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ABSTRACT 

NULL Convention Logic (NCL) provides an asynchronous design methodology 

employing dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion 

Groups (MEAGs) to incorporate data and control information into one mixed path. In 

NCL, the control is inherently present with each datum, so there is no need for worse- 

case delay analysis and control path delay matching. This dissertation focuses on 
Y 

optimization methods for NCL circuits, specifically addressing three related architectural 

areas of NCL design. 

First, a design method for optimizing NCL circuits is developed. The method 

utilizes conventional Boolean minimization followed by table-driven gate substitutions. It 

IS applied to design time and space optimal fundamental logic hct ions,  a time and space 

optimal full adder, and time, transistor count, and power optimal up-counter circuits. The 

method is applicable when composing logic hc t ions  where each gate is a state-holding 

element; and can produce delay-insensitive circuits requiring less area and fewer gate 

delays than alternative gate-level approaches requiring full minterm generation. 

Second, a pipelining method for producing throughput optimal NCL systems is 

developed. A relationship between the number of gate delays per stage and the worse- 

case throughput for a pipeline as a whole is derived. The method then uses this 

relationship to minimize a pipeline's worse-case throughput by partitioning the NCL 



combinational circuitry through the addition of asynchronous registers. The method is 

applied to design a maximum throughput unsigned multiplier, which yields a speedup of 

2.25 over the non-pipelined version, while maintaining delay-insensitivity. 

Third, a technique to mitigate the impact of the NULL cycle is developed. The 

technique Wher  increases the maximum attainable throughput of a NCL system by 

reducing inherent overheads associated with an integrated data and control path. This 

technique is applied to a non-pipelined Cbit by 4-bit unsigned multiplier to yield a 

speedup of 1.61 over the standalone version. 

Finally, these techniques are applied to design a 72+32x32 multiply and 

&cumulate (MAC) unit, which outperforms other delay-insensitive/self-timed MACs in 
Y 

the literature. It also performs conditional rounding, scaling, and saturation of the output, 

whereas the others do not; thus further distinguishing it from the previous work. The 

methods developed facilitate speed, transistor count, and power tradeoffs using 

approaches that are readily automatable. 
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1.0 INTRODUCTION 

1.1 Obiective 

This Ph.D. dissertation is intended to familiarize the reader with the syntax and 

NULL Convention Logic (NCL), to 

techniques, and to discuss analytical 

develop NCL design methods 

. and experimental results. The 

I' ' -  focus will be on architectural aspects of NCL as discussed at the gate level. 1 '4 

! 
! 

1.2 History and Benefits of NCL 

and 

main 

I 

Various design aspects of NCL were patented by Karl Fant and Scott Brandt in 

April of 1994 [I]. Acknowledging that clocked circuits unnecessarily restricted execution 

: flow, consumed power proportional to the operating frequency, occupied significant 

device area for the clock tree, and greatly complicated the design process, they sought a 

.clockless design approach, But eliminating clocks as in traditional asynchronous design 

presented race conditions and made timing optimizations like pipelining difficult. By 

eliminating clocks but retaining control information in the datapath, NCL aims at 
'7 

designing VLSI devices with greater ease, with a reduced power budget, lower 

electromagnetic interface effects, and reduced noise margins. 

Karl Fant founded Theseus Logic, Inc., whlch began operations in Minnesota in 

January of 1996, to develop NCL-based Application Specific Integrated Circuits (ASICs) 



and "soft cores" for electronics manufacturers. The company has demonstrated the 

viability of NCL technology through government programs with Honeywell, Lockheed 

Martin, the Defense Advanced Research Projects Agency (DARPA), the Ballistic Missile 

Defense Organization (BMDO), the US ARMY Communication Electronics Command 

(CECOM), and the National Security Agency (NSA). A privately held company, Theseus 

is now headquartered in Orlando, Florida and also has a research and development office 

in Sunnyvale, Cali fomia. 

f :  In August 1999, Theseus and the University of Central Florida were awarded a 

state-fhded grant for a joint research project involving NCL ASIC design and 

development of formal design methods for NCL. In October 1999 Theseus formed a 

strategic technology alliance with Motorola's Semiconductor Products Sector to jointly 

implement NCL versions of various Motorola microcontrollers. And in September 2000 

Theseus formed a strategic technology alliance with Synopsys for development of NCL- 

based design tools. Many potential applications fkom mobile, handheld low-power DSP 

devices to general purpose CPUs lie ahead. 

Table I lists the advantages of asynchronous design, both bounded-delay and 

delay-insensitive models, over clocked Boolean design. It shows that clocked Boolean 

design necessitates a global clock, where asynchronous design does not; and that only 

delay-insensitive methods have no glitch power, deliver average-case verses worse-case 

performance, and provide for ease of design reuse. Table I also lists that power, noise, 

1 and EM1 are disadvantages for clocked Boolean circuits, but are advantages for their 

asynchronous counterparts, as detailed below. 



I 

). Table I. Attributes of clocked Boolean and asynchronous methods. 
W.,' - 
9: 

- - 

Y '  

Traditional clocked Boolean circuits suffer fiom the layout nightmare of clock 

M b 1  m and require high power surges at the clock edge, when switching is most 
WAII 

EM1 
D 
A 
A 

Synchronous circuits also cannot operate at their maximum potential due to 

. These trends have led to a large revival of interest in the asynchronous 

Noise 
D 
A 
A 

+'bynchronous design approaches each component in the system is not 

~ t r o l l d  by a clock signal. Thus, timing design margins are not required to compensate 

Power 
D 
A 
A 

#I clock skew. An asynchronous design theoretically should allow data to flow through a 

Reuse 
Ease 

N 
N 
Y 

W i g n  Paradigm 
Clocked Boolean 
Bounded-Delay 
r 

Dday-Insensitive 

at the maximum rate of the underlying switching technology being used. As the 

inputs arrive, a function should be executed and its results sent to the required 

(s)* 

Nonetheless, traditional asynchronous design techniques have drawbacks of their 

Global 
Clock 

Y 
N 
N 

OM. & asynchronous circuit is traditionally designed as having a datapath and a control 

p#h. Since there is no clock to synchronize these two paths, there must be extensive 

ysis performed in order to determine the worse-case delay in the datapath. 

then be matched in the control path in order to synchronize the two paths 

a clock. This method of asynchronous circuit design is classified as 

Glitch 
Power 

Y 
Y 
N 

Performance 
Average- 
Case 

N 
N 
Y 

Worse- 
Case 

Y 
Y 
N 



bounded-delay. Both clocked Boolean and bounded-delay designs suffer fiom the 

problem of limiting the maximum operating fiequency based on the worse-case delay in 

the datapath. Bounded-delay design also alleviates the complex task of clock distribution. 

but it introduces another complex task of determining the worse-case datapath delay and 

matching this delay in the control path. An important benefit of NCL is asynchronous 

execution that is completely delay-insensitive, assuming that wire forks are isochronic 

12.31. When designing in NCL there is no need for worse-case delay analysis and delay 

matching, which makes the NCL design process significantly less complex than 

traditional asynchronous design. 

NCL on the other hand, allows a system to run at its maximum frequency 

regardless of the input. For inputs which traverse a path with minimal delay, the output 

will arrive much faster than for inputs which traverse a longer delay path. This property 

rllows a NCL circuit to potentially operate faster than a traditional Boolean asynchronous 

design. NCL circuits are also much more adaptive, and facilitate easier reuse than 

Boolean asynchronous circuits, since timing analysis is unnecessary due to NCL's delay- 

insensitivity. 

As the trend towards higher clock Gequency continues, power consumption, 

noise, and electromagnetic interference (EMI) of synchronous designs increase 

significantly. PCs are becoming more widespread and consume an increasingly 

substantial percentage of the world's electrical power. With the absence of a clock, NCL 

systems promise to reduce power consumption, noise, and EMI. NCL circuits, designed 

using CMOS, also exhibit an inherent idle behavior since they only switch when useful 



is being performed, unlike clocked Boolean circuits that switch every clock pulse. 

NCL circuits adhere to monotonic transitions between DATA and NULL, so there is no 

glitching, unlike clocked Boolean circuits that produce substantial glitch power. NCL 

systems also distribute the demand for power over time and area, reducing the occurrence 

of hot spots, system noise, and peak power demand, unlike clocked Boolean circuits 

where all circuitry switches simultaneously at the clock edge. Furthermore, NCL systems 

are very tolerant of power supply variations such that cheaper power supplies can be used 

end voltage can be reduced dramatically to meet performance criterion while reducing 

power consumption. Therefore, a very fast NCL circuit can be run at a lower voltage to 

reduce power consumption when high performance is not required. 

The initial version of Motorola STAR08 processor using NCL technology shows 

a 40% reduction in power and a 10 dB reduction in noise over its clocked Boolean 

counterpart, while operating at a comparable frequency. Since NCL circuits have been 

demonstrated to consume significantly less power than clocked Boolean designs, NCL 

has a promising future in the field of mobile electronics, where power consumption is a 

major design consideration. 

1.3 Research Challenges 

This dissertation focuses on three architectural areas of NCL, all related to circuit 

design and optimization. Since NCL is still conceptually young, there is no current 

fonnal method for designing optimal NCL circuits. NCL differs significantly from 

Boolean logic; so traditional Boolean techniques for circuit simplification cannot be 



applied to NCL circuits without major modifications. Thus, the first goal is to devise a 

new formal method for NCL circuit simplification, such that optimal designs are readily 

obtained. 

The unique structure of NCL lends itself to pipelining, even though a clock is not 

present. Since there is no clock in NCL to synchronize pipeline stages, the design of a 

NCL pipeline will be significantly different than a Boolean pipeline design. A related 

need is to develop a means for determining the maximum number of gate delays per stage 

to yield the maximum attainable throughput when pipelining a given design. Thus, the 

second goal is to develop a formal method for designing throughput optimal NCL 

systems. 

The NULL cycle accounts for approximately half of the cycle time of a NCL 

circuit, therefore reducing the system's maximum attainable throughput by a factor of 

two. Thus, the third goal is to devise a technique to reduce the NULL cycle, fiuther 

increasing system performance. This further speedup may be essential for especially time 

critical circuits. 

1.4 Dissertation Overview 

This dissertation is organized into seven chapters. Chapter 2 presents previous 

work and contains an in-depth discussion of fundamental NCL terminology, concepts, 

and components, which will provide the notation and basis for the rest of the dissertation. 

In Chapter 3, a formal method for designing different types of optimal combinational, 

simplified NCL circuits is developed. This method is then tested on the design of 



firndmnental logic functions, a h11 adder, and a 4-bit counter, with simulation times, gate 

counts, and transistor counts included. In Chapter 4, a formal method for producing 

pipelined designs, which yield the maximum attainable throughput, is devised. This 

method is tested on the design of a 4-bit by 4-bit multiplier, and includes comprehensive 

simulation times and pipeline stage information. Chapter 5 develops a technique for 

reduction of the NULL cycle, and applies it to a non-pipelined 4-bit by 4-bit multiplier. 

Chapter 6 details the design of a throughput and area optimal 72+32x32 MAC. Chapter 7 

highlights the contributions of this dissertation and provides direction for future research. 



2.0 PREVIOUS WORK 

For the last two decades the focus of digital design has been primarily on 

synchronous, clocked architectures. However, as clock rates have significantly increased 

while feature size has decreased, clock skew has become a major problem. High 

pafonnance chips must dedicate increasingly larger portions of their area for clock 

drivers to achieve acceptable skew, causing these chips to dissipate increasingly higher 

power.& these trends continue, the clock is becoming more and more difficult to 

manage. This has caused renewed interest in asynchronous digital design. 

NULL Convention Logic (NCL) offers a delay-insensitive logic paradigm where 

control is inherent with each datum. NCL follows the so-called "weak conditions" of 

Seitz's delay-insensitive signaling scheme [4]. As with other delay-insensitive logic 

methods discussed herein, the NCL paradigm assumes that forks in wires are isochronic 

[2,3]. The origins of various aspects of the paradigm, including the NULL (or spacer) 

logic state from which NCL derives its name, can be traced back to Muller's work on 

speed-independent circuits in the 1950s and 1960s [5]. 

Earlier work by Seitz presents an extensive discussion of delay-insensitive logic, 

illustrating its advantages over traditional clocked logic, and includes one approach to 

designing such circuits [2]. Some other methods of designing delay-insensitive circuits 

are detailed in [6,7, 8,9]. These techniques concentrate on developing circuits from a 



standardized set of gates, while other techniques [lo, 1 11 emphasize formal logic 

methods that directly yield designs at the transistor-level. In the application of CMOS 

technology, processors implemented with this type of signaling scheme include the MIPS 

R.3000 [12] and another at Caltech [13], the FLYSIG processor at the University of 

Paderbom [14], the MSL16A at the Chinese University of Hong Kong [IS], and the 

TITAC processor at the Toyko Institute of Technology [16]. NCL differs from the above 

mentioned methods in that they only utilize one type of state-holding gate, the C-element 

[5]. On the other hand, all NCL gates are state-holding. Thus, NCL optimization methods 

can be considered as a subclass of the techniques for developing delay-insensitive circuits 

using a pre-defined set of more complex components with built-in hysteresis behavior. In 

-functions that do not require full minterm generation, such attributes may allow 

optimizations that produce smaller, faster delay-insensitive combinational circuits. 

2.1 Overview of Asynchronous Methods 

Asynchronous circuits fall into two main categories: delay-insensitive and 

bounded-delay models. Paradigms, like NCL, assume delays in both logic elements and 

interconnects to be unbounded, although they assume that wire forks are isochronic. This 

implies the ability to operate in the presence of indefinite arrival times for the reception 

of inputs. Completion detection of the output signals allows for handshaking to control 

input wavefionts. On the other hand, bounded-delay models such as Huffman circuits 

[17], burst-mode circuits [18], and micropipelines [19] assume that delays in both gates 

and wires are bounded. Delays are added based on worse-case scenarios to avoid hazard 



&hditions. This leads to extensive timing analysis of worse-case behavior to ensure 

correct circuit operation. Since NCL exhibits neither of these characteristics, bounded- 

May models are not addressed further. 

Table I1 summarizes the attributes of various self-timed methods. It lists that only 

micropipelines add explicit delays, while the other methods rely on completion detection; 

and that only micropipelines exhibit worse-case performance, verses the average-case 

performance of the other methods. Table 11 also shows that only Seitz's, Anantharaman's, 

and DIMS approaches require full minterm generation, while all approaches use 

C-elements exclusively for their state-holding gates, except for micropipelines that do not 

require any state-holding elements, NCL that utilizes numerous state-holding gates, and 

Martin's 'method that does not use a standardized set of gates but instead develops each 

element at the transistor level, as detailed below. 

Table 11. Attributes of self-timed methods. 

Self-Timed 
Method 
Micropipelines 
Seitz 
DIMS 
Anantharaman 
Singh 
David 

Explicit 
Delays 
Inserted 

Y 
N 
N 
N 
N 
N 

NCL 
Martin 

Y 
Y 

N 
N 

Completion 
Detection 

N 
Y 
Y 
Y 
Y 
Y 

N 
N 

Full Minterm 
Generation 
Required 

N 
Y 
Y 
Y 
N 
N 

Numerous 
N/A 

State- 
Holding 
Gates 
None 
C-elements 
C-elements 
C-elements 
C-elements 
C-elements 

Y 
Y 

Performance 

N 
N 

Average- 
Case 

N 
Y 
Y 
Y 
Y 
Y 

Worse- 
Case 

Y 
N 
N 
N 
N 
N 



2.1.1 Gate-Level Delay-Insensitive Methods 

Most gate-level delay-insensitive methods combine C-elements [5] with Boolean 

gates for circuit construction. A C-element behaves as follows: when all inputs assume 

the same value then the output assumes this value, otherwise the output does not change. 

Seitz's method [2] employs a sum of products network using AND and OR gates, 

combined with a network to OR both rails of all inputs together. The output of the OR 

I' network is then combined with the sum of products outputs, using C-elements, to produce 

the circuit outputs. DIMS [9] and Anantharaman's approach [7] are similar to each other 

in that each produces a sum of products circuit using OR gates and C-elements, instead of 

AND gates. Singh's method [8] combines small self-timed logic hc t ions  to produce the 

desired functionality, while David's method [6] produces self-timed circuits with 

n inputs and m outputs, composed of four subnets, O W ,  CEN, D W ,  and OUm.  ORN 

consists of n Zinput OR gates, which OR together both rails of each dual-rail input. CEN 

is an n-input C-structure, which is equivalent to an n-input C-element, whose inputs are 

the n outputs fiom ORN. DRN is a monotonic implementation of each rail of the dual-rail 

output(s). OUTN produces the circuit output and consists of 2m 2-input C-elements, each 

with the output of CEN as one input, and an output fkom DRN as the other input. Seitz's 

method, Anantharaman's approach, and DIMS require the generation of all mintems to 

implement a function, where a minterm is defined as the logical AND, or product, of 

input signals. While Singh's and David's methods do not require full minterm generation, 

they rely solely on C-elements for delay-insensitivity. 



Since Seitz's and Anantharaman's approaches, along with DIMS, require the 

generation of all minterms, no optimization is possible. However, Singh's and David's 

approaches allow for some Boolean optimization to be performed, but they may not 

facilitate the same potential for optimization provided by NCL's many state-holding 

i gates, as will be shown in Chapter 3. 

2.1.2 Transistor-Level Delay-Insensitive Methods 

Other delay-insensitive methods such as Martin's [30] consist of constructing 

transistor-optimized circuits from their Boolean equations through formal logic 

transformations. Most of the resulting transistor level circuits are state-holding. However, 

since these methods do not target a specific set of gates, they are not directly comparable 

to gate-level delay-insensitive methods, including NCL. 

2.2 Overview of NCL 

NCL gates are a special case of the logical operators or gates available in digital 

VLSI circuit design [20]. Such an operator consists of a set condition and a reset 

condition that the environment must ensure are not both satisfied at the same time. If 

neither condition is satisfied then the operator maintains its current state. A number of 

NCL-based designs have been commercially developed by Theseus Logic, Inc., which 

has formed strategic alliances with Motorola for microcontroller design and Synopsys for 

NCL-based design tool development. 



2.2.1 Delav-Insensitivity 

NCL uses symbolic completeness of expression [2 11 to achieve self-timed 

behavior. A symbolically complete expression is defined as an expression that only 

depends on the relationships of the symbols present in the expression without a reference 

to the time of evaluation. Traditional Boolean logic is not symbolically complete; the 

output of a Boolean gate is only valid when referenced with time. For example, assume it 

takes 1 ns for output Z of an AND gate to become valid once its inputs X and Y have 

arrived. As shown in Figure 1, suppose X = 1, Y = 0, and Z = 0, initially. If Y changes 

to 1, Z will change to 1 after 1 ns; so Z is not valid from the time Y changes until 1 ns 

later. Therefore output Z not only depends on the inputs X and Y, but time must also be 

referenced in order to determine the validity of Z. This can be critical when Z is used as 

an input to another circuit. 

:, 
y :,I 
Z 1,: 

Valid / Invalid j Valid 
Output i Output ( Output 

Figure 1. Symbolic incompleteness of a Boolean AND gate. 

In particular, dual-rail signals, quad-rail signals, or other Mutually Exclusive 

Assertion Groups (MEAGs) can be used to incorporate data and control information into 

one mixed signal path to eliminate time reference [22]. A dual-rail signal, D, consists of 

two wires, DO and D', which may assume any value from the set {DATAO, DATAI, 

NULL). The DATAO state (DO = 1, D' = 0) corresponds to a Boolean logic 0, the 



DATAl state (DO = 0, D' = 1) corresponds to a Boolean logic 1, and the NULL state 

(DO = 0, D' = 0) corresponds to the empty set meaning that the value of D is not yet 

available. The two rails are mutually exclusive, so that both rails can never be asserted 

simultaneously; this state is defined as an illegal state. A quad-rail signal, Q, consists of 

four wires, Q', Q', @, and p], which may assume any value from the set {DATAO, 

-0 ,Q2=0 ,Q3=0)  DATAl , DATA2, DATA3, NULL). The DATAO state (Q0 = 1, Q' - 

corresponds to two Boolean logic signals, X and Y, where X = 0 and Y = 0. The DATAl 

state (Q0 = 0, Q' = 1, Q2 = 0, Q3 = 0) corresponds to X = 0 and Y = 1. The DATA2 state 

(Q* = 0, Q1 = 0, Q2 = 1, Q3 = 0) corresponds to X = 1 and Y = 0. The DATA3 state 

(Q' = 0, Q' = 0, Q2 = 0, Q3 = 1) corresponds to X = 1 and Y = 1, and the NULL state 

(Q' = 0, Q' = 0, Q2 = 0, Q3 = 0) corresponds to the empty set meaning that the result is 

not yet available. The four rails of a quad-rail NCL signal are mutually exclusive, so no 

two rails can ever be asserted simultaneously; these states are defined as illegal states. 

