Prototyping, pp. 1 36- 14 1, 1998.

[15] P. K. Tsang, C. C. Cheung, K. H. Leung, T. K. Lee, and P. H. W. Leong,
"MSL 16A: An Asynchronous Forth Microprocessor," Proceedings of the IEEE
Region I0 Conference, Vol. 2, pp. 1079 -1 082, 1999.

[16] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamwa, "TITAC: Design
of a Quasi-Delay-Insensitive Microprocessor," IEEE Design & Test of Computers,
Vol. 1 1, No. 2, pp. 50-63, 1994.

[17] S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley, New York,
1969.

[18] S. M. Nowick and D. L. Dill, "Synthesis of Asynchronous State Machines Using a
Local Clock," Proceedings of ICCAD, pp. 192- 197, 199 1.

[19] Ivan E. Sutherland, "Micropipelines," Communications of the ACM, Vol. 32,
NO. 6, pp. 720-738, 1989.

[20] A. Martin, "The Limitations to Delay-insensitivity in Asynchronous Circuits,"
Advanced Research in VLSI: Proceedings of the Sixth MIT Conference:
pp. 263-278, 1990.

[21] Karl M. Fant and Scott A. Brandt, "NULL Convention Logic: A Complete and
Consistent Logic for Asynchronous Digital Circuit Synthesis, " International
Conference on Application Specific Systems, Architectures, and Processors,
pp. 261-273, 1996.

[22] T. Verhoff, "Delay-Insensitive Codes - An Overview," Distributed Computing,
Vol. 3, pp. 1-8, 1988.

[23] Gerald E. Sobelman and Karl M. Fant, "CMOS Circuit Design of Threshold Gates
with Hysteresis," IEEE International Symposium on Circuits and Systems (11),
pp. 61-65, 1998.

[24] T. E. Williams, Self-Timed Rings and Their Application to Division, Ph.D. Thesis,
CSL-TR-9 1-482, Department of Electrical Engineering and Computer Science,
Stanford University, 199 1.

[25] S. M. Bums, Perfomance Analysis and Optimization of Asynchronous Circuits,
Ph.D. Thesis, CS-TR-9 1 - 1, Caltech, 199 1.

[26] S. M. Burns, "General Conditions for the Decomposition of State Holding
Elements," Proceedings of the 2nd International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 48-5 7, 1 996.

[27] M. L. Dertouzos, Threshold Logic: A Synthesis Approach, Cambridge, M. I. T.
Press, 1965.

[28] Le*is & Coates, Threshold Logic, New York: John Wiley & Sons, Inc., 1967.

[29] C. Sheng, Threshold Logic, New York: Ryerson Press, 1969.

[30] A. J. Martin, 4bAsynchronous Datapaths and the Design of an Asynchronous
Adder," Formal Methods in System Design, Vol. 1, No. 1, pp. 1 17- 137, 1992.

[3 11 Paul Day and J. Viv. Woods, "Investigation into Micropipeline Latch Design
Styles," IEEE Transactions on VLSISystems, Vol. 3, No. 2, pp. 264-272, 1995.

[32] K. Yun, P. Beerel, and J. Arceo, "High-Performance Asynchronous Pipeline
Circuits," Advanced Research in Asynchronous Circuits and Systems, pp. 17-28,
1996.

[33] Stephen B. Furber and Paul Day, "Four-Phase Micropipeline Latch Control
Circuits," IEEE Transactions on VLSI Systems, Vol. 4, No. 2, pp. 247-253, 1996.

[34] J. D. Garside, S. B. Furber, and S. H. Chung, "AMULET3 Revealed," Proc.
Async '99, pp. 51 - 59, 1999.

[35] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien, J. Liu, "A Low-
Power, Low Noise, Configurable Self-Timed DSP," Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 32-42, 1998.

[36] 0. Hauck and S. A. Huss, "Asynchronous Wave Pipelines for High Throughput
Datapaths," IEEE International Conference on Electronics, Circuits, and Systems,
Vol. 1, pp. 283 -286, 1998.

[37] Chansub Park and Duckjin Chung, "Modified Asynchronous Wave-Pipelining,"
Electronics Letters, Vol. 36, No. 4, pp. 295 -297,2000.

