271,956 research outputs found

    Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization

    Full text link
    We calculate the dc Josephson current IJI_J for two types of superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the Josephson current is calculated for an arbitrary impurity concentration. If hτ1% h\tau\ll1 the expression for the Josephson critical current IcI_c is reduced to that which can be obtained from the Usadel equation (hh is the exchange energy, τ\tau is the momentum relaxation time). In the opposite limit hτ1h\tau\gg1 the superconducting condensate oscillates with period % v_F/h and penetrates into the F region over distances of the order of the mean free path ll. For this kind of junctions we also calculate IJI_J in the case when the F layer presents a nonhomogeneous (spiral) magnetic structure with the period 2π/Q2\pi /Q. It is shown that for not too low temperatures, the π\pi-state which occurs in the case of a homogeneous magnetization (Q=0) may disappear even at small values of QQ. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can penetrate into the F layer over a long distance of the order of ξT=\xi_{T}=% \sqrt{D/2\pi T}. The junction of the second type consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current IcI_{c} depends on the relative orientation of the effective exchange field hh of the bilayers. In the case of an antiparallel orientation, IcI_{c} increases with increasing hh. We establish also that in the F film deposited on a superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.

    Vortex dynamics and second magnetization peak in PrFeAsO0.60_{0.60}F0.12_{0.12} superconductor

    Full text link
    We have studied the vortex dynamics in the PrFeAsO0.60_{0.60}F0.12_{0.12} superconducting sample by dc magnetization and dynamic magnetization-relaxation rate (Q)(Q) measurements. The field dependence of the superconducting irreversible magnetization MsM_s reveals a second magnetization peak or fishtail effect. The large value of QQ is an indication of moderate vortex motion and relatively weak pinning energy. Data analysis based on the generalized inversion scheme suggests that the vortex dynamics can be described by the collective pinning model. The temperature dependence of the critical current is consistent with the pinning due to the spatial variation in the mean free path near a lattice defect (δl\delta l pinning). The temperature and field dependence of QQ indicates a crossover from elastic to plastic vortex creep with increasing temperature and magnetic field. Finally, we have constructed the vortex phase diagram based on the present data.Comment: 11 pages, 8 Figures, Accepted for publication in Journal of Applied Physic

    Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

    No full text
    International audienceDynamic properties of n-alkyl monolayers covalently bonded to Si(111) were studied by broadband admittance spectroscopy as a function of the temperature and the applied voltage using rectifying Hg/C 12 H 25 /n-type Si junctions. Partial substitution of methyl end groups by polar (carboxylic acid) moieties was used to enhance the chain end relaxation response. Two thermally activated dissipation mechanisms (B1 and B2, with f B1 < f B2) are evidenced for all reverse bias values. The strong decrease of both relaxation frequencies with increasing reverse dc bias reveals increasing motional constraints, attributed to electrostatic pressure applied to the densely-packed nanometer-thick monolayer. Spectral decomposition of the frequency response shows a power-law dependence of their activation energies on |V DC |. A large reverse bias reversibly increases the B2 response attributed to the distribution of gauche defects, in contrast with the constant strength of the acid dipole loss (B1). A trans–gauche isomerization energy of 50 meV is derived from the temperature dependence of the B2 dipolar strength. For both dissipation mechanisms, the observed linear correlation between activation energy and logarithm of pre-exponential factor is consistent with a multi-excitation entropy model, in which the molecular reorientation path is strongly coupled with a large number of low energy excitations (here the n-alkyl bending vibrational mode) collected from the thermal bath. This collective dynamic behavior of alkyl chains tethered to Si is also confirmed by the asymmetric relaxation peak shape related to many-body interactions in complex systems. 58

    Improving Christofides' Algorithm for the s-t Path TSP

    Full text link
    We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices including two prespecified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a 5/3-approximation algorithm for this problem, and this asymptotically tight bound in fact has been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well: these applications include improved approximation algorithms and improved LP integrality gap upper bounds for the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.Comment: 31 pages, 5 figure

    Glassy dynamics in asymmetric binary mixtures of hard-spheres

    Get PDF
    The binary hard-sphere mixture is one of the simplest representations of a many-body system with competing time and length scales. This model is relevant to fundamentally understand both the structural and dynamical properties of materials, such as metallic melts, colloids, polymers and bio-based composites. It also allows us to study how different scales influence the physical behavior of a multicomponent glass-forming liquid; a question that still awaits a unified description. In this contribution, we report on distinct dynamical arrest transitions in highly asymmetric binary colloidal mixtures, namely, a single glass of big particles, in which the small species remains ergodic, and a double glass with the simultaneous arrest of both components. When the mixture approaches any glass transition, the relaxation of the collective dynamics of both species becomes coupled. In the single glass domain, spatial modulations occur due to the structure of the large spheres, a feature not observed in the two-glass domain. The relaxation of the \emph{self} dynamics of small and large particles, in contrast, become decoupled at the boundaries of both transitions; the large species always displays dynamical arrest, whereas the small ones appear arrested only in the double glass. Thus, in order to obtain a complete picture of the distinct glassy states, one needs to take into account the dynamics of both species

    The linearization problem of a binary quadratic problem and its applications

    Full text link
    We provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore-Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. Finally, we present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem
    corecore