Both dual-rail and quad-rail signals are space optimal delay-insensitive codes, requiring 

two wires per bit. Other higher order MEAGs are not typically wire count optimal, 

however they can be more power efficient due to the decreased number of transitions per 

cycle. 
I 

Consider the behavior of a symbolically complete AND function using NCL as 

1 shown in Figure 2. Assume it takes 1 ns for output Z of a NCL AND fhction to become 

valid once its inputs X and Y have arrived. Also, initially suppose Xis  DATAl, Y is 

DATAO, and Z is DATAO. Before the next set of inputs can be applied, all inputs must 

first transition to NULL, which causes the output to transition to NULL, 1 ns later. Once 



the output has transitioned to NULL, the next input set can be applied. If the next input 

set consists of X= DATAl and Y = DATAl, Z will become DATAl after 1 ns, signaled 

by Z transitioning fiom NULL to DATA. Output Z will remain DATAl until both inputs, 

Xand Y, transition to NULL, due to the hysteresis behavior inherent in each threshold 

gate. Time is never referenced to determine the validity of 2. The 1 ns delay is an 

arbitrary gate transition delay and does not affect the validity of Z. 

NCL AND 
Function 

I I I I 

xO :, :+ I ns +; :+ I ns +: 
I I I I 

X1 2, I 
Yo :, 
Y1 I 
zO 2, 
z1 I 

Valid 
I 

I NULL Valid 
I 

Output Output : I Output 

Figure 2. NCL AND function: Z = X Y and associated waveforms. 

NCL uses thre~hold gates with hy,~te*esis [23] for its ~ ~ n q ~ & a b l e  logic elements. 

One type of threshold gate is the Wmn gate, where 1 < m 5 n, as depicted in Figure 3. A 

THmn gate corresponds to an operator with at least m signals asserted as its set condition 

and all signals de-asserted as its reset condition. THmn gates have n inputs. At least m of 

the n inputs must be asserted before the output will become asserted. Because threshold 

gates are designed with hysteresis, all asserted inputs must be de-asserted before the 

output will be de-asserted. Hysteresis is used to provide a means for monotonic 



transitions and a complete transition of multi-rail inputs back to a NULL state before 

asserting the output associated with the next wavefront of input data. In a THrnn gate, 

each of the n inputs is connected to the rounded portion of the gate. The output emanates 

fiom the pointed end of the gate. The gate's threshold value, m, is written inside of the 

gate. Figure 4 shows a static CMOS implementation of a TH23 gate, with inputs A, B, 

and C, and output 2. [23] details various design implementations (static, semi-static, and 

dynamic) of THrnn gates. 

Input n W 
Figure 3. THmn threshold gate [2 11. 

Figure 4. Static CMOS implementation of a TH23 gate. 

Another type of threshold gate is referred to as a weighted threshold gate, denoted 

as THmnWwlw2.. . w ~ .  Weighted threshold gates have an integer value, rn 2 w~ > 1, 

applied to inputR. Here 1 I R < n; where n is the number of inputs; rn is the gate's 

threshold; and wr, w2, . . . w ~ ,  are the integer weights of inputl, input2, . . . inputR, 



respectively. For example, consider a TH34W2 gate, whose n = 4 inputs are labeled A, B, 

C, and D. The weight of input A, W(A), is therefore 2. Since the gate's threshold, m, is 3, 

this implies that in order for the output to be asserted, either inputs B, C, and D must all 

be asserted, or input A must be asserted and any other input, B, C, or D must also be 

asserted. NCL threshold gates may also include a reset input to initialize the gate's output. 

Resetable gates are denoted by either a D or an N appearing inside the gate, along with 

the gate's threshold, refemng to the gate being reset to logic 1 or logic 0, respectively. 

By employing threshold gates for each logic rail, NCL is able to determine the 

output status without referencing time. Inputs are partitioned into two separate 

wavefronts, the NULL wavefiont and the DATA wavefront. The NULL wavefiont 

consists of all inputs to a circuit being NULL, while the DATA wavefiont refers to all 

inputs being DATA, some combination of DATA0 and DATA1. Initially all circuit 

elements are reset to the NULL state. First, a DATA wavefiont is presented to the circuit. 

Once all of the outputs of the circuit transition to DATA, the NULL wavefiont is 

presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next 

DATA wavefiont is presented to the circuit. This DATA/NULL cycle continues 

repeatedly. As soon as all outputs of the circuit are DATA, the circuit's result is valid. 

The NULL wavefront then transitions all of these DATA outputs back to NULL. When 

they transition back to DATA again, the next output is available. 

Figure 5 shows the primary bctional blocks of a NCL circuit. The NCL 

registration stages act to control the DATANULL wavefronts, through their request 

input lines, Ki, and their request output lines, KO. The NCL completion detects complete 



DATA and NULL sets, where all outputs are DATA or all outputs or NULL, 

respectively, at the output of NCL registration. NCL combinational circuits provide the 

fhdamental hctionality of a NCL system. Since every NCL circuit continually cycles 

through NULL followed by DATA, one complete cycle will consist of NULL flowing 

through the combinational circuitry as shown in Figure 5, followed by NULL flowing 

through the completion circuitry as shown in Figure 6, followed by DATA flowing 

through the combinational circuitry as shown in Figure 7, and finally followed by DATA 

flowing through the completion circuitry, back to the input as shown in Figure 8. r =  

refers to request for NULL and rfd refers to request for DATA. Each phase of this cycle, 

depicted in the Gantt chart of Figure 9, will be referred to here on out as the DATA-to- 

DATA cycle; and the period of this cycle will be called the DATA-to-DATA cycle time 

(TDD). Too has an analogous role to the clock period in a synchronous system. 

NCL 
Pegistratior 

Figure 5. NULL flowing through combinational circuitry. 
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Figure 6. Completion detection of NULL output. 

Figure 7. DATA flowing through combinational circuitry. 
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Figure 8. Completion detection of DATA output. 
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Figure 9. DATA-to-DATA cycle time (TDD). 

2.2.3 Completeness of Input 

The input-completeness criterion [2 11, which NCL circuits must maintain in order 

to be delay-insensitive, requires that: 

Acknowledgement 

1. the outputs of a circuit may not transition fiom NULL to DATA until all inputs have 

transitioned from NULL to DATA, and 

Evaluation Evaluation 

2. the outputs of a circuit may not transition fkom DATA to NULL until all inputs have 

transitioned fiom DATA to NULL. 

In circuits with multiple outputs, it is acceptable for some of the outputs to transition 

Acknowledgement 

without having a complete input set present, as long as all outputs cannot transition 

before all inputs arrive. This signaling scheme is equivalent to the "weak conditions" of 

delay-insensitive signaling defined by Seitz [4]. Consider the incomplete NCL AND 

function shown in Figure 10. The output can change fiom NULL to DATAO without both 

inputs first transitioning to DATA. For instance, if A = DATAO and B = NULL then 

C = DATAO, which breaks the completeness of input criterion. Figure 11 shows a 

complete NCL AND h c t i o n  since the output cannot transition until both inputs have 

transitioned. 



Figure 10. Incomplete AND function: Z = X Y. 

Figure 1 1. Conventional input-complete 
AND hct ion:  Z = X Y 

Completeness of DATA can be ensured for an N input b c t i o n  as shown in 

Algorithm 2. I-. If a function is complete with respect to DATA, it is also complete with 

respect to NULL due to the hysteresis functionality of every NCL gate. This 

completeness check takes O(N 2N-1); however, this is unnecessary for many functions 

due to their inherent completeness. For example, the XOR function, the full adder, and 

the increment circuitry, all are inherently complete such that it is impossible to know the 

output without all of the inputs being known. 

for (i = 1 to N) loop 
INPUTi = NULL 
group INPUTS, (1 S j S N, j # i) 

such that they form an N-1 bit word called REMAINDER 
for (k = 0 to 2N-1- 1) loop 

REMAINDER = k 
if (all output bits are DATA) then 

return (INCOMPLETE) 
end loop 

end loop 
return (COMPLETE) 

Algorithm 2.1. Input-completeness pseudocode. 



2.2.4 Obsewability 

There is one more condition that must be met in order for NCL to retain delay- 

insensitivity. No orphans may propagate through a gate. An orphan is defined as a wire 

that transitions during the current DATA wavefront, but is not used in the determination 

of the output. Orphans are caused by wire forks and can be neglected through the 

isochronic fork assumption, as long as they are not allowed to cross a gate boundary. This 

observability condition ensures that every gate transition is observable at the output. 

Consider an incorrect version of an XOR fbnction shown in Figure 12, where an orphan 

is allowed to pass through the TH12 gate. For instance, when X = DATAO and 

Y = DATAO, the TH12 gate is asserted, but does not take part in the determination of the 

output, Z = DATAO. This orphan path is shown in boldface in Figure 12. A correct, fully 

observable version of the XOR h c t i o n  is given in Figure 13, where no orphans 

propagate through any gate. An orphan checker tool, as a Synopsys shell, is run on each 

design to ensure observability. 

Figure 12. Incorrect XOR function: Z = X $ Y 
(orphans may propagate through a gate). 



Figure 13. Correct XOR function: Z = X (33 Y 
(orphans may not propagate through any gate). 

2.2.5 NCL Repistration 

With the input-completeness and observability criteria met, a NCL circuit is 

therefore delay-insensitive, because the output will not transition until all of its inputs 

transition and two consecutive DATA wavefronts will always remain separated despite 

arbitrarily large gate delays. Henceforth, the circuit will wait indefinitely until it receives 

all of its inputs and the inputs traverse the logic, before requesting the next either NULL 

or DATA wavefront. 

With this in mind, there must be a device that monitors the outputs of NCL 

circuits in order to detect when there is a complete DATA set or a complete NULL set, 

and upon detection of a complete output set, request the next wavefront. The NCL 

register, shown in Figure 14, does just that. When the request input line, Ki, is ~$d, any of 

the register inputs, I, that are asserted are allowed to pass through their respective TH22 

gate, to the output of the register. Likewise, when the request input line, Ki, is r@, any of 

the register inputs, I, that are de-asserted are allowed to pass through their respective 

TH22 gate, to the output of the register. Only after all n inputs to the register have 



transitioned to DATA, causing their respective outputs to transition to DATA as well, 

will the register's request output line, KO, transition to rfn, meaning that the register has 

received the DATA wavefiont and is requesting the NULL wavefiont. And, only after all 

n inputs to the register have transitioned to NULL, causing their respective outputs to 

transition to NULL as well, will the register's request output line, KO, transition to rfd, 

meaning that the register has received the NULL wavefiont and is requesting the DATA 

wavefi-ont. 

Figure 14: n-bit dual-rail registration. 



The NCL register does not assure completeness of input, it only assures 

completeness of output. The NCL register will not request the NULL wavefiont until the 

current DATA wavefiont has been received; and likewise the next DATA wavefiont will 

not be requested until the current NULL wavefiont has been received. This would not 

prevent the NULL wavefiont from being requested before all of the inputs become 

DATA, if the output was all DATA, caused by some inputs being DATA and 

combinational logic which is not complete with respect to its inputs. 

Assume that the registers shown in Figure 15 have the following values: the 

output of the upstream register is DATA, so it is requesting NULL; the output of the 

current register is NULL, so it is requesting DATA; and the output of the downstream 

register is DATA, so it is requesting NULL. Also assume that the input to the upstream 

register is NULL and that the request input, Ki, to the downstream register is rfn. The 

NULL input to the upstream register will be blocked because the upstream register's 

request input line, Kj, is set to rfd. The DATA output from the upstream register will flow 

through the first set of combinational logic, to the input of the current register, while the 

NULL output of the current register flows through the second set of combinational logic 

to the input of the downstream register, as depicted in Figure 16. Once the DATA 

wavefiont reaches the input of the current register, it is blocked, because the current 

register's request input line, Ki, is rfn. But when the NULL wavefiont reaches the input 

of the downstream register, it is allowed to pass through to the output because the 

downstream register's request input line, Kj, is $n. When every output of the downstream 

register transitions to NULL, the downstream register's request output line, KO, will 



transition to r$d, shown in Figure 17, which will allow the DATA wavefiont at the input 

of the current register to pass through to the output of the current register and start 

flowing through the second set of combinational logic. When all outputs of the current 

register have transitioned to DATA, the request output line, KO, of the current register 

will transition to rfn, as shown in Figure 18, which will allow the NULL wavefront at the 

input of the upstream register to pass through to the output of the upstream register and 

start flowing through the first set of combinational logic, as depicted in Figure 19. As 

shown in Figure 20, once the NULL wavefront has passed through the first set of 

combinational logic, the circuit will be in a static state; and no more transitions can occur 

until the request input line, Ki, of the downstream register transitions to rfd, signifying 

that the NULL wavefront at the output of the downstream register has been received by 

the next register after the downstream register. The registers will continue to control the 

NLTLLIDATA cycles in this fashion, insuring that the next wavefront is sent only after 

the current wavefront has produced all of its outputs. 

upstream current downstream 

Figure 1 5. Initial register state. 
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Figure 16. Register state after traversing combinational circuitry. 
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Figure 17. Register state after NULL wavefiont passes through downstream register. 
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Figure 18. Register state after DATA wavefiont passes through current register. 
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Figure 19. Register state after NULL wavefront passes through upstream register. 
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Figure 20. Static register state. 
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All NCL systems have at least two register stages, one at both the input and 

output; and all NCL systems with feedback have at least three register stages in the 

feedback loop [2 11. This technique of organizing registers into a ring is l l l y  discussed in 
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2.2.6 NCL Completion 

Actual NCL registration is realized through cascaded arrangements of single-bit 

dual-rail registers or single-signal quad-rail registers, depicted in Figure 2 1 and 22, 

respectively. Therefore, an N-bit register stage, comprised of N single-bit dual-rail NCL 

registers, requires N completion signals, one for each bit. The NCL Completion 

component, shown in Figure 23, uses these N KO lines to detect complete DATA and 

NULL sets at the output of every register stage and request the next NULL and DATA 

set, respectively. The single-bit output of the completion component is connected to all Ki 

lines of the previous register stage. Since the maximum input threshold gate currently 

supported is the TH44 gate, the number of logic levels in the completion component for 

an N-bit register is given by [log4 N]. Likewise, the completion component for an N-bit 

quad-rail registration stage requires + inputs, and can be realized in a similar fashion 

using TH44 gates. The registers shown in Figures 21 and 22 are reset to NULL. Either 

register could be instead reset to a DATA value by replacing exactly one of the TH22n 

gates with a TH22d gate. 

Figure 2 1. Single-bit dual-rail register. 



Figure 22. Single-signal quad-rail register. 
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Figure 23. N-bit completion component. 



3.0 THRESHOLD COMBINATIONAL REDUCTION METHOD 

Delay-insensitive logic design methods are developed using Threshold 

Combinational Reduction (TCR) within the NULL Convention Logic (NCL) paradigm. 

NCL logic elements are realized using 27 distinct transistor networks implementing the 

set of all functions of four or fewer variables, thus facilitating a variety of gate-level 
'r 

optimizations. TCR optimizations are formalized for NCL and then assessed by 

comparing levels of gate delays, gate counts, and transistor counts of the resulting 

designs. The methods are illustrated to produce fundamental logic functions, and a full 

adder with reduced critical path delay and transistor count over various alternative gate- 

level synthesis approaches. As an example of circuits employing feedback, TCR is 

applied to derive time and space optimized increment circuits for a 4-bit up-counter. 

Results demonstrate support for a variety of optimizations utilizing conventional Boolean 

minimization followed by table-driven gate substitutions. Whereas previous work on 

optimization of circuits constructed from logical operators has concentrated on transistor- 

sizing [25] and decomposition of high fan-in operators [26], this chapter will emphasize 

composable circuit construction utilizing a set of complex state-holding gates, and will 

illustrate circuit minimization techniques, their application, and associated tradeoffs. 



3.1 Chapter Outline 

This chapter is organized into five sections. In Section 3.2, the TCR method for 

optimizing combinational NCL circuits is developed. The method is demonstrated in 

Sections 3.3,3.4, and 3.5. Section 3.3 presents optimal input-complete AND/NAND, 

ORINOR, and XOR/NXOR logic functions, designed using TCR. Section 3.4 applies 

TCR to produce a delay-insensitive Full Adder that significantly reduces critical path 

delay and transistor count over previous gate-level delay-insensitive approaches. 

Section 3.5 illustrates the use of TCR to derive a variety of time and space optimized 

NCL increment circuitries for an up-counter with a feedback circuit. 

3.2 TCR Method Definition 

As depicted in Figure 24, the design process begins with a specification of the 

circuit functional behavior and desired optimization criteria. Circuit behavior is specified 

as Boolean logic expressions, truth tables, andlor narrative descriptions. The optimization 

criteria include parameters such as critical path delay, gate count, transistor count, or 

power consumption, that are to be minimized in the target design. Several alternate 

designs are generated, which are then assessed against the optimization criteria, allowing 

the preferred design to be selected for implementation. 

First, a logic encoding scheme is selected such as dual-rail, quad-rail, or other 

MEAG representations, as depicted in Figure 24. Typically either dual-rail or quad-rail is 

chosen since these encoding yield the minimum of two wires per bit. If a dual-rail 

encoding is used, the next step is to select the optimization space in which minimization 



will be performed. The proposed TCR design methods have been numbered "I", "2", and 

"3", each with design steps labeled "A", "B", or "C", appropriately. 
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power 

Select Logic Encoding 

Select Optimization Space 

Method 1: Method 2.- 

Optimal NCL 
Circuit 

Boole8n Du.hril Qum&mll 
Optimlzatlon Optimlzmtion Optlmizaffon 

Figure 24. TCR design flow. 
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3.2.1 Method 1 : Incomplete Functions 

As depicted in Figure 24, Method 1 corresponds to Boolean optimization. 

Maximal use of incomplete NCL logic functions, such as the incomplete AND function 

shown in Figure 10, generates the individual outputs, while maintaining the completeness 

of input criterion for the circuit as a whole. For example, gates in Boolean designs that 

target the basic logical operators (AND, OR, XOR, NAND, NOR, NXOR, NOT) are 

directly mapped to a NCL design by using as many incomplete NCL hc t ions  as 

possible. As described in Step 1A of Figure 24, each Boolean gate is replaced with its 

NCL equivalent function, using incomplete versions whenever possible. Step 1B ensures 

input-completeness for the circuit as a whole by employing complete functions only for 

selected gates in the data path, so that the computation of an entire output set implies that 

the complete input set has anived. The observability criterion must also be ensured. 

3.2.2 Method 2: Dual-Rail Optimizations 

Method 2 is based on dual-rail optimization. In Step 2A, the NCL circuit is 

optimized by using reduced minterm expressions for both rails of the output. These 

expressions are then mapped to THln and THnn gates. As in Boolean circuits, a 

Karnaugh map can be constructed for each output. The 0s in the Kamaugh map refer to a 

signal's raiP line and the is refer to a signal's rail1 line. Reduced minterm expressions 

for both the is and 0s in the Karnaugh map are derived. After these expressions for the 

outputs have been obtained, an assessment must be made to ensure that the complete 

output set cannot be generated without all of the inputs being present. If under any timing 



scenario, a complete output set can be generated without all of the inputs being present, 

the missing logic terns must be added to the reduced expressions to guarantee that the 

completeness of input criterion holds. This method will always generate two-level logic, 

given that threshold gates with a sufficiently large number of inputs are available. The 

first level will consist of THnn gates, to produce the required minterms; and the second 

level will consist of THln gates, which act to OR the minterms together to produce the 

desired outputs. Step 2A is similar to Anantharaman's approach [7] and DIMS [9]. In 

Step 2B, the common sub-expressions are factored and consolidated to reduce the gate 

count. Finally, the factored expressions for each rail are manipulated in Step 2C to obtain 

equations of the forms contained in Table 111. The observability criterion must be ensured 

for every circuit output fiom Steps 2A, 2B, and 2C. 