[38] Jens Sparso and Jorgen Stanstrup, "Design and Performance Analysis of Delay
Insensitive Multi-Ring Structures," Proceedings of the Twenty-Sixth Hawaii
International Conference on System Sciences, Vol. 1, pp. 349 -3 5 8, 1 993.

[39] S. Kim and P. A. Beerel, "Pipeline Optimization for Asynchronous Circuits:
Complexity Analysis and an Efficient Optimal Algorithm," IEEE/ACM
International Conference on Computer Aided Design, pp. 296 -302,2000.

[40] M: Singh and S. M. Nowick, "High-Throughput Asynchronous Pipelines for Fine-
Grain Dynamic Datapaths," Proceeding of the Sixth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp. 198 -209,2000.

[41] C. D. Nielsen and A.J. Martin, "Design of a Delay-Insensitive Multiply and
Accumulate Unit ," Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences, Vol. 1, pp. 379 -388, 1993.

[42] T. Tang, C. Choy, P. Siu, and C. Chan, "Design of Self-Timed Asynchronous
Booth's Multiplier," Proceedings of the ASP-DAC Design Automation Conference,
pp. 15-16,2000,

[43] V. A. Bartlett and E. Grass, "A Low-Power Concurrent Multiplier-Accumulator
Using Conditional Evaluation," The 6th IEEE International Conference on
Proceedings of ICECS, Vol. 2, pp. 629 - 633, 1999.

[44] Behrooz Parhami, Computer Arithmetic Algorithms and Hardware Designs,
Oxford University Press, New York, 2000.

[45] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw-Hill
Book Company, New York, 1995.

[46] A. J. Martin, "Synthesis of Asynchronous VLSI Circuits," Formal Methods for
VLSI Design, pp. 237-283, 1990.

[47] G. E. Sobelman and D. Raatz, "Low-power Multiplier Design using Delayed
Evaluation," Proceedings of the International Symposium on Circuits and Systems,
pp. 1564-1567, 1995.

U. Cummings, A. Lines, and A. Martin, "An Asynchronous Pipelined Lattice
Structure Filter," Proceedings of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 126- 133, 1994.

DATE DUE

	Gate and Throughput Optimizations for NULL Convention Self-timed Digital Circuits
	STARS Citation

	FRONT COVER
	Cover

	TITLE PAGE
	Title Page

	ABSTRACT
	ii
	iii

	ACKNOWLEDGEMENTS
	iv

	TABLE OF CONTENTS
	v
	vi
	vii
	viii
	ix

	LIST OF TABLES
	x

	LIST OF FIGURES
	xi
	xii
	xiii
	xiv

	CHAPTER ONE: INTRODUCTION
	1.1. Objective
	1.2. History and Benefits of NCL
	001
	002
	003
	004

	1.3. Research Challenges
	005

	1.4. Dissertation Overview
	006
	007

	CHAPTER TWO: PREVIOUS WORK
	008
	2.1. Overview of Asynchronous Methods
	009
	010
	2.1.1. Gate-Level Delay-Insensitive Methods
	011

	2.1.2. Transistor-Level Delay-Insensitive Methods

	2.2. Overview of NCL
	012
	2.2.1. Delay-Insensitivity
	013
	014

	2.2.2. Logic Gates and Functional Blocks
	015
	016
	017
	018
	019

	2.2.3 Completeness of Input
	020
	021

	2.2.4. Observability
	022

	2.2.5. NCL Registration
	023
	024
	025
	026
	027
	028

	2.2.6. NCL Completion
	029
	030

	CHAPTER THREE: THRESHOLD COMBINATIONAL REDUCTION METHOD
	031
	3.1. Chapter Outline
	3.2. TCR Method Definition
	032
	033
	3.2.1. Method 1: Incomplete Functions
	3.2.2. Method 2: Dual-Rail Optimizations
	034
	035