Table I11 lists the 27 transistor networks, along with their corresponding Boolean 

equations, used to construct NCL circuits. These 27 transistor networks, implemented as 

macros, constitute the set of all functions consisting of four or fewer variables. Since each 

rail of a NCL signal is considered a separate variable, a four variable function is not the 

same as a function of four literals, which would normally consist of eight variables. 

Twenty four of these macros can be realized using complex threshold gates, identical to 

the standard threshold gate forms for functions of four or fewer variables [27,28,29]. 

The other three macros could be constructed fkom threshold gate networks, but have been 

implemented as transistor networks to provide completeness. Table I11 also contains the 

transistor count for these 27 macros. 



Table 111.27 NCL macros. 

3.2.3 Method 3: Quad-Rail Optimizations 

For some circuits, it may be advantageous to use quad-rail optimization, referred 

TH34w2 
TH44w2 
TH34w3 
TH44w3 
TH24w22 
TH34w22 
TH44w22 
TH54w22 
TH34w32 
TH54w32 
TH44w322 
TH54w322 
THxorO 
THandO 
TH24cornp 

to as Method 3 in Figure 24. Two dual-rail signals yield the same five logic states as one 

quad-rail signal, however using quad-rail logic signals may lead to a more efficient 

design. Quad-rail optimization follows the same steps as does dual-rail optimization. In 

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four 

rails of the output. These expressions are then mapped to THln and THnn gates. As in 

AB + AC + AD + BCD 
ABC + ABD + ACD 
A +  BCD 
AB + AC + AD 
A + B + CD 
AB + AC + AD + BC + BD 
AB + ACD + BCD 
ABC + ABD 
A + BC + BD 
AB+ACD 
AB + AC + AD + BC 
AB + AC + BCD 
AB + CD 
AB + BC + AD 
AC + BC + AD + BD 

22 
23 
19 
16 
18 
22 
24 
18 
17 
20 
20 
21 
20 
20 
18 



dual-rail optimization, a Karnaugh map can be constructed for each output, but instead of 

only 0s and Is, corresponding to a signal's raif and rail1, respectively, the K-map also 

contains 2s and 3s, which correspond to a signal's rail2 and rail3, respectively. Reduced 

minterm expressions for the Os, Is, 2s, and 3s in the Karnaugh map are derived. After 

these expressions for the outputs have been obtained, an assessment must be made to 

ensure that the complete output set cannot be generated without all of the inputs being 

present. If under any timing scenario, a complete output set can be generated without all 

of the inputs being present, the missing logic terms must be added to the reduced 

expressions to guarantee that the completeness of input criterion holds. This method will 

always generate two-level logic, given that threshold gates with a sufficiently large 

number of inputs are available. The first level will consist of THnn gates, to produce the 

required minterms; and the second level will consist of THln gates, which act to OR the 

minterms together to produce the desired outputs. In Step 3B, the common sub- 

expressions are factored and consolidated to reduce the gate count. Finally, the factored 

expressions for each rail are manipulated in Step 3C to obtain equations of the forms 

contained in Table 111. The observability criterion must be ensured for every circuit 

output from Steps 3A, 3B, and 3C. 

3.2.4 Performance Assessment 

To assess the performance of alternate designs, Synopsys, a commercial design 

tool, was used to simulate the circuits to generate their timing characteristics. All NCL 

circuits presented herein have been exhaustively tested and their average cycle time, TDD, 



has been reported. The Synopsys technology library for the 27 macros is based on Spice 

simulations of static 0.25 pm CMOS gates, operating at 3.3V. Along with the average 

cycle time, the number of gates and transistors has also been tabulated for comparison. 

The design that best meets the desired criteria can then be selected for implementation. 

3.3 Application to Input-Complete Fundamental Logic Functions 

Several optimizations can be used to generate designs that are very competitive in 

terms of speed and area as compared to other self-timed approaches. For example, 

Figures 11,25, and 26 show the conventional implementations of the logic functions: 

AND, OR, and XOR, respectively. Each of these may be obtained directly from their 

minterm form. Method 2 is readily applicable. Dual-Rail Encoding Optimization achieves 

significant reduction in both area and speed. TCR Step 2C can be applied directly from 

the minterm form to reduce the circuit complexity and improve performance. 

Specifically, consider the objective of realizing an optimized input-complete 2-input OR 

function: Z = X + Y. The minterm expression for 2 is given by: Z0 = x 0 9 ,  which 

directly maps to a TH22 gate in Table 111. The minterm expression for 2' is given by: 

2' = X'Y' + fi' + X ' P ,  which directly maps to a THandO gate. Similarly, an 

optimized input-complete 2-input AND hct ion:  Z = X Y can be realized. The rninterm 

expression for 2? is given by: Z0 = X O ~  + X%' + X ' P ,  which directly maps to a 

THandO gate. The minterm expression for 2' is given by: 2' = X' Y', which directly 

maps to a TH22 gate. The derivation of an optimized 2-input XOR function: Z = X @ Y 

is a bit more complex. The minterm expression for 2? is given by: ZO = X!?+ XIY', 



which directly maps to a THxorO gate. The minterm expression for 2' is given by: 

2' = X 1 p +  x'Y', which also directly maps to a THxorO gate. However, two transistors 

can be eliminated for each rail of Z by adding the two don 't care terms, representing the 

cases when both rails of either X or Yare simultaneously asserted. The new equations for 

ZO and Z' are as follows: Z' = W +  X'Y' + X'X' + YOY' and 

Z' = x'P+ X%' + Px' + Y%l, both of which now map to TH24comp gates. 

Figure 25. Conventional input-complete 
OR function: Z = X + Y. 

Figure 26. Conventional input-complete 
XOR hct ion:  Z = X CEJ Y. 

As shown in Table IV, the AND, OR, and XOR functions produced using TCR 

outperform the conventional minterm designs in terms of both area and throughput. In 

particular, the TCR optimized AND and OR functions are 2.2-fold faster and require 43% 

fewer transistors than the conventional minterm designs. Furthermore, the optimized 

XOR function is 2.3-fold faster and requires 40% fewer transistors than the conventional 

minterm design. The inverse logic functions, NAND, NOR, and NXOR, can easily be 



attained by exchanging the output rails of the AND, OR, and XOR functions, 

respectively. 

Table IV. Performance characteristics of input-complete NCL logic functions. 

Complete AND 
Conventional 
TCR Method 2 

Complete OR 
Conventional 
TCR Method 2 

3.4 Application to Full Adder 

XOR 
Conventional 
TCR Method 2 

The truth table for a full adder circuit is shown in Figure 27, where X and Y 

denote the input addends and Ci denotes the cany input. S and Co denote the sum and 

TDD 
1.58 ns 
0.71 ns 

Component List 
4xTH22,lxTHl 3 
IxTHandO, 1 xTH22 

Component List 
4xTH22,l xTH13 
1 xTHandO, 1 xTH22 

carry output, respectively. This circuit can be extensively optimized using TCR 

Method 2. Applying TCR Step 2A, the K-map for the Co output is obtained as shown in 

Figure 28, yielding: c,O = xOYO + ci0xo + ci0YO and c,' = X'Y' + cilx' + ci'yl. Both 

functions directly map to a TH23 gate, so factoring in Step 2B is not necessary. Since a 

TH23 gate does not produce an output which is complete with respect to any of its inputs, 

Gate Delays 
2 
1 

Gate Delays 
2 
1 

Component List 
4xTH22,2xTH12 
2xTH24comp 

there must be another output or set of outputs that enforce the completeness of input 

criterion. As explained below, the sum output, S, will enforce the completeness of input 

criterion for the circuit as a whole, thus allowing the carry output to be incomplete. 

Transistor Count 
60 
36 

Gate Count 
5 
2 

TDD 
1.70 ns 
0.75 ns 

Gate Delays 
2 
I 

Transistor Count 
56 
32 

TDo 
1.58 ns 
0.71 ns 

Gate Count 
5 
2 

Gate Count 
6 
2 

Transistor Count 
56 
32 



Figure 27. Truth table 
for full adder. 

Figure 28. K-map for C, output of full adder. 

Figure 29. K-map for S output of full adder. Figure 30. Optimized NCL full adder [21]. 

The K-map for S, based on X, Y, Ci, and the intermediate output C,, is shown in 

Figure 29, with essential prime implicants covered. This cover yields: 

SO = cO1XO + cO1YO + cO1ciO + x O Y O C ~ O  and s1 = c,OX' + c,OY' + c,Ocil + x1y1ci1, both 

of which directly map to TH34W2 gates, so factoring in Step 2B is not necessary. C, is 

taken as the A input such that W(Co) = 2, as shown in Figure 30. Checking input- 

completeness, the carry output requires at least two inputs to be generated and the sum 

output requires either the carry output and one more input, or all three inputs to be 



generated; so all three inputs are needed to generate the sum output. Therefore, the 

completeness of input criterion holds for the circuit as a whole. 

As shown in Table V, the NCL design of the full adder produced using TCR 

optimizations can outperform those of other delay-insensitive methods, such as 

Anantharaman's and DIMS, Seitz's, David's, and Singh's approaches, shown in Figures 

3 1,32,33, and 34, respectively. Here n-input C-elements are drawn as THnn gates since 

their hctionality is identical. The NCL design has far fewer gates and transistors, while 

requiring fewer logic levels to produce the carry output, C,. NCL also requires fewer 

logiclevels to produce the sum output, S, than three of the five other methods, and has the 

same number of logic levels for S as the other two. Notice that the NCL full adder uses 

the carry output as an input to compute the sum output, whereas the other methods 

compute the sum and carry outputs independently. This is because for the other methods 

it is not practical to use the cany output to help generate the sum output. For the other 

methods the carry output is generated in the same number of logic levels, or more, as the 

sum output. Therefore, to use the carry output as an input for calculating the sum output 

would require more logic levels, as well as more gates. Besides NCL, only Seitz's full 

adder can be designed such that C, can be computed before the Ci input is known for the 

cases A = DATAO, B = DATAO and A = DATAl, B = DATAl. This optimization is 

important if the full adder component is to be used in an N-bit ripple-carry addition; since 

it allows the addition to be performed in O(log2 N) on average instead of O(N). This 

optimization could be applied to DIMS, Anantharaman's approach, and David's method, 



if their signaling scheme was slightly changed such that it coincided with the "weak 

conditions" of delay-insensitive signaling defined by Seitz [4] and used by NCL. 

Table V. Full adder using various delay-insensitive methods. 

Figure 3 1 .  Full adder using Anantharaman's approach or DIMS [9]. 

Method 
Seitz [4] 
Anantharaman [7] 
DIMS [9] 
David [6] 
Singh [8] 
TCR (Method 2) 
Martin [30] 

Design 
Level 
gate 
gate 
gate 
gate 
gate 
gate 

transistor 

Transistor 
Count 

1 54 
168 
168 
186 
192 
80 

42 or 34 

Gate Delays 
for C, 

2 
2 
2 
3 
6 
1 
1 

Gate Delays 
for S 

3 
2 
2 
3 
4 
2 
1 

Gate 
Count 

18 
12 
12 
20 
19 
4 
3 



Figure 32. Full adder using Seitz's approach [4]. 

NCL circuits are often able to outperfom other self-timed methods since NCL 

targets a wider range of logical operators whereas other methods target a more standard, 

restricted set. For example, the full adder can be further optimized by design methods at 

the transistor level as demonstrated by Martin [30]. His full adder requires three complex 

transistor networks: the first computes both rails of the sum output, while the second and 

third each compute one rail of the cany output. The resulting design consists of only 42 



transistors, when the input and output inverters are included, or 34 transistors otherwise. 

However, thls method is not directly comparable to the other above mentioned methods 

since it optimizes designs at the transistor level instead of targeting use of a predefined 

set of gates. 

Figure 33. Full adder using David's approach. 



Figure 34. Full adder using Singh's approach. 

As for general-purpose methods, DIMS, Seitz's method, and Anantharaman's 

approach require full minterm generation, so that no simplification is possible. DIMS and 

Anantharaman's approach cannot outperform NCL, and at best will be identical only if 

the NCL design requires fill minterm generation. Seitz's approach can outperform NCL 

in terms of area, but not speed, for a limited class of circuits. These include functions 



with 4 or more inputs, with one or few outputs, that contain almost all is or 0s in their 

truth table. These are the types of circuits that will receive little benefit from TCR 

optimizations. David's and Singh's approaches also favor these same classes of 

functions, and typically produce more efficient circuits than those obtainable by Seitz's 

approach. Singh's approach will require less area, but more delay than TCR for these 

types of functions, whereas David's approach will provide the same speed with 

significantly less area. For example, consider the function: f(a, b, c, d) = a . b ' c d ' 

[6] .  Table VI shows that Seitz's, David's, and Singh's circuits are all better than those 

obtainable by TCR, in terms of area for this function and that Anantharaman's approach 

is the same. However, only David's approach outperforms TCR in both area and speed. 

David's approach is better because this function, and others like it, require full minterm 

generation in NCL to ensure input-completeness, so no simplification is possible by TCR 

methods. 

Table VI. Delay-insensitive methods for f(a, b, c, d) = a b ' c . d '. 
Method 
Seitz [4] 
Anantharaman [7] 
DIMS [9] 
David [6] 

3.5 Application to Up-Counter 

- - 
Singh [8] 
NCL 

A number of experiments based on the Cbit counter shown in Figure 35 have 

been conducted. The specifications for this counter include a full NCL interface with 

Gate Delays 
4 
3 
3 
3 
4 
3 

Gate Count 
25 
21 
21 
9 

Transistor Count 
250 
368 
368 
88 

15 
21 

168 
368 



request and acknowledge signals labeled Ki and KO, respectively. Functionality was 

specified to reset count to OOOOb when the reset signal is applied, to increment count by 1 

when inc = 1, and to keep count the same when inc = 0. The counter will rollover to 

OOOOb when count = 1 1 1 1 b and inc = 1. 

4-bit Counter 

Count (3:O) 
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Figure 36. Up-counter with three-register feedback. 

I &  

The functional design of the 4-bit counter, shown in Figure 36, will be the same 

for all counter models considered here. However, the Increment Circuitry will differ 

based on the particular TCR optimization method that is used. Figure 36 shows that there 

Figure 35.4-bit up-counter block diagram. 



are three NCL registers to feedback the current count to the increment circuitry. These 

Registration Stages act to control the DATA/NULL wavefionts, through their request in 

lines, Kt, and their request out lines, KO. The completion logic (COMP) detects complete 

DATA and NULL sets, where all outputs are DATA or all outputs are NULL, 

respectively, at the output of NCL registration. The waveforms for the dual-rail, 16-rail, 

and quad-rail counters are shown in Figures 37, 38, and 39, respectively, with timing 

information depicted in nanoseconds. From these si mu1 at ions the average 

DATA-to-DATA cycle time can be computed as follows: T D ~  = $ ; where TT is the total 

tfme for all input combinations and 32 is the number of combinations of the 5 circuit 

inputs (i.e. 2' = 32). The timing information shown for the dual-rail and quad-rail 

waveforms is for their respective complex gate model. 

so I O U  ~ s a  
. 1 . 1 . 1 1 . .  1 1 . 1 1 1 1 1 ,  I l . l . . . l ,  . & 

4 TT -- b 
r a L R h I L 1  

r C R A l L O  

W R U L t  

M . W W  

k P ! U  

Figure 3 7. Dual-rail 4-bit counter waveforms. 
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Figure 38. 16-rail MEAG 4-bit counter waveforms. 



I -- 

Figure 39. Quad-rail 4-bit counter waveforms. 

3.5.1 Method 1: Incom~lete Functions 

This technique was applied to the optimized Boolean increment circuitry of the 

4-bit counter shown in Figure 40, which is based on a carry look-ahead adder. The 

Boolean XOR gates were replaced with the XOR finction described in Section 3.3, and 

the Boolean AND gates were replaced with incomplete versions of the AND fbnction 

shown in Figure 10. The resulting logic diagram is depicted in Figure 41. The 

completeness of input criterion for the circuit as a whole is satisfied since all of the inputs 

are needed to produce a complete output set, due to the inherent completeness of input of 

an XOR finction. This model has a worse-case path delay of two NCL gates in the 

increment circuitry. It consists of 14 NCL gates and Tm was determined to be 4.8 1 ns 

using Synopsys. 



Figure 40. Boolean increment circuit. 

s,' 

rnpleta 3 input AND 

XOR 

Figure 41. Increment circuit using incomplete AND functions. 



3.5.2 Method 2: Dual-Rail Encoding Optimizations 

The resulting logic diagram after deriving reduced minterm expressions fiom 

Step 2A is shown in Figure 42. This model has a theoretical worse-case path delay of 2 

threshold gates in the increment circuitry. However, TH15 and TH55 gates are not 

supported in the 27 NCL macros, since they require 5 inputs. Therefore, the TH15 gate 

was realized by connecting a TH14 gate in series with a TH12 gate. However, this 

technique could not be applied to the TH55 gate, since this decomposition would violate 

the observablity criterion. Instead the two TH55 gates were decomposed into one TH44 

gate and two TH22 gates, in order to maintain observability of every gate transition at the 

output. This decomposition is valid since every transition of the TH44 gate will result in 

exactly one of the two TH22 gates also transitioning. The decompositions caused the 

worse-case path delay to be three NCL gates, instead of two. The reduced minterm model 

consists of 39 gates, but only 36 gates are necessary if TH55 and THIS gates are used. 

From Synopsys simulation, TDD was determined to be 5.34 ns. 

To fbrther reduce the gate count, the expressions for Sl, S2, and S3 can be factored 

using Step 2B. This factoring increases the worse-case path delay from two NCL gates to 

three NCL gates. Since constructing TH55 and TH15 gates for the reduced minterm 

model from smaller gates caused a worse-case path delay of 3 threshold gates, factoring 

did not increase the depth of the critical path. The logic diagram for the increment 

circuitry factored form is shown in Figure 43. The factored minterm model consists of 28 

gates, but only 27 gates are necessary if TH55 gates are used. From Synopsys simulation, 

TDD was determined to be 5.28 ns. 



Figure 42. Increment circuit using dual-rail reduced minterrn expressions. 
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Figure 43. Increment circuit using dual-rail factored minterm expressions. 
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3.5.3 Method 3: Ouad-Rail Encodinp Optimizations 

Quad-rail optimizations proceed in a similar fashion to dual-rail optimizations. In 

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four 

rails of both outputs, So and Sl, the low order two bits and the high order two bits, 

respectively, derived fiom the Karnaugh maps shown in Figure 45. Note that not all of 

the coverings that eliminate Inc are shown, so as not to clutter the drawing. The reduced 

Inc 

Inc = 0 Inc = 1 

M 

Figure 45. Karnaugh maps for quad-rail counter. 

minterm expressions derived fiom these K-maps are as follows: S: = Inc0&O + lnclx:, 

0 0 so1 = I ~ C O X ~ '  + ~nc'&O, S: = IIICOX: + ~ncl&', so3 = IIICOX: + ~ n c ' & ~ ,  sI0 = IIIC x1 + 
0 0 Xo XI + ~ 0 ~ x 1 ~  + x:xl0 + I ~ C ' & ~ X ~ ~ ,  sI1 = I ~ C ~ X ~ '  + ~OxI1  + xO1xI1 + x:xll + 

0 2 1nc1x:xI0, s12 = Inc XI + x:x12 + xO'xl2 + x:xl2 + Inc1x2xl',  s13 = hc0xl3  + 

+ &'XI + X ~ X I ~  + I ~ c ' x ~ x ~ ~ .  These equations can now be directly mapped to 

TH 1 n and THnn gates to produce the reduced minterm model, shown in Figure 46. This 



Figure 46.11 

x,' 4' 4' XI0 Y XoZ hi )bO lncl Id 

ncrement circuit using quad-rail reduced mintem r expressions. 



model has a theoretical worse-case path delay of two NCL gates in the increment 

circuitry. However, TH15 gates are not supported in the 27 NCL macros, since they 

require 5 inputs. Therefore, the actual worse-case path delay is three NCL gates. The 

reduced minterm model consists of 40 gates, but only 36 gates are necessary if TH15 

gates are used. From Synopsys simulation, TDD was determined to be 5.59 ns. 

To further reduce the gate count, the expressions for Sl can be factored using 

Step 3B. This factoring increases the worse-case path delay from two NCL gates to three 

NCL gates. Since constructing TH15 gates for the reduced minterm model from smaller 

gates caused a worse-case path delay of 3 gates, factoring did not increase the depth of 

the critical path. The factored minterm model, shown in Figure 47, reduced the gate count 

to only 25 gates, and from Synopsys simulation, TDD was determined to be 5.57 ns. 

Step 2C maps the factored expressions to the full 27 macros in Table 111, reducing 

both the number of gates and the number of logic levels. Note that the expressions for So 

and Sl can be mapped to TH24comp gates by adding two don 't care terms as for the 

XOR function explained in Section 3.3. The logic diagram for the increment circuitry 

using complex gates is shown in Figure 48. It has a worse case path delay of two NCL 

gates in the increment circuitry. The complex quad-rail model consists of 10 gates and 

from Synopsys simulation T' was determined to be 5.47 ns. 



Figure 47. Increment circuit using quad-rail factored minterm expressions. 
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Figure 48. Quad-rail increment circuit using complex gates. 

3.5.4 Other MEAG Ootimizations 

To reduce power, thls technique was applied to design a 16-rail MEAG counter. 

The resulting increment circuitry is shown in Figure 49. Note that TH24comp gates can 

be used by adding two don 't care terms as for the XOR function explained in Section 3.3. 

This model has a worse-case path delay of one NCL gate in the increment circuitry and 

consists of 16 NCL gates. However, a special 16-rail register, shown in Figure 50, was 

required to implement the feedback circuitry. The register is depicted as reset to NULL, 

however it could be instead reset to a DATA value by replacing exactly one of the TH22n 



gates with a TH22d gate. This register requires two levels of logic to generate the KO 

signal, instead of only one level required by both the dual-rail and quad-rail registers, 

causing the 16-rail MEAG counter to have a longer feedback path and therefore operate 

slower. Furthermore this 16-rail representation is exponential in the number of bits, 

reducing its applicability for general purpose designs. TDD was determined to be 8.77 ns 

using Synopsys and the average power per cycle, denoted PDD, was determined to be 

5.37 pW using Cadence. 
XIS X14 X13 X12 Xl1 X1° XO P X7 P X5 X4 XJ X2 X1 X0 Incl lnt? 

Figure 49. 16-rail MEAG increment circuit. 



Figure 50. 16-rail MEAG register. 



3.5.5 Up-Counter Performance Summaw 

Table VII lists the timing, gate counts, and transistor count for each of the eight 

counter models. It also lists the average power per operation for both the optimal dual-rail 

and quad-rail counters, as well as for the 16-rail MEAG counter. The theoretical gate 

count is the number of gates that would be required if TH55 and/or TH15 gates were 

used. Since these gates are not part of the 27 NCL macros, they have been constructed 

fiom existing gates, as discussed in Section 3.5.2, to yield the actual gate count. 

Table VII indicates that the factored forms of both the dual-rail and quad-rail circuits 

yield fewer gates and transistors, as well as smaller cycle times, compared to their 

original reduced forms. However, the complex gate models yield the best time and space 

performance for Method 2 and Method 3, as expected. The optimal design in terms of 

speed is generated fiom both Method 1 and Method 2C, although the design from 

Method 2C is preferred since it contains fewer gates and transistors. The most area 

efficient design is generated fiom Method 3C, requiring 22% fewer transistors than the 

speed optimal design of Method 2C. Furthermore, the most power efficient design is the 

16-rail MEAG counter, requiring 63% less power than the optimal dual-rail design fkom 

Method 2C and 42% less power than the optimal quad-rail design from Method 3C, 

although it requires 36% and 73% more transistors and is 82% and 60% slower than the 

two, respectively. 



Table VII. Alternate designs for NCL up-counter increment circuit. 

Model Type 
1) Incomplete AND 
2a) Reduced Dual-Rail 
2b) Factored Dual-Rail 
2c) Complex Dual-Rail 
3a) Reduced Quad-Rail 
3b) Factored Quad-Rail 
3c) Complex Quad-Rail 

I 6-rail M EAG 

TDD 
4.81 ns 
5.34 ns 
5.28 ns 
4.81 ns 
5.59 ns 
5.57 ns 
5.47 ns 
8.77 ns 

PDD 

14.44 pW 

9.30 p~ 
5.37 p~ 

Theoretical 
Gate Count 

14 
36 
27 
13 
36 
25 
I 0  
16 

Actual 
Gate Count 

14 
39 
28 
13 
40 
25 
10 
16 

Transistor 
Count 

216 
460 
308 
212 
440 
266 
166 
288 



4.0 GATE-LEVEL PIPELINING OPTIMIZATIONS 

Gate-Level Pipelining (GLP) techniques are developed to design throughput- 

optimal delay-insensitive NCL systems. Pipelined NCL systems consist of 

Combinational, Registration, and Completion circuits implemented using threshold gates 

equipped with hysteresis behavior. NCL Combinational circuits provide the desired 

processing behavior between Asynchronous Registers that regulate wavefront 

propagation. NCL Completion logic detects completed DATA or NULL output sets fiom 

each register stage. GLP techniques cascade registration and completion elements to 

systematically partition a combinational circuit and allow controlled overlapping of input 

wavefronts. Both full-word and bit-wise completion strategies are applied progressively 

to select the optimal size grouping of operand and output data bits. To illustrate the 

method, GLP is applied to a case study of a 4-bit by Cbit unsigned multiplier, yielding a 

speedup of 2.25 over the non-pipelined version, while maintaining delay-insensitivity. 

Even though delay-insensitive design methods do not utilize clocked control signals, they 

are still amenable to significant throughput increases by pipelining of wavefionts. The 

objective of this chapter is to develop and illustrate a pipelining method for maximizing 

throughput of delay-insensitive systems at the gate level. 



4.1 Chapter Outline 

This chapter is organized into five sections. An overview of previous work is 

given in Section 4.2. In Section 4.3, the GLP method is developed. This method is then 

demonstrated in Section 4.4 by applying GLP to design an optimal 4-bit by 4-bit 

unsigned multiplier whose throughput is increased by 125% over the non-pipelined 

version. Section 4.5 concludes the 4x4 multiplier case study. 

4.2 Previous Work 

Pipelining facilitates temporal parallelism by partitioning a process into stages 

such that each stage operates simultaneously on different wavefronts of input operands. 

If a process that requires N time units can be partitioned into S identical stages then a 

steady-state throughput not to exceed S/N results per time unit may be realized. In 

practice numerous constraints, such as registration overhead between computational 

stages, limit the actual speedup achievable by pipelining. For instance, throughput 

limitations may be encountered as clocked Boolean circuits are partitioned to 

increasingly finer granularities. In particular, the clock period used to advance data 

between stages becomes increasingly dominated by the required design margins, 

including accommodations for clock skew. Clearly, asynchronous design methods need 

not provide design margins to accommodate clock skew. Nonetheless, they do possess 

their own constraints governing speedup by pipelining and can benefit substantially fi-om 

optimized pipeline design strategies. 



One approach to pipelining asynchronous circuits was described in Ivan 

Sutherland's work on micropipelines [19]. This method employs two-phase handshaking 

supporting transmission of bundled data. Figure 5 1 shows a two-phase handshaking 

protocol. Two control wires, labeled request and achowledge, are used to support an 

arbitrary number of data wires. In two-phase handshaking, both the rising and falling 

edges of the request and acknowledge signals are indicative of circuit behavior. A cycle 

begins with the sender setting the data lines and generating a request event by toggling 

the request line. When the request is received, the data is latched and the receiver 

generates an acknowledge event by toggling the acknowledge line. The cycle terminates 

when the sender receives the acknowledge signal, at which time the data lines may be set 

for the next cycle. The use of bundled data refers to the fact that the data lines and request 

signal are treated as a bundle. Data bundling implies that the data transmission delay 

cannot exceed the delay to transmit the request. Otherwise, the request event might reach 

the receiver prior to valid data, causing invalid data to be latched. Subsequent work on 

micropipelines [3 1,32,33] suggest that performance may be increased by using four- 

phase handshaking protocols. Four-phase handshaking also requires two control wires, 

request and acknowledge, along with an arbitrary number of data wires. But, in four- 

phase handshaking only one edge, either the rising or falling edge of the request and 

acknowledge signals, is active. The four-phase handshaking protocol is shown in 

Figure 52, using the rising edge as active. A cycle begins with the sender placing data on 

the bus and generating a request event by asserting the request line. When the request is 

received, the data is latched and the receiver generates an acknowledge event by asserting 



the acknowledge line. When the sender receives the acknowledge signal, the request 

signal is de-asserted and the data lines may be set for the next cycle. The cycle concludes 

with the acknowledge line being de-asserted, as precipitated by the de-assertion of the 

request line. Micropipelining techniques such as these are evident in several processors 

that have been designed and implemented using bundled data methods 134,351. 

Request 

Acknowledge '-r 
Figure 5 1. Two-phase handshalung protocol [ 1 91. 

Data - 1  
Request '2'@L'@- 
Acknowledge 

Figure 52. Four-phase handshalung protocol [33]. 

Another approach to pipelining asynchronous circuits is through the use of wave 

pipelining. Hauck and Huss [36] describe a technique that allows multiple data 

wavefionts to simultaneously propagate between two asynchronous registers by 

partitioning each combinational logic block with dynamic latches, controlled only by the 

request line. Synchronous wave pipelining and asynchronous micropipelining methods 

can be combined using these techniques. However, a potential limitation of eliminating 

the acknowledge signal is that delay-insensitive behavior may be compromised, thus 

making the protocol inelastic. Further work by Park and Chung [37] presents a 

modification to this approach in which both the number of latches and the number of 

delay elements can be reduced, resulting in higher throughput. 



A third asynchronous pipelining approach uses delay-insensitive multi-ring 

structures [38]. This method employs a four-phase handshaking protocol using dual-rail 

signals for data representation and Delay-Insensitive Minterm Synthesis (DIMS) [9] for 

each bctional block. It also presents a formal method for analyzing the performance of 

these multi-ring structures, based on signal transition graphs. Nonetheless, formal 

methods to design throughput-optimal multi-ring structures are not directly feasible due 

to underlying difficulties in partitioning of DIMS expressions. 

In [39] Kim and Beerel present an optimal branch and bound algorithm to 

partition asynchronous circuits composed of precharge-logic blocks [12,24] designed at 

the transistor level. The algorithm uses a labeled directed graph to represent the model 

being pipelined. However, this method is not directly amenable to pipelining NCL 

circuits due to the differences in the fundamental components. 

4.2.1 Relation of NCL to Previous Work 

For Sutherland's micropipelines using either two-phase or four-phase 

handshaking, the determination of the maximum throughput design for a given 

combinational circuit is straightforward. Since micropipelines assume bundled data and 

therefore employ single-rail signals, there is no completeness of input criterion that must 

be met when partitioning a circuit, therefore fbrther partitioning cannot invalidate a 

design. Furthermore, delay is added in the control path such that completion detection is 

unnecessary, therefore further partitioning cannot decrease throughput. Thus, the design 

that will yield the maximum throughput is the one containing only one gate delay per 



stage. Since micropipelines necessitate the addition of delay in the control path, they 

exhibit worse-case performance verses the average-case performance of NCL systems 

and are layout and process dependent unlike NCL systems. Micropipelines also assume 

bundled data such that synchronicity is required, while NCL systems require no 

synchronization so that inputs may arrive at any time and in any order. Therefore, NCL 

systems are potentially more independent than micropipelines. 

Since the maximum throughput rate for asynchronous wave pipelines is 

determined by the difference between the longest and shortest path through the 

combinational logic, there is even more timing analysis required than for micropipelines. 

In asynchronous wave pipelines throughput will be maximized by designing the shortest 

and longest path to be nearly equal, therefore extensive timing analysis is required. 

Asynchronous wave pipelines are therefore very susceptible to process dependencies and 

environmental variations, unlike NCL. These fundamental differences between NCL and 

both micropipelines and asynchronous wave pipelines place NCL in a different class than 

either and would make direct comparisons difficult. 

NCL circuits are in the same class as other delay-insensitive approaches [4,6, 7, 

8,9], that were compared to NCL in Chapter 3. The functionality of NCL circuits is the 

same as those designed using the approaches presented in [4,6,7,8,9]. Thus, the NCL 

combinational circuit, as part of the NCL gate-level pipelining framework, could be 

replaced with an equivalent circuit designed using [4,6,7,8,9], and the resulting single- 

stage system would h c t i o n  correctly. This is exactly what delay-insensitive multi-ring 

structures are. Their kamework is equivalent to that of NCL, except for the 



combinational circuits, which use the approach described in [9]. But, since all of the basic 

gates used in the other delay-insensitive approaches, including delay-insensitive multi- 

ring structures, do not include hysteresis, their combinational designs cannot be 

partitioned, as can NCL combinational circuits. Thus, a given combinational circuit 

designed using [4,6, 7, 8,9] can either be used as a non-pipelined design, or if increased 

throughput is desired, each stage of the pipeline must be separately redesigned. Therefore 

a method which iteratively divides a combinational circuit of a delay-insensitive multi- 

ring structure to increase throughput cannot do so with little effort, as does the method 

presented herein for NCL; since after each iteration all combinational blocks which were 

divided would have to be redesigned to include input-completeness necessary for delay- 

4.3 Method Definition 

In Chapter 3 it was shown how to design an optimal NCL combinational circuit. 

So, starting with an N-level NCL combinational logic circuit, the design process for 

optimizing throughput begins, as depicted in Figure 53. Other criteria such as maximum 

latency and maximum area may also be considered during throughput optimization. 

Several alternate designs are generated which are then assessed against the optimization 

criteria, allowing the preferred design to be selected for implementation. 

It is assumed that if a maximum latency bound is specified then it is at least one 

stage, and that if a maximum area bound is specified then it is at least as large as the non- 

pipelined design, otherwise the non-pipelined design will be output. If no maximum 



latency or maximum area requirements are specified, then both are assumed to be infinity 

such that they are not considered in determining the optimal design. If more than one 

design has the same throughput, the one with the least latency will be chosen. If multiple 

designs have the same throughput and latency, the one with the least area will be chosen. 

Figure 53. GLP design flow. 



The original combinational circuit with no pipelining will always be input- 

complete since TCR only yields input-complete designs. Thus, starting with the 

combinational logic design and adding registration along with corresponding completion 

logic at the input and output will yield an initial 1-stage design. Partitioning this initial 

design, first into 2 stages, then further into as many as N stages may or may not produce 

better designs. First, completeness of input must be ensured at the output of each stage, as 

discussed in Chapter 2, otherwise the design will not be delay-insensitive and is therefore 

invalid. After input-completeness is ensured, the throughput for the current design must 

be calculated and compared to the throughput of the best design. If the current design's 

throughput is greater than that of the best design, it is designated as the best design, 

otheiwise bit-wise completion is applied to the current design and the throughput is 

reevaldted. If the throughput of the current design using bit-wise completion is still not 

greater than that of the best design, the best design does not change since the current 

design doesn't increase throughput and has longer latency, otherwise the current design 

using bit-wise completion becomes the best design. As mentioned in Chapter 2 the 

completion delay is proportional to [log4 ~ 1 .  Thus, if partitioning causes registers of 

significantly larger width to be required then the decrease in the combinational delay per 

stage will be offset by the increase in the completion delay such that the throughput of the 

system may not necessarily increase, as discussed in Section 4.3.1. If after traversing the 

loop of Figure 53 (i = O), which generates each subsequent pipelined design, or if the 

maximum latency or area requirements have been exceeded, then if the best design 

utilizes full-word completion, bit-wise completion is applied to this design to possibly 



further increase throughput. If throughput is not increased the design with the least area is 

chosen since both designs will have the same throughput and latency. This is because 

application of bit-wise completion won't decrease throughput, as explained in 

Section 4.3.2, and doesn't impact the number of stages. The output of this flowchart will 

be the optimal design (best - design) that produces the maximum throughput 

(max - throughput), and does not exceed the maximum latency or maximum area 

requirements, if any were given. 

4.3.1 Throughput Derivation 

Quarter-cycle timing is used to determine the worst-case achievable throughput of 

a pipelined NCL system. The name is derived from the fact that the analysis requires each 

NCL cycle to be broken into its four sub-cycles. The NCL cycle is comprised of the 

DATA and NULL propagation through the combinational circuitry, as well as the 

generation of the request for DATA and request for NULL fkom the completion circuitry. 

The four sub-cycles that are contained in the NCL cycle are shown in Figure 54. D 

denotes the interval when any DATA bits are propagating through the combinational 

circuit, N denotes the interval when any NULL bits are propagating through the 

combinational circuit, RFD is the request for DATA generation, and RFN is the request 

for NULL generation. Assuming KO = rfd, the cycle starts with DATA propagation and 

the sequence of the four sub-cycles is as follows: D, RFN, N, and RFD. The propagation 

delays associated with this sequence are labeled as follows: TD, TRFN, TN, and TRFD, 

respectively. TD and TN are defined to be the delay experienced by the slowest bit 



through their respective sub-cycles. In this chapter TD, TRFN, TN, and TRFD are 

calculated in terms of gate delays, making the predicted throughput an estimate since 

different gates do have slightly different delays. If this method were to be automated, the 

actual delay of each gate would be used to calculate the predicted throughput. 

DATA-to-DATA Cycle 

DATA DATA NULL NULL 
Combinational Completion Com binational Completion 

Figure 54. Sub-cycles of the NCL cycle. 
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The NCL cycle is bounded by the current registration stage, denoted as i, and the 

previous registration stage, denoted by i-I, as depicted in Figure 55. The calculation 
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Figure 5 5. Pipeline showing NCL sub-cycle times. 



Using the above terminology, the worst-case DATA-to-DATA cycle time for 

4.3.1.1 Idealized Completion Circuitry 

Consider the idealized case where TRFN and TRFD are assumed to be zero. The 

discrete timing chart in Table VIII identifies the interaction of stagq and ~tage,.~ under 

these idealized conditions. For the initial state, the analysis begins with stagei and stagei.1 

both reset to NULL. At wavefront #1, DATA propagates through the combinational 

circuitry of stagei.1, while stagei remains idle. At wavefiont #2, NULL propagates 

through the combinational circuitry of ~tagei.~, while DATA propagates through the 

combinational circuitry of stagei. At wavefront #3, DATA propagates through the 

combinational circuitry of ~ tage~.~ ,  while NULL propagates through the combinational 

circuitry of stage;. This pattern of NULL propagating through ~tagei.~, while DATA 

propagates through stagei, followed by DATA propagating through ~tagei.,, while NULL 

propagates through stagei, repeats continuously and forms the simplified NCL cycle, 

shown in boldface in Table VIII. 

Table VIII. Discrete timing chart for the idealized NCL cycle. 

stagei assuming idealized completion is: 

T~~~ idealized = MAX (TNi-1, TDi) + MAX (TDi.l , m i )  (eq. 4.1). 



Interpreting Equation 4.1 as a set of exclusive events implies exactly one of the following 

relationships: 

either TDD~ idealized = TNi-l + TDi-l 

idealized 
Tooi = TNi-l + TNi 

TDDi idealized = TDi + TDi-l 

idealized 
TDD, = TDi + TNi 

(eq* 4.4), 

(eq. 4.5). 

Notice that Equations 4.2 and 4.5 are equivalent except for their stage index. Under the 

proposed method of evaluating each stage pair in increasing order to determine the global 

maximum value, Equation 4.2 would therefore have been evaluated in the previous 

registration pair calculations, so it does not need to be reevaluated in the current 

registration pair calculations. This is true for every registration pair except the first pair, 

stage 1 and stage 2. For the first registration pair, Equation 4.2 does need to be 

considered since there is no previous registration pair that incorporates this calculation. 

Equation 4.3 considers the case of adjacent NULL propagation delays. 