	3.2.3. Method 3: Quad-Rail Optimizations
	036

	3.2.4 Performance Assessment
	037

	3.3. Application to Input-Complete Fundamental Logic Functions
	038
	039

	3.4. Application to Full Adder
	040
	041
	042
	043
	044
	045
	046

	3.5. Application to Up-Counter
	047
	048
	049
	050
	3.5.1. Method 1: Incomplete Functions
	051
	052

	3.5.2. Method 2: Dual-Rail Encoding Optimizations
	053
	054
	055
	056

	3.5.3. Method 3: Quad-Rail Encoding Optimizations
	057
	058
	059
	060

	3.5.4. Other MEAG Optimizations
	061
	062
	063

	3.5.5. Up-Counter Performance Summary
	064
	065

	CHAPTER FOUR: GATE-LEVEL PIPELINING OPTIMIZATIONS
	066
	4.1. Chapter Outline
	4.2. Previous Work
	067
	068
	069
	4.2.1. Relation of NCL to Previous Work
	070
	071

	4.3. Method Definition
	072
	073
	074
	4.3.1. Throughput Derivation
	075
	076
	4.3.1.1. Idealized Completion Circuitry
	077
	078

	4.3.1.2. Non-Zero Delay Completion Circuitry
	079
	080
	081

	4.3.2. Bit-Wise Completion
	082
	083
	084

	4.4. Application to Unsigned Multiplier
	085
	086
	4.4.1. Pipelined Multipliers with Full-Word Completion
	087
	088
	089
	090
	091
	092

	4.4.2. Summary of Multiplier Designs using Full-Word Completion
	4.4.3. Applying Bit-Wise Completion
	093

	4.5. Conclusion
	094
	095

	CHAPTER FIVE: NULL CYCLE REDUCTION TECHNIQUE
	5.1. Introduction
	096

	5.2. NULL Cycle Reduction
	097
	098
	5.2.1. Demultiplexer
	099

	5.2.2. Completion Detection Circuitry
	5.2.3. Sequencer #1
	100

	5.2.4. Multiplexer
	101

	5.2.5. Sequencer #2
	102

	5.3. Simulation Results
	103
	104
	105

	CHAPTER SIX: NCL MULTIPLY AND ACCUMULATE UNIT
	106
	6.1. Introduction
	107

	6.2. Previous Work
	108

	6.3. Self-Timed MAC Design Methods
	109
	110
	6.3.1. Non-Pipelined Modified Baugh-Wooley MAC
	6.3.1.1. Operation
	111
	112
	113
	114

	6.3.1.2. Design Optimizations
	115
	116

	6.3.1.3. Average Cycle Time Determination
	117

	6.3.2. Non-Pipelined Modified Booth2 MAC
	6.3.2.1. Operation
	118
	119

	6.3.2.2. Design Optimizations
	6.3.2.3. Average Cycle Time Determination

	6.3.3. Pipelined Modified Baugh-Wooley MAC
	6.3.3.1. Operation
	120
	121

	6.3.3.2. Throughput Maximization
	122
	123
	124
	125

	6.3.4. Pipelined Modified Booth2 MAC
	6.3.4.1. Operation
	126
	127

	6.3.4.2. Throughput Maximization

	6.3.5. Simulation Results
	128

	6.4. Carry-Propagate Adder Comparison
	129
	130
	131

	6.5. Gate Requirements for Proposed Designs
	132
	6.5.1. Modified Baugh-Wooley MAC
	6.5.2. Modified Booth2 MAC
	133

	6.5.3. Array MAC
	134

	6.5.4. Modified Booth3 MAC
	135

	6.5.5. Modified Booth4 MAC
	136

	6.5.6. Combinational 2-Bit x 2-Bit MAC
	137

	6.5.7. Combinational 2-Bit x 3-Bit MAC
	138

	6.5.8. Combinational 2-Bit x 4-Bit MAC
	139

	6.5.9 Combinational 3-Bit x 3-Bit MAC
	140
	141

	6.5.10 Quad-Rail MACs

	6.6 Conclusion
	142
	143
	144

	CHAPTER SEVEN: CONCLUSION
	7.1. Summary
	145
	146

	7.2 Future Work
	147
	148
	149

	LIST OF REFERENCES
	150
	151
	152
	153
	154

	BACK MATTER
	Back Matter
	Back Matter

	Back Cover
	BACK COVER