Equation 4.4 considers the case of adjacent DATA propagation delays. Equation 4.5 

considers the case of NULL and DATA propagation delays for a single registration stage. 

The pseudocode listed in Algorithm 4.1 calculates the worst-case throughput for an 

idealized N-stage NCL pipeline. 



max-cycle-time = TDI + TNI 
for (i = 2 to N) loop 

temp-cycle-time = ML~X(TN,.~ + TNi, TDi.l + TDi, TDi + TNi) 
if (temp-c ycle-time > max-c ycle-time) then 

max-cycle-time = temp-cycle-time 
end if 

end loop 
worst-case-throughput = 1 l max-cycle-time 

Algorithm 4.1. Calculation of worst-case throughput for an idealized N-stage pipeline. 

Evaluation of the above loop is followed by taking the reciprocal of the maximum 

adjacent stage pair delay to obtain a lower bound on the pipeline's throughput. 

4.3.1.2 Non-Zero Delay Completion Circuitry 

Now the general case will be examined, where TRFN and TRFD are not zero. The 

discrete timing chart in Table IX shows the interaction of stage, and stagei.1. For the 

initial state, assume stage, and ~ t a g e ~ . ~  are both reset to NULL, so both stages will initially 

be requesting DATA. At wavefront #1, DATA propagates through the combinational 

circuitry of stagei.1, while stagei remains idle. At wavefiont #2, DATA propagates 

through the combinational circuitry of stagei, while stagei.1 requests NULL. At 

wavefiont #3, NULL propagates through the combinational circuitry of stagq.], while 

stage, requests NULL. At wavefiont #4, NULL propagates through the combinational 

circuitry of stagei, while requests DATA. At wavefiont #5, DATA propagates 

through the combinational circuitry of stagei.1, while stage, requests DATA. This pattern, 

from wavefront #2 to wavefiont #5, repeats continuously and forms the generalized NCL 

cycle, shown in boldface in Table IX. 



Table IX. Discrete timing chart for the general NCL cycle. 

The worst-case cycle time for the generalized case of stagei is then given by: 

TDoj = MAX (TDiy TRFNj-1) + MAX (TNi-~, TRFNi) + 
MAX (TNiy TR.F'Di.l) + MAX (TDi-1, TRFDi) (eq. 4.6). 

Interpreting Equation 4.6 as a set of exclusive events implies exactly one of the following 

relationships: 

either TDoi = TDi + TNi.1 + TNj + TDj.1 

TDDi = TDi + TNi.1 + TNi + TWDi 

TDDi = TDi + TNi.1 + TRFDi.l + TDi.] 

(eq. 4.7), or 

(eq.4.8), or 

(eq. 4.9), or 

(eq. 4. lo), or 

(eq. 4.1 I), or 

(eq. 4.12), or 

(eq. 4.13), or 

(eq. 4.14), or 

(eq. 4.19, or 

(eq. 4.16), or 



(eq. 4.17), or 

(eq. 4.18), or 

(eq. 4.19), or 

(eq. 4.20), or 

(eq. 4.21), or 

TDDi = TRFNi.l + TWNi + TRFDi.1 + TRFDi (eq. 4.22). 

Observe that Equations 4.17 and 4.12 are equivalent except for their stage index, as in the 

simplified case. Thus, Equation 4.17 would have been evaluated in the previous 

registration pair calculations, so it does not need to be reevaluated in the current 

registration pair calculations, except for the first pair, stage 1 and stage 2. Equations 4.7 

through 4.1 1,4.14,4.15, and 4.1 8 through 4.22, inclusive, can also be omitted based on 

the fact that they contain terms with overlapping time intervals. For example, consider 

Equation 4.11 containing TNi, then from Equation 4.6, TNi > TRFDi.1, which means that 

RFDi-1 completes before Ni. Since Di.l can begin as soon as RFDi.1 completes and RFDi.1 

completes before Ni, then the intervals labeled Di.1 and Ni must at least partially overlap. 

Thus, Equation 4.11 can be disregarded since it does not take into account this overlap. 

To remove the overlap, TNi could be replaced with TRFDi.1, which would yield the 

existing equation, 4.13. Through a similar analysis, three other overlapping terms can be 

found. Therefore, any equation containing one or more of these overlapping pairs: 

TNi and TDi-1, TDi and 'INi., , TRFNi and TRFNi.,, or TRFDi and TRFDi.1 must also be 

invalid, leaving only three valid equations, 4.12,4.13, and 4.1 6. 



In particular, Equation 4.16 considers the case of adjacent NULL propagation 

delays, including the request times. Equation 4.13 considers the case of adjacent DATA 

propagation delays, including the request times. Equation 4.12 considers the case of 

NULL and DATA propagation delays for a single registration stage, including the request 

times. Based on thls analysis, the pseudocode listed in Algorithm 4.2 can be used to 

calculate the worst-case throughput for a generalized N-stage NCL pipeline. 

max-cycle-time = TRFDl + TDl + TRFNl + TNI 
for (i = 2 to N) loop 

temp-cycle-time = MAX(TRFDi + TDi + TRFN, + TN,, 
TRFDi.l + TDi.* + TDi + TRFN,, 
TRFNi.1 + + TN, + TRFDi) 

if (temp-cycle-time > max-cycle-time) then 
max-cycle-time = temp-cycle-time 

end if 
end loop 
worst-case-throughput = 1 / max-cycle-time 

Algorithm 4.2. Calculation of worst-case throughput for a generalized N-stage pipeline. 

Evaluation of the above loop is followed by taking the reciprocal of the maximum 

adjacent stage pair delay to obtain a lower bound on the pipeline's throughput. 

4.3.2 Bit-Wise Completion 

In addition to minimizing stage delay, throughput may be further increased using 

bit-wise completion, briefly mentioned in [40]. Until now only full-word completion has 

been utilized, where the completion signal for each bit in register, is conjoined by the 

completion component, whose single-bit output is connected to all Ki lines of registeri.1. 

On the other hand, bit-wise completion only sends the completion signal from bit b in 



register, back to the bits in register,., that took part in the calculation of bit b. Thls method 

may therefore require fewer logic levels than that of full-word completion, thus 

increasing throughput. Bit-wise completion will never reduce throughput, since in the 

worse case all bits of registeri., are used to calculate each bit of registeri, such that the 

completion logic and therefore throughput does not change by selecting bit-wise 

completion rather than full-word completion. Bit-wise completion may or may not 

require more logic gates and therefore transistors than full-word completion, thus bit-wise 

completion will be used if it increases throughput, or if throughput is the same as for full- 

word completion but area is reduced. 

Figure 56 shows full-word completion for a combinational stage of six 2-input 

AND hct ions,  generating all combinations of the 4-bit input X. Figure 57 shows bit- 

wise completion for the same six AND fbnctions. There is only one level of logic in the 

completion components for the bit-wise completion approach verses two levels of logic 

in the completion component for the full-word completion approach. Also notice that 

four gates are required for bit-wise completion verses three gates for full-word 

completion, a difference of 8 additional transistors. To maximize throughput in this case, 

bit-wise completion would be selected in spite of its larger size since it reduces the 

completion logic path from two gate delays down to only one gate delay, which translates 

to an increase in throughput by Algorithm 4.2. 
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Figure 56. Full-word completion. 

U 3 )  4 3 )  Ki(2) W )  U 1 )  A(1) WO) 4 0 )  

Figure 57. Bit-wise completion. 



4.4 A~plication to Unsi~ned Multi~lier 

A number of designs based on the 4-bit by 4-bit multiplier shown in Figure 58 

have been evaluated as a case study to assess the impact of GLP methods on throughput. 

The specifications for this multiplier were simply to perform an unsigned multiply of the 

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. As with all NCL 

systems, a full NCL interface with request and acknowledge signals labeled Ki and KO, 

respectively, is included for requesting and acknowledging complete DATA and NULL 

wavefkonts. 

Remember that the number of gate delays in the completion logic for an N-bit register is 

Figure 5 8 . 4 ~ 4  multiplier block diagram. 

The non-pipelined version of the 4x4 multiplier is shown in Figure 59. It consists 

of incomplete AND functions, denoted as I and depicted in Figure 10, as well as 

complete AND functions, denoted as C and developed in Chapter 3. The multiplier also 

utilizes half adders, as shown in Figure 60 and denoted HA, as well as full adders, as 

shown in Figure 30 and denoted FA. The last components of the multiplier include 

GEN-S7, as shown in Figure 61, and the completion components, denoted as COMP. 

[log4 ~ 1 ,  as discussed in Chapter 2. 
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Figure 60. Half adder 

4.4.1 Pipelined Multipliers with Full-Word Completion 

The throughput for the non-pipelined design is calculated using Algorithm 4.2, 

and is determined to be (24 gate delays)-'. Here, TWDl = TRFNl = [log4 81 = 2 gate 

delays and TNI = TDI = 10 gate delays as given by the I, FA, FA, HA, FA, FA, and FA 

components along the critical path shown in bold face in Figure 59. Thus, 

Too = TWDl + TDI + TRFNl + TNI = 2 + 10 + 2 + 10 = 24. Since the 4x4 multiplier has 

a longest path delay of 10 threshold gates, then &om the flowchart in Figure 53, the 

4x4 multiplier can be pipelined with either 5,4, 3,2, or 1 gate delays per stage, if 

completeness of input can be achieved for each such partition. 

For a partition of 5 gate delays per stage, 2 stages are required, as shown in 

Figure 62. The throughput of this 2-stage design is determined to be (14 gate delays)-', as 

all equations from Algorithm 4.2 yield this same maximum cycle delay. For a partition of 



4 gate delays per stage, 3 stages are required, as shown in Figure 63. The first and second 

stages only have 3 gate delays, while stage 3 has 4 gate delays. The throughput of this 

3-stage design is determined to be (12 gate delays)", as calculated from Algorithm 4.2 for 

stage 3. For a partition of 3 gate delays per stage, 4 stages are required, as shown in 

Figure 64. The first stage has 3 gate delays, stage 2 only has 2 gate delays, and stage 3 

and stage 4 both have 3 gate delays. The throughput of this 4-stage design is determined 

to be (10 gate delays)-'. The equations from Algorithm 4.2 for stage 1, stage 3, stage 4, 

and stages 3 and 4 combined all yield this result. For a partition of 2 gate delays per 

stage, 7 stages are required, as shown in Figure 65. The first stage and the fourth stage 

only have 1 gate delay, while the other stages all have 2 gate delays. The throughput of 

this 7-stage design is determined to be (8 gate delays)-'. The equations from 

Algorithm 4.2 for stages 2,3, 5,6, and 7, as well as those for stages 2 and 3 combined, 

stages 5 and 6 combined, and stages 6 and 7 combined yield this result. 

A partition into a single gate delay per stage cannot be achieved since the 

completeness of input criterion is unattainable using only one level of logic with a 

maximum gate fan-in of 4 inputs. This would require inserting a register between the two 

levels of logic within the full adder, which would violate the completeness of input 

criterion upon which it was designed. 
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Figure 62.2-stage 4x4 multiplier using full-word completion. 
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Figure 64.4-stage 4x4 multiplier using fill-word completion. 
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4.4.2 Summary of Multiplier Desipns using Full-Word Completion 

The maximum throughput when pipelining the 4x4 multiplier using fill-word 

completion was (8 gate delays)-' as attained by the 7-stage design. Table X compares the 

throughputs attained from Synopsys simulation and shows that the 7-stage design indeed 

outperforms all other configurations, as expected by comparing the analytically predicted 

throughputs. This design has a 19% increase in throughput over the next highest 

throughput from the 4-stage multiplier, and an 83% increase in throughput over the 

original non-pipelined design. This increase in throughput was achieved at the expense of 

inserting 6 asynchronous registers along with corresponding completion logic, as dictated 

by the flowchart of Figure 53. The simulated throughput was obtained by averaging the 

throughputs resulting from all 256 possible combinations of input pairs. 

Table X. Stage delay and throughput for various multiplier designs. 

4.4.3 Amlying Bit-Wise Completion 

Multiplier 
Design 
1 -stage 
2-stage 
3-stage 
4-stage 
7-stage 

After traversing the loop of Figure 53 such that i=O, the highest throughput design 

utilized full-word completion. Bit-wise completion was applied to this design as specified 

by the flowchart. When switching from full-word completion to bit-wise completion the 

Maximum Combinational 
Delay per Stage 

(gate delays) 
10 
5 
4 
3 
2 

Maximum Completion 
Delay per Stage 

(gate delays) 
2 
2 
2 
2 
2 

Predicted 
Throughput 

(gate delays)" 
1/24 = 0.042 
1/14 = 0.071 
1/12=0.083 
1/10 = 0.100 
118 = 0.125 

Simulated 
Throughput 

(ns)-' 
0.1 14 
0.1 50 
0.172 
0.176 
0.209 



incomplete AND functions had to be replaced with complete AND functions to satisfy 

the completeness of input criterion over the new completion sets. The resulting design, 

shown in Figure 66, reduced the completion logic fiom 2 gate delays to only 1 gate delay 

for all registers, thus increasing the throughput fiom (8 gate delays)" to (6 gate delays)". 

From Synopsys simulation throughput was determined to be 0.257 ns-', an increase of 

2 1 % over the design with an identical number of stages using full-word completion. 

Thus, the 7-stage 4x4 multiplier utilizing bit-wise completion optimizes throughput. 

4.5 Conclusion 

Since increasingly finer pipelining of the multiplier did not increase the 

completiondelay, the most finely grained pipelined design was optimal. The non- 

pipelined design (Figure 59) required a maximum register width of 8 bits while the 

7-stage pipelined design (Figure 65) required a maximum register width of 16 bits, and 

rloB 81 = [log4 161 = 2. However, if the 7-stage design required a maximum register 

width of 17 bits instead of 16 bits, the throughput for the 7-stage design using full-word 

completion would have been the same as for the 4-stage design using fill-word 

completion. Thus, the 4-stage design using M1-word completion would have been 

preferable over its 7-stage counterpart, since it would have had less latency. Bit-wise 

completion would still have had to be performed on the 7-stage design and possibly the 

4-stage design to determine the overall optimal throughput design. 
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5.0 NULL CYCLE REDUCTION TECHNIQUE 

A NULL Cycle Reduction (NCR) technique is developed to increase the 

throughput of delay-insensitive digital systems. NCR reduces the time required to flush 

complete DATA wavefionts, commonly referred to as the NULL or Empty cycle. The 

NCR technique exploits parallelism by partitioning input wave fronts such that one circuit 

processes a DATA wavefiont, while its duplicate processes a NULL wavefiont. To 

illustrate the technique, NCR is applied to a case study of a dual-rail non-pipelined 

4-bit by 4-bit unsigned multiplier, yielding a speedup of 1.61 over the standalone version. 

while maintaining delay-insensitivity. 

5.1 Introduction 

Most multi-rail delay-insensitive logic paradigms employ both a DATA 

wavefiont and a NULL wavefiont in order to maintain delay-insensitivity [4,6,7, 8,9, 

2 11. The DATA wavefiont realizes circuit functionality, while the NULL wavefiont 

flushes the previous DATA wavefkont. The NULL cycle accounts for approximately half 

of the total cycle time, thus decreasing attainable throughput by a factor of two. The 

objective of this chapter is to develop and illustrate a technique for reducing the NULL 

cycle time such that throughput does not depend as heavily on the DATA flush time, yet 

still maintains delay-insensitivity. 



Many architectures and algorithms employ the well-known divide and conquer 

strategy. The divide and conquer technique partitions a problem into smaller sub- 

problems that can be solved simultaneously, then merges their outputs to construct the 

solution to the original problem, thus reducing computation time. The NCR technique 

described herein also employs this divide and conquer strategy to increase the throughput 

of NCL systems. Successive input wavefronts are partitioned such that one circuit 

processes a DATA wavefront, while its duplicate processes a NULL wavefkont. The first 

DATANULL cycle flows through the original circuit, while the next DATA/NULL 

cycle flows through the other circuit. The outputs of the two circuits are then multiplexed 

to form a single output stream. 

5.2 NULL Cycle Reduction 

The technique for reducing the NULL cycle, thus increasing throughput for any 

NCL system is shown in Figure 67. NCL Circuit #I and NCL Circuit #2 have identical 

functionality and are both initialized to output NULL and request DATA upon reset. Both 

have an asynchronous NCL register at the input and output, while the combinational 

functionality can be designed using TCR described in Chapter 3. These circuits may also 

be pipelined as described in Chapter 4, to Wher  increase throughput. The Demultiplexer 

partitions the input, D, into two outputs, A and B, such that A receives the first 

DATAMULL cycle and B receives the second DATA/NULL cycle. The input 

continuously alternates between A and B. The Completion Detection circuitry detects 

when either a complete DATA or NULL wavefiont has propagated through the 



Demultiplexer, and requests the next NULL or DATA wavefiont, respectively. 

Sequencer #I is controlled by the output of the Completion Detection circuitry and is 

used to select either output A or B of the Demultiplexer. Output A of the Demultiplexer is 

input to NCL Circuit #1 when requested by Kil ;  and output B of the Demultiplexer is 

input to NCL Circuit #2 when requested by Ki2. The outputs of NCL Circuit #1 and NCL 

Circuit #2 are allowed to pass through their respective output registers, as determined by 

Sequencer #2, which is controlled by the external request, Ki. The Multiplexer rejoins the 

partitioned datapath by passing a DATA input on either A or B to the output, or asserting 

NULL on the output when both A and B are NULL. Figure 67 shows the state of the 

system when a DATA wavefiont is being input, before its acknowledge flows through the 

Completion Detection circuitry, and when a DATA wavefiont is being output, before it is 

acknowledged by the receiver. 

Figure 67. NCR architecture. 
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5.2.1 Demultiplexer 

A logic diagram for one bit of the Demultiplexer is shown in Figure 68. Upon 

reset both A and B are initialized to NULL. When S1 is asserted and Kil is rfd, a 

DATA input on D will be passed to output A. Likewise, when S2 is asserted and Ki2 is 

~ d ,  a DATA input on D will be passed to output B. KO becomes rfd when both A and B 

are NULL, and becomes rfn when either A or B is DATA. When A becomes DATA, it 

will return to NULL only after Sl is de-asserted, Kil becomes rfn, and the input, D, 

becomes NULL. Likewise, when B becomes DATA, it will return to NULL only after S2 

is de-asserted, Ki2 becomes rfi, and the input, D, becomes NULL. Therefore, A and B 

can never both be DATA since S1 and S2 can never be simultaneously asserted and both 

A and B must be NULL before the next DATA wavefront is requested. Each bit of the 

Demultiplexer is the same, and the number of bits is determined by the width of the input 

datapath. 

Figure 68. 1 -bit Demultiplexer. 



5.2.2 Completion Detection Circuitw 

The Completion Detection circuitry is the same as that explained in Chapter 2 and 

shown in Figure 23. The number of KO lines from the Demultiplexer is also determined 

by the width of the input datapath. 

5.2.3 Sequencer #1 

Sequencer #I is controlled by the output of the Completion Detection circuitry 

and is used to select either output A or B of the Demultiplexer. Upon reset it selects 

output A to receive the first DATAINULL cycle, after Ki becomes rfd. It then selects 

output B to receive the second DATANULL cycle. Sequencer #1 continuously alternates 

the DATA/NCTLL cycles between outputs A and B. A logic diagram of Sequencer #1 is 

shown in Figure 69. This is a 4-stage single-rail ring structure with one token, where a 

token is defined as a DATA wavefront with corresponding NULL wavefiont, and two 

bubbles, where a bubble is defined as either a DATA or NULL wavefiont occupying 

more than one neighboring stage [38]. When Ki becomes rfd, the DATA wavefront 

moves through the two NULL bubbles ahead of it, creating two DATA bubbles in its 

wake. Likewise, when Ki becomes rfn, the NULL wavefront moves through the two 

DATA bubbles ahead of it, creating two NULL bubbles in its wake. The DATNNULL 

wavefiont restricts the forward propagation of the NULLDATA wavefiont, respectively, 

for each change of Ki, limiting the forward propagation to only the two bubbles. A 

complete cycle of the Sequencer is shown in boldface and italics in Table XI. The cycle 

for SI is 1000, while the cycle for S2 is 0010. 



Reset 

Ki 

Figure 69. Sequence generator. 

Table XI. Sequencer output. 

5.2.4 Multiplexer 

A logic diagram for one bit of the Multiplexer is shown in Figure 70. It simply 

consists of two OR gates that pass a DATA input on either A or B to the output, D, or 

assert NULL on the output when both A and B are NULL. The Multiplexer does not 

require any select signals, since A and B can never simultaneously be DATA. This mutual 

exclusion is ensured by Sequencer #2, which controls the outputs of NCL Circuit #1 and 

NCL Circuit #2. Each bit of the Multiplexer is the same, and the number of bits is 

determined by the width of the output datapath. 



Figure 70. 1 -bit Multiplexer. 

5.2.5 Sequencer #2 

Sequencer #2 is controlled by the external request, Ki, and is used to allow DATA 

and NULL wavefronts to flow through the output register of NCL Circuit #1 and NCL 

Circuit #2. Upon reset it selects NCL Circuit #1 to output the first DATA/NULL cycle, 

after Ki becomes fld. It then selects NCL Circuit #2 to receive the second DATANULL 

cycle. Sequencer #2 continuously alternates the DATA/NULL cycles between NCL 

Circuit #1 and NCL Circuit #2. When SI is asserted, DATA will be output from NCL 

Circuit # l .  Likewise, when S2 is asserted, DATA will be output from NCL Circuit #2. 

When the output of NCL Circuit #1 becomes DATA, it will return to NULL only after Sl 

is de-asserted. Likewise, when the output of NCL Circuit #2 becomes DATA, it will 

return to NULL only after S2 is de-asserted. Therefore, NCL Circuit #1 and NCL 

Circuit #2 can never both output DATA since SI and S2 can never be simultaneously 

asserted and the outputs of both circuits must be NULL before the next DATA wavefiont 

is requested by asserting either Sl or S2. The structure of Sequencer #2 is the same as that 

of Sequencer #1 shown in Figure 69. 



5.3 Simulation Results 

A case study of a dual-rail non-pipelined 4-bit by 4-bit multiplier, shown in 

Figure 59, has been evaluated to assess the impact of the NCR technique on throughput. 

The specifications for this multiplier were simply to perform an unsigned multiply of the 

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. A full NCL 

interface with request and acknowledge signals labeled Ki and KO, respectively, is 

provided for requesting and acknowledging complete DATA and NULL wave fronts. 

From Synopsys simulation it was determined that the standalone version of the dual-rail 

non-pipelined 4-bit by 4-bit multiplier had an average DATA-to-DATA cycle time of 

8.75 ns with approximately equal DATA and NULL cycles. When the NCR technique 

was applied to this design, the NULL cycle was reduced to approximately ?4 of the 

DATA cycle. This resulted in an overall average DATA-to-DATA cycle time of only 

5.43 ns, which corresponds to a 61% increase in throughput. Values for average 

throughput were obtained fiom the arithmetic mean of throughputs corresponding to all 

256 possible pairs of input operands. 

Table XI1 compares the throughput of the multiplier using NCR with the 

throughputs achieved by pipelining the multiplier as explained in Chapter 4. Table XI1 

shows that the NCR technique is roughly comparable to pipelining for some applications, 

since it falls in between the Cstage and 7-stage pipelined designs in terms of both 

throughput and gate count. Furthennore, it is not necessary to duplicate the entire circuit 

when applying the NCR technique. Rather, its benefits can be obtained without doubling 

area and power requirements by applying it to selective portions of a circuit, which 



cannot be pipelined more finely due to the completeness of input criterion. However, if 

NCR was applied to stagei to boost throughput, both stage., and stagei+l may have to be 

non-functional stages to realize the full increase due to the adjacent DATA propagation 

delays of Equation 4.13 for determining throughput, as explained in Chapter 4. A non- 

functional stage can be easily added by inserting an additional asynchronous register. 

Thus, throughput of a pipelined design with a small number of slow stages can be readily 

boosted with relatively little cost by using NCR. 

Table XII. NCR vs. pipelining for multiplier application. 

I Maximum Combinational I Maximum Comdetion I Simulated I 
)I Delay per Stage I Delay per stage I Throughput 1-1 

To illustrate this point, NCR was applied to only a single stage of the pipeline 

Design 
4-stage 

NCR (1 -stage) 
7-stage 

shown in Figure 71. Multiplier #1 and Multiplier #3 are both 2-stage unsigned multipliers 

with a worse-case stage delay of 5 gate delays, as depicted in Figure 62. Multiplier #2 is a 

non-pipelined unsigned multiplier consisting of 10 gate delays, as depicted in Figure 59. 

Therefore, the 10 gate delays of Multiplier #2 is much longer than the 5 gate delays per 

stage of the other multipliers, making Multiplier #2 a good candidate for NULL Cycle 

(gate delays) 
3 
I 0  
2 

Reduction. Without NCR, the pipeline of Figure 7 1 operates with TDD = 8.42 ns; 

however, with NCR only applied to Multiplier #2, Too is decreased to 6.96 ns, a speedup 

of 1.21. Henceforth, applying NCR to only slow stages in a pipeline can boost throughput 

(gate delays) 
2 
2 
2 

(ns)" 
0.1 76 
0.184 
0.209 

Count 
264 
365 
390 



for the pipeline as a whole. Note that additional registration was not needed to form non- 

functional stages around the NCR stage, since these non-functional stages already existed 

when the multipliers were connected to form the pipeline of Figure 71, since each 

multiplier contains both an input and output register. 
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Figure 71. NCL pipeline with one slow stage. 



6.0 NCL MULTIPLY AND ACCUMULATE UNIT 

The TCR and GLP techniques developed in earlier chapters are illustrated in the 

context of a sophisticated arithmetic application. Approaches for maximizing throughput 

of self-timed multiply and accumulate units (MACs) are developed and assessed using 

NCL. It is shown that the self-timed MAC throughput optimization problem can be 

transformed into the selection of the multiplication algorithm requiring the fewest 

number of gates. A number of alternative MAC algorithms are compared and contrasted 

in terms of throughput and area to determine which design will yield the maximum 

throughput with the least area. It was determined that two algorithms that meet these 

criteria well are Modzfied Baugh- Wooley and Modzfied Booth2. Dual-rail non-pipelined 

versions of these algorithms were first designed using the Threshold Combinational 

Reduction (TCR) method described in Chapter 3. The non-pipelined designs were then 

optimized for throughput using the Gate-Level Pipelining (GLP) method described in 

Chapter 4. Finally, each design was simulated using Synopsys to quantify the advantage 

of the dual-rail pipelined Modified Baugh- Wooley MAC, which yielded a speedup of 2.5 

over its initial non-pipelined version. This design also required 20% fewer gates than the 

dual-rail pipelined Modified Booth2 MAC that operated at the same throughput. The 

resulting design employs a three-stage feed-forward multiply pipeline connected to a 

four-stage feedback mult i~ct ional  loop to perform a 72+32x32 MAC in 12.7 ns on 



average using a 0.25 pm CMOS process at 3.3V, thus outperforming other delay- 

insensitivelself-timed MACs in the literature. 

6.1 Introduction 

This chapter evaluates a number of both bitwise and digitwise multiplication 

algorithms suitable for self-timed MAC design. The bitwise algorithms include Array 

Structured multiplication and multiplication using the Modified Baugh- Wooley algorithm. 

Digitwise algorithms include Modified Booth multiplication as well as combinational 

N-Bit x M-Bit multiplication. These algorithms are compared in terms of throughput and 

area to fimt maximize steady-state throughput and then minimize total gate count within 

the NCL multi-rail paradigm. This chapter considers 2S-complement operands with 

rounding, scaling, and saturation of the output. 

The chapter is organized into six sections. An overview of previous work is given 

in Section 6.2. In Section 6.3, the non-pipelined and pipelined versions of both the 

Modified Baugh-Wooley and Modified Booth2 MACs are designed; and their 

throughputs are estimated analytically and also simulated. Section 6.4 details the 

rationale for selecting a ripple-carry adder over a cany-lookahead adder for carry- 

propagation. In Section 6.5 the above designs, along with a variety of others, are 

compared in terms of gate count. Section 6.6 provides conclusions and compares the 

NCL MAC developed herein to other delay-insensitivelself-timed MACs. 



6.2 Previous Work 

Approaches to self-timed MAC design are an area of recent interest [4 1,42,43]. 

Self-timed MAC design itself presents some interesting design considerations such as 

feedback loop throughput maximization, carry-propagate adder selection, and 

multiplication algorithm selection. As detailed in Section 6.3.3.2, throughput is 

maximized for a self-timed feedback loop by inserting enough, but not too many, 

asynchronous registers. In Section 6.4 it is shown that for NCL, a ripple-cany adder is 

better than a carry-lookahead adder since timing is based on average-case scenarios. And 

as explained in Section 6.3.5, the throughput of a pipelined self-timed MAC is 

independent of the selected multiplication algorithm, making the best choice the 

algorithm requiring the least area. 

The Modified Baugh- Wooley algorithm, the Array algorithm, and the Modrfed 

Booth algorithm for multiplication are all described in [44]. The Modzfed Baugh- Wooley 

algorithm removes the need for negatively weighted bits present in the traditional 

2'-complement multiplication algorithm by modifying the most significant bit of each 

partial product and the last row of partial products, and by adding two extra bits to the 

partial product matrix. This allows for summation of the partial products without using 

special adders equipped to handle negative inputs and without increasing the height of a 

tree of 3-input, 2-output carry-save adders. 

Array multiplication of 2'-complement numbers also begins with each partial 

product bit generated according to the Modified Baugh-Wooley algorithm. Its 

distinguishing characteristic is the technique for partial product summation. In the 



Modified Baugh-Wooley algorithm the partial products are summed using a Wallace tree 

[44], which reduces the number of partial products by a factor of 5 after each level of the 

tree and requires O(log2 N) time and O(N) space, where N denotes the number of partial 

products [45]. On the other hand, Array multiplication reduces the number of partial 

products by one at each level, therefore this method requires both O(N) time and space 

The Modified Booth algorithms reduce the number of partial products to be 

summed by partitioning the multiplier into groups of overlapping bits, which are then 

used to select multiples of the multiplicand for each partial product. Consider, for 

example an N-bit by N-bit 2'-complement multiply. Using the Modified Booth2 

algorithm the multiplier is partitioned into overlapping groups of three bits, each of which 

selects a partial product from the following list: +0, +M, +2M, -2M, -M, and -0, where M 

represents the multiplicand. This recoding reduces the number of partial products fiom N 

to L 1. The tradeoff is more logic in the recoding portion of the multiplier in exchange 

for fewer partial products to sum. 

6.3 Self-Timed MAC Desipn Methods 

A block diagram for the MACs developed in this chapter is shown in Figure 72. 

Each MAC unit performs a 32-bit by 32-bit fixed-point fractional multiply, accepting 

(signed x signed), (signed x unsigned), and (unsigned x unsigned) 2'-complement 

operands. The product may be added to or subtracted from the 72-bit accumulator. The 

MAC also supports 2'-complement and convergent rounding, up-scaling and down- 



scaling, output saturation, and it includes a multiply only option. The output is the 72-bit 

2'-complement result along with a bit to detect overflow. 

The taxonomy in Figure 73 is usehl to illustrate relationships between some 

possible multiplication algorithms that could be used in a self-timed MAC design. These 

include bitwise algorithms such as Array multiplication and the Modfied Baugh- Wooley 

algorithm; and digitwise algorithms like Modzfied Booth as well as combinational 

N-Bit x M-Bit multiplication. The Modified Booth algorithms [44] considered were 

Booth.2, Booth3, and Booth4, as higher radix Booth recodings incur an excessive number 

of gates, as discussed in Section 6.4.5. The N-Bit x M-Bit algorithms considered were 

2-Bit x 2-Bit, 2-Bit x 3-Bit, 2-Bit x 4-Bit, and 3-Bit x 3-Bit combinational multiplication, 

since larger operand implementations are not competitive in terms of gate count, as 

discussed in Section 6.4.9. For all of these algorithms both dual-rail and quad-rail 

encodings were assessed and compared in terms of throughput and area to determine that 

the dual-rail pipelined Modified Baugh-Wooley MAC achieves highest throughput with 

the fewest number of gates. The next best performing approach is dual-rail Modified 

Booth2, which was also implemented as both a pipelined and non-pipelined design for 

comparison. For each design in Section 6.3, the circuit operation, optimization, and 

performance are discussed in that order. Unless otherwise stated, designs are 

implemented in dual-rail logic. 
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Figure 73. Taxonomy of 72+32x32 MAC. 

6.3.1 Non-Pipelined Modified Bau~h- Woolev MAC 

6.3.1.1 Operation 

The structure of the non-pipelined Modified Baugh-Wooley MAC is shown in 

Figure 74. NCL enables several optimizations as discussed in Section 6.3.1.2. In Phase 1, 

the multiplication begins by generating all of the partial products that can be generated in 

one gate delay. Next, these partial products are used in the first level of the Wallace tree, 

while the last row of partial products and most significant bit of each partial product. 



requiring two gate delays, are generated. Concurrently, the previous value in the 

accumulator is shifted, if necessary, to account for the type of multiplication being 

performed. It is complemented if the result is to be subtracted fiom the accumulator, or is 

zeroed if multiply only is specified. Next, the modified accumulator and the uncombined 

partial products are used, along with the output from the first level of the Wallace tree, as 

the input to the second level of the Wallace tree. After this, there are six more Wallace 

tree levels before the partial products are reduced to two 65-bit words, where a ripple- 

carry addition is performed. The rationale for selecting a ripple-carry adder is detailed in 

Section 6.4. 

During the summation of the partial products in Phase 1, Phase 2 begins with the 

multiply sign and the accumulate sign being generated as inputs to overflow detection. 

Also, the control signals are ensured for input-completeness in order for the MAC to 

remain delay-insensitive, as described in Chapter 2. After the ripple-cany addition, the 

result is again shifted if necessary to account for the type of multiplication being 

performed and is complemented if the result is to be subtracted fiom the accumulator. 
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Figure 74. Non-pipelined Modified Baugh-Wooley MAC. 

In Phase 3, the result can then be rounded and saturated if required. To round the 

result it is determined if the lower portion (LSB) is greater than or equal to 0.5, greater 

than 0.5, or less than 0.5. The LSB is contained in either the lower 3 1, 32, or 33 bits, 

depending on whether up-scaling, no scaling, or down-scaling is selected, respectively, as 

shown in Figure 75. After this is determined, a rounding bit is generated to be added to 

the upper portion of the result (MSB), based on the LSB and the selected rounding 

algorithm, either 2S-complement or convergent rounding, described in Algorithm 6.1 and 



Algorithm 6.2, respectively. Next, this bit, either RND3 1, RND32, or RND33, is added to 

the MSB of the result using a carry-lookahead adder. After the carry-lookahead addition, 

the result can then be saturated as shown in Table XIII, by checking bits 7 1,64, and 63. 

While the result is processed by the saturation logic, the overflow bit is generated fiom 

bit 71 and the multiply and accumulate signs calculated earlier. The result is then output 

and fed back to the input register through an additional asynchronous register such that 

there are three registers in the feedback loop to prevent a lockup scenario as explained in 

Chapter 2. 

71 64 
Extension 

71 64 
Extension 

Figure 75. Output divisions for a) up-scaling, b) no scaling, and c) down-scaling. 

63 31 
MSB 

71 64 
Extension 

if (LSB >= 0.5) then 
MSB = MSB + 1 

else if (LSB < 0.5) then 
MSB = MSB 

end if 
LSB = 0 

30 0 
LSB 

63 32 
MSB 

Algorithm 6.1. 2s-complement rounding. 

31 0 
LSB 

63 33 
MSB 

32 0 
LSB 



if (LSB > 0.5) then 
MSB = MSB + 1 

else if (LSB < 0.5) then 
MSB = MSB 

else if (LSB = 0.5) and (the least significant bit of MSB = 0) then 
MSB = MSB 

else if (LSB = 0.5) and (the least significant bit of MSB = 1) then 
MSB = MSB + 1 

end if 
LSB = 0 

Algorithm 6.2. Convergent rounding. 

Table XIII. Saturation table. 

6.3.1.2 Desi~n Optimizations 

There are two optimizations considered: the first is architectural and the second is 

B7, 
0 
0 
0 
0 
1 
1  
1  

NCL-specific. The first optimization deals with accumulation. The accumulator is shifted 

and complemented at the beginning and added to the second level of the Wallace tree, 

and the result is then shifted and complemented again following the ripple-carry addition 

to reduce the circuit delay. The shifting accounts for the various multiply types: 

(signed x signed), (signed x unsigned), and (unsigned x unsigned), while the 

Ba4 
0 
0 
1  
1  
0 
0 
I 

1 1 1  

complementing is used for subtraction from the accumulator. The alternative is to shift 

BBj 
0 
1  
0 
1  
0 
1  
0 

Saturated Result 
No Change 

007FFF FFFF 
007FFF FFFF 
007FFF FFFF 
FF 8000 0000 
FF 8000 0000 
FF 8000 0000 
No Change 

Saturated and Rounded Result 
Result of Rounding Algorithm 

007FFFOOOO 
00 7FFF 0000 
007FFFOOOO 
FF 8000 0000 
FF 8000 0000 
FF 8000 0000 

Result of Rounding Algorithm 



and 2S-complement the two outputs of the Wallace tree and then accumulate. This 

approach results in four words to be summed before the ripple-cany addition: the 

accumulator, the two shfted and complemented partial products, and the extra bit to be 

added to the least significant bit of each partial product due to their required 

2S-complementing. In the second approach, the four extra words that need to be summed 

before the ripple-carry addition can begin require two carry-save adders. This 

optimization will always reduce the critical path by twice the worst-case propagation 

delay of a fill adder. In this design four gate delays were eliminated fiom the critical 

path. 

Other optimizations include partial product generation facilitated through 

completeness optimizations in NCL. All partial products except for the most significant 

bits atid the last partial product are directly generated by AND functions. To ensure 

completeness of the X and Y inputs only the 45 partial products, where i = j and 

30 2 i, j 2 0, require the use of complete AND functions, developed in Chapter 3. The rest 

of the partial products, XI;., where i # j ,  can be generated using incomplete AND 

functions, depicted in Figure 10. Since the incomplete AND functions require 14 fewer 

transistors than the complete AND functions, and can be used for 930 of the 961 AND 

functions required for partial product generation, a net total of 13,020 transistors were 

saved in this design. 



6.3.1.3 Average Cycle Time Determination 

To determine the average cycle time for the MAC, the average cycle time for a 

ripple-cany adder was required. A C-language program was written that calculates the 

number of occurrences of each possible number of gate delays for an N-bit ripple-carry 

adder, from the minimum number of three gate delays for no carries, to the maximum 

number of N+l gate delays for a carry occurring at each adder. The program then 

calculates the weighted average of the number of occurrences of each scenario to 

determine the expected average number of gate delays for the N-bit ripple-carry adder, 

assuming that all inputs are equiprobable. With N = 65, as in this design, the program 

calculates Too = 8.33 gate delays. With the average number of gate delays for the ripple- 

cany adder known, the calculation of TDD follows Algorithm 4.2 in Chapter 4, as the 

average number of gate delays through the combinational logic for both DATA and 

NULL plus the number of gate delays through the completion circuitry for both DATA 

and NULL. Since the delay in the completion logic is 4 gates and the number of gate 

delays through the combinational circuitry is 34 plus the average delay of the ripple-carry 

adder, determined to be 8.33 from the program, TDD = (2 x 4) + (2 x (34 + 8.33)) = 92.66 

gate delays, accounting for both the DATA and NULL cycle. Simulation results are 

presented in Section 6.3.5. Experience with the program for a range of values of 

parameter N indicates logarithmic behavior for the ripple-carry addition as corroborated 



6.3.2 Non-Pipelined Modified Booth2 MAC 

6.3.2.1 O~eration 

The structure of the non-pipelined Modified Booth2 MAC is shown in Figure 76. 

In Phase 1, the multiplication begins by generating all of the partial products and the 

shifted and complemented, or zeroed, accumulator value, since both of these operations 

require three gate delays. Next, the partial products and the momfied accumulator are 

combined through the first of six levels of the Wallace tree. The two partial products 

output fiom the Wallace tree are used in a 67-bit ripple-carry addition. The Modified 

Booth2 MAC requires a 67-bit ripple-carry addition, verses the 65-bit ripple-carry 

addition required in the Modified Baugh-Wooley MAC, since the Modified Booth2 MAC 

has two less Wallace tree levels, each of which reduces the length of the ripple-carry 

addition by one. 

During the summation of the partial products in Phase 1, Phase 2 begins with the 

multiply sign and the accumulate sign being generated as inputs to overflow detection. 

Also, the control signals and the multiplier and multiplicand, X and Y, respectively, are 

ensured for completeness in order to maintain delay-insensitivity. Both X and Y must be 

ensured here because they are not implicitly complete in the partial product generation 

circuitry, as they are in the Modified Baugh-Wooley design, ensured by selectively 

complete AND functions. After the ripple-cany addition, the result is again shifted, if 

necessary, to account for the type of multiplication being performed and is complemented 

if the result is to be subtracted fkom the accumulator. 
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Figure 76. Non-pipelined Modified Booth2 MAC. 

In Phase 3, the result can then be rounded and saturated if required and the 

overflow bit generated in exactly the same manner as for the Modified Baugh-Wooley 

MAC. The result is then output and fed back to the input register through an additional 

asynchronous register such that there are the required three registers in the feedback loop. 



6.3.2.2 Design Optimizations 

The same optimizations for selecting multiplication type and addinglsubtracting 

the partial products to/from the accumulator used in the Modified Baugh-Wooley design, 

explained in Section 6.3.1.2, were implemented in the Modified Booth2 design. 

6.3.2.3 Average Cycle Time Determination 

TDD can be calculated from Algorithm 4.2 in Chapter 2, as described in 

Section 6.3.1.3. Since the delay in the completion logic is 4 gates and the number of gate 

delays through the combinational circuitry is 32 plus the average of the ripple-carry adder 

determined to be 8.3 8 from the C-program, TDD = (2 x 4) + (2 x (32 + 8.3 8)) = 88.76 gate 

delays, accounting for both the DATA and NULL cycle. Therefore, the Modified Booth2 

algorithm should be faster than the Modified Baugh-Wooley algorithm for the non- 

pipelined MAC designs. 

6.3.3 Pipelined Modified Bau~h-Woolev MAC 

6.3.3.1 Operation 

The structure of the pipelined Modified Baugh-Wooley MAC is shown in 

Figure 77. The first stage begins by generating all of the partial products that can be 

generated in one gate delay. Next, these partial products are used in the first level of the 

Wallace tree, while the remaining partial products that require two gate delays are 

generated. The remaining partial products, along with the output from the first level of 

the Wallace tree, are then used as the input to the second level of the Wallace tree. 
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Figure 77. Pipelined Modified Baugh-Wooley MAC. 



Stage 1 also contains the third level of the Wallace tree along with the multiply sign 

generation. The second stage consists of four more levels of the Wallace tree. Stage 3 

begins with the final level of the Wallace tree, followed by the shifting and 

2S-complementing of the Wallace tree output, if necessary, to account for the type of 

multiplication being performed and for subtraction fiom the accumulator. The third stage 

also contains another cany-save adder, required because of the 2s-complement operation. 

Stage 4 begins the feedback loop and contains the circuitry to zero Ain for the multiply 

only function and the final camy-save adder to add Ain to the Wallace tree output. The 

fourth stage also generates the accumulate sign. The fifth stage consists solely of a 71 -bit 

ripple-carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7 

contains the remaining rounding logic along with the saturation circuitry, control signal 

completeness logic, and overflow detection circuitry, as explained in Section 6.3.1.1. 

6.3.3.2 Throughput Maximization 

An effective approach for pipelining a self-timed MAC begins with minimization 

of the feedback loop. This is in part because the feed-forward portion of the MAC can be 

pipelined to a fine granularity as long as completeness is ensured at each stage boundary. 

This enables the throughput of the feed-forward path to be at least as great as that of the 

feedback loop. To do this, it is preferable to postpone the addition of Ain with the partial 

products until absolutely necessary. Moreover, the subtraction and multiply mode 

selection method can be revised such that it reduces the number of operations required in 

the feedback loop. To increase throughput in the non-pipelined design, Ain was 



complemented and shifted, or zeroed, and the result fkom the ripple-carry adder was 

complemented and shifted. However, for the pipelined design, the two outputs of the 

Wallace tree can be 2S-complemented and shifted, allowing the shifting and 

complementing of Ain followed by the shifting and complementing of the result to be 

removed from the feedback loop. This is replaced instead by the 2S-complementing and 

shifting of the final two partial products, followed by an extra carry-save adder in the 

feed-forward portion of the design. The zeroing of Ain for the multiply only function is 

still required to be performed within the feedback loop. In the pipelined implementation, 

this change eliminates five gate delays fkom the feedback path with no additional latency 

in the pipeline. The corresponding logic is relocated to the feed-forward portion of the 

design. Partitioning the feed-fomard portion into three stages with a maximum of 8 gate 

delays per stage allows the inclusion of the additional logic without decreasing overall 

throughput. 

After the feedback logic of the MAC is minimized, it can be pipelined by 

inserting asynchronous registers as described in Chapter 4. It was shown in [38] that a 

feedback loop containing N tokens, where a token is defined as a DATA wavefiont with 

corresponding NULL wavefront, requires 2N bubbles for maximum throughput, where a 

bubble is defined as either a DATA or NULL wavefront occupying more than one 

neighboring stage. This allows for each DATA and NULL wavefiont to move through 

the feedback loop independently. Since the feedback loop in the MAC design only 

contains one token, two bubbles are necessary to maximize throughput. A token requires 

two stages, one stage for the DATA portion and one stage for the NULL portion, while 



each bubble requires one stage. Therefore, the feedback loop was partitioned into four 

stages for maximum throughput. 

The front end of the feedback loop was partitioned as shown in Figure 77. 

Partitioning of the ripple-carry adder is not advisable since this would incur extra gate 

delays on the critical path. Inserting a register in the middle of the ripple-carry addition 

would tend to lessen the benefits of its asynchronous behavior by increasing the 

O(log2 N) average time for an N-bit ripple-cany addition, since 

log2 N1+ log2 N2 > log2 N; where N = N1+ N2, N 2 6, and N1, N2 2 3. The last two 

stages were divided to minimize the worst-case delay of each stage. The Upper Rounding 

logic for the most significant 41 bits of the result can be partitioned into a 5 gate delay 

circuit followed by a 1 gate delay circuit, without violating the input-completeness 

criteria. Altemately, inserting a register between this partition would result in Stage 6 

having 10 gate delays and Stage 7 having 4 gate delays. The 10 gate delays of Stage 6 in 

this alternate design would exceed the 9 gate delays of Stage 7 in the current design. 

Furthennore, simulation shows both finer and coarser partitionings decrease throughput. 

Throughput can be further increased using partial bitwise completion, described 

in Chapter 4, where the feed-forward output joins the feedback input. Two separate 

completion logic blocks are appropriate. The first, whose input is KO*, only 

acknowledges the inputs fiom the feed-forward circuit; the second, whose input is Ko2. 

only acknowledges the feedback inputs. This optimization can decrease the inter- 

dependencies between the feedback loop and the feed-forward path to boost throughput 

an additional 2%. 



Finally, the feed-forward portion is pipelined such that its throughput is at least as 

great as that of the feedback loop. In other words, the output fiom the feed-forward 

portion of the design must always be available when the feedback input is ready. 

Therefore, the minimum forward path through the feedback loop must be determined. 

Since the minimum delay through a ripple-carry adder is 3 gates and the delay for each 

register is 1 gate, the minimum forward path through the feedback loop is 

3 + 3 + 5 + 9 + (5 x 1) = 25 gate delays, as indicated on the right side of Figure 77. In 

order to ensure that the feedback loop will never wait on input from the feed-forward 

portion, the maximum cycle time of the feed-forward pipeline must not exceed 25 gate 

delays. Decreasing the cycle time of the feed-forward portion to less than 25 gate delays 

will not increase the throughput as a whole. Therefore, this MAC optimization problem is 

transformed to ensuring a maximum cycle time of 25 gate delays for the feed-forward 

portion of the design, while adding as few asynchronous registers as possible. Following 

the method described in Chapter 4 for pipelining NCL circuits, it was determined that the 

addition of two asynchronous registers, as shown in Figure 77, would result in a 

maximum cycle time of 24 gate delays for the feed-forward circuitry. Furthermore, 

simulation shows that finer partitioning does not increase throughput, while coarser 

partitioning decreases throughput. 



6.3.4 Pipelined Modified Booth2 MAC 

6.3.4.1 Operation 

The structure of the pipelined Modified Booth2 MAC is shown in Figure 78. The 

first stage begins by generating all of the partial products, which are then input to the first 

of two levels of the Wallace tree. Stage 1 also contains the multiply sign generation and 

the completeness generation for the multiplier and multiplicand, X and Y, respectively, 

since they are not implicitly complete in the partial product generation circuitry. The 

second stage consists of three more levels of the Wallace tree. Stage 3 begins with the 

final level of the Wallace tree, followed by the shifting and 2'-complementing of the 

Wallace tree output, if necessary, to account for the type of multiplication being 

performed and for subtraction from the accumulator. The third stage also contains 

another cany-save adder, required because of the 2"complement operation. Stage 4 

begins the feedback loop and contains the circuitry to zero A2n for the multiply only 

function and the final cany-save adder to add Ain to the Wallace tree output. The fourth 

stage also generates the accumulate sign. The fifth stage consists solely of a 71-bit ripple- 

carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7 contains 

the remaining rounding logic along with the saturation circuitry, control signal 

completeness logic, and overflow detection circuitry, as detailed in Section 6.3.1.1. 
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Figure 78. Pipelined Modified Booth2 MAC. 



6.3.4.2 Throu~hput Maximization 

The throughput maximization procedure for the feedback loop follows that of the 

pipelined Modified Baugh-Wooley design, explained in Section 6.3.3.2. The minimum 

forward path through the feedback loop is also 25 gate delays, and is independent of the 

selected multiplication algorithm. Addition of as few as two asynchronous registers, as 

shown in Figure 78, results in a maximum cycle time of 24 gate delays for the feed- 

forward portion. Since the feedback loop for the pipelined Modified Booth2 and Baugh- 

Wooley designs are the same, and the feedback loop is the limiting factor of throughput 

maximization for each, the two designs should have the same throughput. 

6.3.5 Simulation Results 

-Before the average cycle time was determined for the designs, each was 

extensively tested with various data patterns and control inputs to verify correct 

operation. Once correct operation is established, representative MAC operations need to 

be selected to provide an adequate comparison of their throughputs. A candidate 

operation is Aout = 5 (X x X) ; where Xi = & + (2-21 x i) and Yi = Yo + (2.' x i) with N 
i = O  

chosen to be 255. This allows a variety of computations to be performed such that any 

unusually short or long operations will not significantly skew the average cycle time. For 

instance, in my testbench Xo and Yo were randomly selected such that 

Xo = A61C039Dh = -0.702270077076 and Yo = F0046718h = -0.124865639955. Also, 

(signed x signed) multiplication was selected and rounding, scaling, and saturation were 

disabled. The same operation was also performed in a C-language program and the result 



fi-om this program agreed with the results fi-om each of the simulated designs: 

Aout = 05AOB 13COE04A37000h = 1 1.2554087704. 

Both the non-pipelined and pipelined Modified Baugh-Wooley and Booth2 MAC 

designs were simulated using Synopsys in order to compare their throughputs to ensure 

that the relative values were consistent with the predicted results. The Synopsys 

technology library for the NCL gates is based on static 3.3V, 0.25 pm CMOS 

implementations. The average cycle time, TDD, for the non-pipelined Modified Baugh- 

Wooley MAC was determined to be 3 1.8 ns; while TDD for the non-pipelined Modified 

Booth2 MAC was determined to be 3 1.2 ns. Therefore, the non-pipelined Modified 

Booth2 MAC is faster than the non-pipelined Modified Baugh-Wooley MAC, as 

anticipated in Section 6.3.2.3. As for the pipelined designs, the Modified Baugh-Wooley 

and Booth2 MACs were anticipated to run at the same speed due to the fact that the 

feedback path was the same in both designs. The simulations of the two pipelined designs 

confirm this since they both have an average cycle time of 12.7 ns. 

6.4 Carry-Prooa~ate Adder Cornoarison 

In [45] it was shown that the worse-case throughput for an N-bit ripple-carry 

adder was 0 0 ,  verses the O(log2 N) worse-case throughput for an N-bit carry 

lookahead adder, when using 2-input gates. Since NCL uses gates with a maximum of 4 

inputs, the worse case throughput for an NCL carry-lookahead adder is proportional to 

log4 N. Consider the 4-bit carry-lookahead adder depicted in Figure 79. Each of the AND 

and OR gates can be replaced with incomplete versions of the NCL AND and OR 



functions, respectively, described in Chapter 2, while the XOR gates can be replaced with 

the NCL XOR function, developed in Chapter 3. The resulting design is complete with 

respect to all inputs. Likewise, a 4-bit ripple-carry adder can be constructed by 

connecting 4 full adders, shown in Figure 30, in series. 

w 
Figure 79.4-bit carry-lookahead adder. 

Table XIV compares the 4-bit versions of the carry-lookahead adder and the 

ripple-carry adder. It demonstrates that the two are comparable in terms of worse-case 

gate delays, but that the carry-lookahead adder requires more than three times as many 

gates. Comparing an N-bit addition using 4-bit carry-lookahead adders in series verses an 

N-bit ripple-carry adder, shows that the two approaches will require the same number of 

gate delays in the worst-case within a tolerance o f f  1, depending on the size of N. 



Furthermore, the 4-bit carry-lookahead adder described above is not hlly observable due 

to redundancies in the cany calculations. To make it fully observable would require 

additional logic gates and logic levels, thus making it even less desirable. 

Table XIV. Propagation delay and gate count for 4-bit adders. 

Gate Delays Gate 
So St S2 S3 C4 Count 

Carry-Lookahead Adder 2 4 4 4 4 54 
Ripple-Carry Adder 2 3 4 5 4  16 

Another option is to construct an N-bit carry-lookahead adder, such that all canies 

are generated in parallel. Take for example the 71 -bit addition required for the pipelined 

MACs designed in this chapter. To generate S70 requires a 71-bit AND function and a 

71-bit OR function. Both of these functions require O(log4 71), however portions can be 

performed in parallel, such that the two functions together only require 7 gate delays. 
. 

Adding an additional gate delay for the generate and propagate calculation as well as for 

the final XOR function, causes the worse-case delay to be 9 gates. This is much smaller 

than the 72 gate worse-case delay of a 71 -bit ripple-cany adder. However, since NCL is a 

delay-insensitive paradigm, its throughput is determined by the average-case delay and 

not the worse-case delay. Furthermore, the average-case delay for an N-bit ripple cany 

adder is only O(log2 N) [45], which is 8.46 gate delays for a 71-bit ripple-carry addition, 

as determined by the C-language program described in Section 6.3.1.3. The average-case 

delay for the carry-lookahead adder would also be slightly reduced, but not by much 

since many of the path lengths are synonymous with the worse-case delay. Therefore, the 



average-case delays for the 71-bit ripple-carry adder and carry-lookahead adder are 

comparable. 

Above it was shown that the 4-bit carry-lookahead adder required more than three 

times the number of gates required by the 4-bit ripple-carry adder; therefore the 71-bit 

carry-lookahead adder will require at least three times the number of gates as the 71-bit 

ripple-carry adder. This indicates that the 71 -bit ripple-carry adder would be preferred 

over the 7 1 -bit carry-lookahead adder since they have comparable average-case delays 

and the ripple-carry adder is much smaller. Moreover, the 7 1 -bit carry-lookahead adder 

described above is not hlly observable. To make it fully observable would require 

additional logic gates and logic levels, thus making it even less desirable. Extending the 

above analysis to adders of arbitrary length, it can be stated that for any value of N, a 

NCL 'ripple-carry adder should outperform the identically sized NCL carry-lookahead 

adder. 

6.5 Gate Requirements for Proposed Designs 

In Section 6.3.3.2 and Section 6.3.4.2 it was shown that the throughput of a 

pipelined self-timed MAC design is limited by the feedback loop, independent of the 

feed-forward portion. This is due to the fact that the feed-forward portion can be readily 

pipelined to a fine granularity to match or exceed the throughput of the feedback loop. 

Since the feedback loop perfoms accumulation independent of the selected 

multiplication algorithm, the throughput of the MAC as a whole is independent of the 



multiplication algorithm. This is demonstrated by the pipelined versions of the Modified 

Baugh-Wooley and Booth2 MACs operating with the same cycle time. 

The design objective stated in the abstract is to obtain the highest throughput 

MAC using the fewest gates. Since the throughput of the pipelined MAC does not depend 

on the multiplication algorithm, the MAC throughput optimization problem can be 

transformed into the selection of the multiplication algorithm that requires the least 

amount of area to implement. The following sections will compare various algorithms to 

determine which requires the least gate count. 

6.5.1 Modified Bau~h-Wooley MAC 

Since both the non-pipelined and pipelined designs were implemented in VHDL, 

the actual number of gates can be tabulated. The non-pipelined design requires 10,703 

gates, while the pipelined design uses 13,613 gates, as shown in Figure 73. For both of 

these designs approximately 2,048 gates were from partial product generation with 32 

complete AND functions and 992 incomplete AND functions. 

6.5.2 Modified Booth2 MAC 

Since both the non-pipelined and pipelined versions of this design were also 

implemented in VHDL, the actual number of gates can again be tabulated. The non- 

pipelined design used 14,lO 1 gates, while the pipelined design used 17,O 1 5 gates, as 

shown in Figure 73. For both of these designs approximately 7,854 gates were from the 

partial product generation. Even though the Booth2 recoding eliminates two levels in the 



Wallace tree, the additional gates required in the partial product generation outpace the 

savings. This causes the pipelined Modified Booth2 design to contain 3,402 more gates 

than the pipelined Modified Baugh-Wooley design. The Modified Booth2 MAC requires 

405 fewer adders, which is 1,620 fewer gates, since each adder contains four gates. 

However, it requires approximately 5,806 additional gates for partial product generation. 

Since both designs operate with the same cycle time, the preferred design is the pipelined 

Modified Baugh-Wooley MAC, since it requires less area. Thls is even more evident 

when the number of transistors for partial product generation is compared. Since the 

number of transistors for the Modified Baugh-Wooley partial product generation can be 

greatly reduced as explained in Section 6.3.1.2, even though the number of gates remain 

the same, the transistor requirement for partial product generation of the two designs 

magnifies this differential, as shown in Figure 73. The partial product generation for the 

Modified Booth2 design requires 3.8-fold more gates than for the Modified Baugh- 

Wooley design, but 6.8-fold more transistors, due to the more sophisticated gates 

required in the recoding logic. 

6.5.3 Arrav MAC 

Both the Array MAC and the Modified Baugh-Wooley MAC use the same logic 

to generate the partial products and both require O(N) area for the partial product 

summation, as explained in Section 6.2. However, the Modified Baugh- Wooley MAC 

only requires O(log2 N) gate delays for the partial product summation, while the Array 

MAC requires O(N) gate delays. Therefore, many more asynchronous registers would be 



required to partition the feed-forward circuitry of the Array MAC than the two required 

for the Modified Baugh-Wooley MAC, in order to achieve the same throughput. Hence, 

the Array MAC would require approximately the same number of adders as the Modified 

Baugh-Wooley MAC, but would require many more asynchronous registers, causing it to 

contain many more gates than the Modified Baugh- Wooley MAC. However, the structure 

of the Array MAC is very regular compared to the irregular structure of the Modified 

Baugh-Wooley MAC, which could make it more desirable when layout is taken into 

consideration, despite its larger size. 

6.5.4 Modified Booth3 MAC 

The Modified Booth3 multiplication algorithm partitions the multiplier into 

overlapping groups of four bits, each of which selects a partial product fiom the 

following list: +0, +M, +2M, +3M, +4M, -4M, -3M, -2M, -M, and -0, where M 

represents the multiplicand. For the 32-bit x 32-bit multiplication, this decoding 

theoretically reduces the number of partial products from 17 for the Modified Booth2 

algorithm to only 1 1. However, the +3M and -3M partial products cannot be obtained by 

simple shifting andlor complementing, like the others. These partial products are referred 

to as hard multiples. Therefore, two actual partial products must be used to represent each 

theoretical partial product to avoid the ripple-carry addition that would be required to 

compute both the +3M and -3M partial products. Any +3M partial product is represented 

by a +2M and a +M partial product, while any -3M partial product is represented by a 

-2M and a -M partial product. Since each theoretical partial product must be represented 



by two partial products, the actual number of partial products for the Modified Booth3 

MAC is 22, and the number of Wallace tree levels required to sum these partial products 

is 7. This is more than the 17 partial products required for the Modified Booth2 design, 

which can be summed using only 6 Wallace tree levels. Therefore, a Modified Booth3 

MAC requires more adders to sum the partial products than would the Modified Booth2 

MAC. Furthermore, the partial product generation requires scanning four multiplier bits 

at a time for the Modified Booth3 algorithm, verses only three bits which are 

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex 

recoding logic for the Modified Booth3 algorithm. Since the Modified Booth3 algorithm 

requires more adders and more recoding logic than the Modified Booth2 algorithm, and 

increases the depth of the Wallace tree, it requires more gates than the Modified Booth2 

design-. 

6.5.5 Modified Booth4 MAC 

The Modified Booth4 multiplication algorithm also suffers from the problem of 

hard multiples. It partitions the multiplier into overlapping groups of five bits, each of 

whlch selects a partial product from the following list: +0, +M, +2M, +3M, +4M, +5M, 

+6M, +7M, +8M, -8M, -7M, -6M, -5M, -4M, -3M, -2M, -M, and 4, where M represents 

the multiplicand. The hard multiples are +3M, +5M, +6M, +7M, -7M, -6M, -5M, and 

-3M. However, if the hard multiples were to be generated through ripple-carry addition, 

the +6M and -6M multiples could be obtained simply by shifting the +3M and -3M 

multiples, respectively. For the 32-bit x 32-bit multiplication, this decoding theoretically 



reduces the number of partial products fkom 1 7 for the Modified Booth2 algorithm to 

only 9. However, since the hard multiples require two partial products to represent each 

theoretical partial product, the actual number of partial products required is 17. The most 

significant partial product cannot be a hard multiple and therefore only requires one 

partial product for its representation. The actual number of partial products for the 

Modified Booth4 MAC is the same as for the Modified Booth2 MAC. The only 

difference is the partial product generation, whch requires scanning five multiplier bits at 

a time for the Modified Booth4 algorithm, verses only three bits which are 

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex 

recoding logic for the Modified Booth4 algorithm. Therefore, the Modified Booth4 MAC 

requires more gates than the Modified Booth2 MAC. Furthermore, higher radix Modified 

Booth algorithms can be expected to exhibit similar characteristics. 

6.5.6 Combinational 2-Bit x 2-Bit MAC 

The 2-Bit x 2-Bit partial product generation partitions both the multiplier and 

multiplicand into 16 groups of two bits that do not overlap. Each 2-bit multiplier, 2-bit 

multiplicand pair generates 4 bits of partial product. Every 2-bit multiplier group 

generates two rows of partial products since each 2-bit multiplier, 2-bit multiplicand pair 

generates 4 bits and each consecutive group of 4 bits is shifted two places due to the 2-bit 

partitioning of the multiplicand. This results in consecutive groups of 4 bits generated 

fiom one 2-bit multiplier group to be overlapped by two bits. Since there are sixteen 2-bit 

multiplier groups and each group generates two partial products, there are a total of 32 



partial products. Since this number of partial products is the same as for the Modified 

Baugh-Wooley design, both designs will require the same number of gates to sum the 

partial products. Therefore, the only difference between the two designs is the partial 

product generation. The 2-Bi t x 2-Bit parti a1 product generation requires approximately 

2,8 16 gates, while the Modified Baugh-Wooley partial product generation only requires 

approximately 2,048 gates, as shown in Figure 73. Hence, the 2-Bit x 2-Bit algorithm 

requires approximately 768 more gates than does the Modified Baugh-Wooley algorithm, 

making it less area efficient. This is even more evident when the transistor count for the 

partial product generation is compared. The Modified B augh- Wooley partial product 

generation requires approximately 18,880 transistors, while the 2-Bit x 2-Bit partial 

product generation requires approximately 38,400 transistors, more than twice as many. 

6.5.7 Combinational 2-Bit x 3-Bit MAC 

The 2-Bit x 3-Bit partial product generation partitions the multiplier into 16 

groups of two bits, and the multiplicand into 10 groups of three bits with 1 group of two 

bits, such that no groups overlap. Each 2-bit multiplier, 3-bit multiplicand pair generates 

5 bits of partial product. Every 2-bit multiplier group generates two rows of partial 

products since each 2-bit multiplier, 3-bit multiplicand pair generates 5 bits and each 

consecutive group of 5 bits is shifted three places due to the 3-bit partitioning of the 

multiplicand. All two-row partial products generated from one 2-bit multiplier group 

contain an unused slot every third bit position, such that every third bit position in a two- 

row partial product only contains one bit rather than two bits, as in the other bit positions. 



Since there are sixteen 2-bit multiplier groups and each group generates two partial 

products, 32 partial products are anticipated. However, because of the unused slots, there 

are actually only 26 rows of partial products, which can be summed in 7 Wallace tree 

levels. The multiplier could also be partitioned into 10 groups of three bits with 1 group 

of two bits, with the multiplicand partitioned into 16 groups of two bits, such that no 

groups overlap. This alternate partitioning also produces 26 rows of partial products. 

Recall that the Booth2 design, which has 17 rows of partial products that can be summed 

in 6 levels of Wallace tree, saved 405 adders or 1,620 gates in the partial product 

summation, as discussed in Section 6.5.2. Since the 2-Bit x 3-Bit algorithm requires 26 

rows of partial products, which can be summed in 7 Wallace tree levels, this algorithm 

cannot utilize fewer adders than the Booth2 algorithm. Therefore, the number of gates 

saved'by the reduced Wallace tree of the 2-Bit x 3-Bit algorithm is no more than 1,620. 

The number of gates required to generate the partial products for the 2-Bit x 3-Bit 

algorithm is approximately 4,768, a difference of approximately 2,720 additional gates 

than for the Modified Baugh-Wooley partial product generation. Therefore, the 

2-Bit x 3-Bit algorithm would require at least 1,100 more gates than the Modified Baugh- 

Wooley design since it can save no more than 1,620 gates in the Wallace tree and 

requires an additional 2,720 gates for partial product generation. 

6.5.8 Combinational 2-Bit x 4-Bit MAC 

The 2-Bit x 4-Bit partial product generation partitions the multiplier into 16 

groups of two bits, and the multiplicand into 8 groups of four bits, such that no groups 



overlap. Each 2-bit multiplier, 4-bit multiplicand pair generates 6 bits of partial product. 

Every Zbit multiplier group generates two rows of partial products since each 2-bit 

multiplier, 4-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is 

shifted four places due to the 4-bit partitioning of the multiplicand. All two-row partial 

products generated kom one 2-bit multiplier group contain two unused slots every fourth 

bit position, such that for every four bit positions in a two-row partial product only two 

contain two bits while the other two contain only one bit. Since there are sixteen 2-bit 

multiplier groups and each group generates 2 partial products, 32 partial products are 

anticipated. However, because of the unused slots, there are actually only 23 rows of 

partial products, which can be summed in 7 Wallace tree levels. The multiplier and 

multiplicand could also be partitioned vise-versa, resulting in the same number of partial 

product rows. Since this design also requires 7 Wallace tree levels, as did the 

2-Bit x .3-Bit design, it could not possibly save more than 1,620 gates in the Wallace tree, 

as explained in Section 6.5.7. The partial product generation is also more complicated 

than for the ZBit x 3-Bit partial product generation since more inputs are required. 

Therefore, partial product generation for this design requires at least as many gates as for 

the 2-Bit x 3-Bit design. Hence, this design must require more gates than the Modified 

Baugh-Wooley MAC, following the logic of Section 6.5.7. 

6.5.9 Combinational 3-Bit x 3-Bit MAC 

The 3-Bit x 3-Bit partial product generation partitions both the multiplier and 

multiplicand into 10 groups of three bits, with one group of two bits, such that no groups 



overlap. Each 3-bit multiplier, 3-bit multiplicand pair generates 6 bits of partial product. 

Every 3-bit multiplier group generates two rows of partial products since each 3 -bit 

multiplier, 3-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is 

shifted three places due to the 3-bit partitioning of the multiplicand, such that all 

consecutive groups of 6 bits generated fkom one 3-bit multiplier group overlap by three 

bits. The last multiplier group is only two bits, so for each 2-bit multiplier, 3-bit 

multiplicand pair, 5 bits of partial product are generated. This 2-bit multiplier group 

generates two rows of partial products since each 2-bit multiplier, 3-bit multiplicand pair 

generates 5 bits and each consecutive group of 5 bits is shifted three places due to the 

3-bit partitioning of the multiplicand. These last two rows of partial products contain an 

unused slot-every third bit position, such that every third bit position in the last two-row 

partial product only contains one bit rather than two bits, as in the other bit positions. 

Since there are ten 3-bit multiplier groups and one 2-bit multiplier group, each of which 

generates 2 partial products, 22 partial products are anticipated. However, because of the 

unused slots generated by the 2-bit multiplier group, there are actually only 21 rows of 

partial products, which can be summed in 7 Wallace tree levels. Since this design also 

requires 7 Wallace tree levels, as did the 2-Bit x 3-Bit design, it could not possibly save 

more than 1,620 gates in the Wallace tree, as explained in Section 6.5.7. The partial 

product generation is also more complicated than for the 2-Bit x 3-Bit partial product 

generation since more inputs are required. Therefore, partial product generation for this 

design requires at least as many gates as for the 2-Bit x 3-Bit design. Hence, this design 

must require more gates than the Modified Baugh-Wooley MAC, following the logic of 



Section 6.5.7. Furthermore, any larger sized N-Bit x M-Bit algorithms would not be 

likely to reduce the number of gates due to their increasing complexity. 

6.5.1 0 Ouad-Rail MACs 

To test the feasibility of quad-rail multiplication, a quad-rail 4-bit x 4-bit 

unsigned multiplier was designed, implemented, and tested. The resulting design 

operated with the same throughput as its dual-rail counterpart but required slightly more 

than twice as many gates, showing that a quad-rail encoding is not as efficient for 

realizing multiplication. Furthermore, quad-rail partial product generation circuitry was 

designed for each of the algorithm types shown in Figure 73; and the resulting quad-rail 

designs required at least 2% more gates and 10% more transistors than their dual-rail 

counterparts. 

6.6 Conclusion 

In Section 6.3 it was shown how to design and then pipeline both a self-timed 

Modified Baugh-Wooley MAC and Modified Booth2 MAC in order to achieve 

maximum throughput. Throughput maximization was accomplished by first minimizing 

the feedback loop and then partitioning the feed-forward path such that its throughput 

was at least as great as that of the feedback loop, since the feedback loop was determined 

to be the limiting factor to increasing throughput. Section 6.3 also showed that the 

feedback loop did not depend on the chosen multiplication algorithm, and therefore the 

throughput also did not depend on the multiplication algorithm, although a faster 



multiplication algorithm would decrease latency of an isolated multiply. This was 

substantiated through simulations of both the pipelined Modified Baugh-Wooley MAC 

and the pipelined Modified Booth2 MAC, which both had the same throughput. 

Since it was shown that the throughput of the MAC did not depend on the 

multiplication algorithm, the self-timed MAC throughput optimization problem was 

transformed into selecting the multiplication algorithm requiring the fewest gates. 

Section 6.5 compared the area of multiple MAC designs using various multiplication 

algorithms. The best design is therefore the one that requires the fewest number of gates 

to implement. It was also shown in Section 6.5 that the pipelined Modified Baugh- 

Wooley design required the least amount of area, and was therefore the best design based 

on the criteria of the highest throughput with the least area. The dual-rail pipelined 

Modified Baugh-Wooley MAC yielded a speedup of 2.5 over its initial non-pipelined 

version and required 20% fewer gates than the dual-rail pipelined Modified Booth2 MAC 

that operated with the same throughput. 

Table XV compares this optimized NCL MAC to other delay-insensitive/self- 

timed MACs in the literature, showing that the 3.3V, 0.25 pm CMOS NCL MAC 

outperforms the other designs. [41] describes a serial-parallel MAC using the methods 

and tools developed at Caltech [46] for design of delay-insensitive circuits. In [41] an 

8+4x4 MAC was fabricated using 5V, 2 pm CMOS technology that operated at 37 ns; 

and an extrapolation to larger word sizes was presented. Using this extrapolation it was 

determined that a 64+32x32 MAC would operate at 901 ns, much slower than the NCL 

MAC, as expected, since the implemented algorithm is not filly parallel. [42] describes a 



self-timed 16+8x8 MAC designed using SCCVSL (single-rail CMOS cascode voltage 

switch logic) and fabricated in 0.6 pm technology. This MAC employs the parallel 

Booth2 algorithm, and has an average cycle time of about 90 ns. A third self-timed MAC 

described in [43] was designed in single-ended dynamic logic [47], utilizing conditional 

evaluation along with the traditional Array multiplication algorithm. Conditional 

evaluation allows for rows with a zero bit product to be multiplexed around, to reduce 

energy and delay. In [43] a 16+8x8 MAC was simulated using 3.3V, 0.35 pm CMOS 

technology, to determine the average cycle time of 7.8 ns. This delay information was 

then used in [43] to estimate the average cycle time for a 32+16x 16 MAC as 

approximately 24 ns. These comparisons indicate that the NCL-based dual-rail pipelined 

Modified Baugh-Wooley MAC developed herein outperforms the three above mentioned 

methods, even after technology adjustments. Furthermore, the NCL MAC supports 

rounding, scaling, and saturation, whereas the other MACs discussed herein do not. 

Without the rounding, scaling, and saturation the NCL MAC performance could be more 

than doubled. 

Table XV. Algorithm, technology, and cycle time for various self-timed MACs. 

MAC Type 
72+32~32 

64+32x32 [41] 
16+8x8 [42: 
16+8~8 [43: 

32+16~ 16 [43] 

Algorithm 
Modified Baugh-Wooley 

Serial-Parallel 
Modified Booth2 

Conditional Evaluation 
Conditional Evaluation 

Technology 
3.3V, 0.25 prn CMOS 

5V, 2 prn CMOS 
0.6 pm CMOS 

3.3V, 0.35 pm CMOS 
3.3V, 0.35 pm CMOS 

Avg. Cycle Time 
12.7 ns 
901 ns 
90 ns 
7.8 ns 
24 ns 



7.0 CONCLUSION 

While much remains to be learned in regard to the application of NCL, the 

techniques developed herein provide a basis for the design and optimization of NCL 

systems. A method for designing optimized NCL combinational circuits was developed, 

as well as a method for pipelining these combinational circuits such that optimum 

throughput is achieved. Furthermore, a technique to mitigate the impact of the NULL 

cycle on throughput was presented. 

7.1 Summary 

When full minterm generation is not required, TCR can produce delay-insensitive 

circuits that require less area and fewer logic levels than alternative gate-level 

approaches, as demonstrated in Chapter 3. TCR is applicable when composing logic 

fbnctions where each gate is a state-holding element. The TCR method combines 

techniques such as incomplete functions, quad-rail encodings, reduced minterm 

expressions, and factored minterm expressions for reducing gate count. It then employs a 

mapping of the factored minterm equations to a set of 27 macros, which constitute the set 

of all functions consisting of four or fewer variables. A number of case studies validate 

the utility and potential for automation of the proposed method. Using TCR methods, 



design parameters including critical path delay, gate count, transistor count, and power 

can be readily traded-off and optimized. 

These results were further extended to a gate-level pipelining strategy for circuits 

composed of state-holding elements to maximize throughput of combinational circuits 

produced by TCR methods in Chapter 4. Since the GLP method successively partitions 

an N-level NCL combinational logic design first into 2 stages, then further into as many 

as N stages, it can produce an optimal pipelined NCL system with significantly increased 

throughput over its original non-pipelined design. The GLP process may also be partially 

applied to design maximum throughput systems under the constraints of latency and/or 

area bounds. The GLP method combines both bll-word completion as well as bit-wise 

completion for designing the optimal system. A case study of a 4x4 multiplier 

substantiates the utility and potential for automation of the proposed method, as the 

throughput of the non-pipelined 4x4 multiplier was increased by 125%. GLP was applied 

to a dual-rail NCL design in Chapter 4; but it can also be applied to a quad-rail NCL 

design, by inserting quad-rail registers, rather than dual-rail registers. 

Although NCL requires both a DATA wavefiont and a NLnL wavefront, which 

reduces the maximum attainable throughput by approximately half, a technique can be 

used to reduce this inherent throughput loss. In Chapter 5, the NCR method of 

partitioning delay-insensitive systems into two concurrent paths such that one circuit 

processes a DATA wavefiont, while its duplicate processes a NULL wavefront, thus 

significantly increasing throughput, was developed. A 4-bit by 4-bit multiplier case study 

indicates a speedup of 1.61 over the standalone design. Furthermore, this technique could 



also be applied to other delay-insensitive methods [4,6,7, 8,9] as well. Moreover, it is 

not necessary to duplicate the entire circuit when applying the NCR technique. Rather, its 

benefits can be obtained without doubling area and power requirements by applying it to 

selective portions of a circuit, which cannot be pipelined more finely due to the 

completeness of input criterion. Thus, throughput of a pipelined design with a small 

number of slow stages can be readily boosted with relatively little cost by using NCR. 

Finally, the methods presented herein were applied to design a 72+32x32 MAC 

that outperformed other delay-insensitive/self-timed MACs in the literature, including a 

32+ 16x 16 design using single-ended dynamic logic, utilizing conditional evaluation 

along with the traditional Array multiplication algorithm. This method of conditional 

evaluation was analyzed in the context of NCL showing that it would require additional 

gates, greater power dissipation, and a larger cycle time when compared to the normal 

Array multiplication algorithm, making it undesirable for NCL implementation. This is 

due to the proportionality differences between the NCL full adder and select logic verses 

the same two components implemented in single-ended dynamic logic. Furthermore, the 

NCL MAC supports rounding, scaling, and saturation, whereas the other MACs 

discussed herein do not. Without the rounding, scaling, and saturation the NCL MAC 

performance could be more than doubled. 

7.2 Future Work 

The utility of the TCR and GLP methods has been demonstrated in Chapter 3 and 

Chapter 4, respectively. The next step is to incorporate both of these methods into the 



Synopsys design tools such that NCL circuits can be synthesized fkom high level, 

algorithmic descriptions and can then be automatically pipelined to optimize throughput. 

Moreover, the throughput of NCL systems can be further increased by applying 

an early completion method described in [40] or by applying 2D-pipelining described in 

[48]. Early completion performs the completion detection for registration stagq at the 

input of the register, instead of at the output of the register as previously described. This 

method requires that the single-rail completion signal from registration stagei+*, koi+, , be 

used as an additional input to the completion detection circuitry for registration stagei, to 

maintain delay-insensitivity. However, early completion necessitates an assumption of 

equipotential regions [4], making the design potentially more delay-sensitive. 

2D-pipelining not only partitions a circuit between functional component boundaries, but 

also between bit slices, forming a complex 2-dimentional pipeline. 

In Chapter 5, NCR was applied to a dual-rail NCL design utilizing full-word 

completion. However, it can also be applied to a quad-rail NCL design, by modifying the 

Demultiplexer and the Multiplexer to handle quad-rail signals, or to a design utilizing bit- 

wise completion by modifying the Demultiplexer only. Finally, the current MAC design 

utilizes combinational logic to determine if rounding, scaling, and saturation are required. 

However, the datapath could be steered through the rounding, scaling, and saturation 

logic, if required, through the use of a demultiplexer at the input and a multiplexer at the 

output, similar to the NCR technique. This alternate approach would reduce the cycle 

time for operations not requiring rounding, scaling, and saturation, at the expense of an 



increase in the cycle time for operations where rounding, scaling, or saturation is 

required. 
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