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(Dated: March 14, 2019)

We perform a systematic and detailed study of the glass transition in highly asymmetric binary mixtures of
colloidal hard-spheres, combining differential dynamic microscopy experiments, event-driven molecular dy-
namics simulations and theoretical calculations, exploring the whole state diagram and determining the self and
collective dynamics of both species. Two distinct glassy states involving different dynamical arrest transitions
are consistently described, namely, a double glass with the simultaneous arrest of the self and collective dynam-
ics of both species, and a single glass of large particles in which the self dynamics of the small species remains
ergodic. In the single glass scenario, spatial modulations in the collective dynamics of both species occur due
to the structure of the large spheres, a feature not observed in the double glass domain. The theoretical re-
sults, obtained within the self-consistent generalized Langevin equation formalism, are in agreement with both
simulations and experimental data, thus providing the first stringent validation of this theoretical framework
in the description of dynamical arrest in highly asymmetric mixtures. Our findings are summarized in a state
diagram that classifies the various amorphous states of highly asymmetric mixtures by their dynamical arrest
mechanisms.

PACS numbers: 23.23.+x, 56.65.Dy

I. INTRODUCTION

The binary hard-sphere (HS) mixture is one of the sim-
plest representations of a many-body system with competing
scales. Hence, it is a suitable model to investigate how the
emergence of distinct time and length scales influences the
physical behavior of a multicomponent glass-forming liquid,
a question that still awaits a unified answer and with the po-
tential to enhance the rational design of amorphous materi-
als with high scientific and technological relevance based, for
instance, on metallic alloys [1–4], polymers [5, 6], colloids
[7, 8] and bioactive composites [9].

Colloidal suspensions of HS have played a crucial role
in the study of glasses [10–13] and gels [14–16] providing
neat experimental realizations of dynamically arrested states
in finely controllable systems and conditions [17–24]. In the
case of a monodisperse HS suspension, the key control param-
eter is the volume fraction of colloids, φ [10, 11]. Close to the
glass transition (GT) point, φ ≈ 0.58, the relaxation of the mi-
croscopic dynamics becomes extremely sluggish despite very
small changes in the structure, and the motions of individual
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particles are inhibited by transient cages formed by neighbor-
ing particles [25]. The addition of a second colloidal species
with a different size drastically modifies this scenario. Even
for a small size disparity (δ ≡ σs/σb & 0.4; σs and σb being
the diameters of the small and big particles, respectively), this
implies a significant shift of the GT point to a larger total vol-
ume fraction [26], accompanied with spatial and temporal het-
erogeneities, and appreciable aging effects [27, 28]. For even
larger degree of asymmetry (i.e., smaller δ), and depending
on the composition of the mixture, different and more com-
plex dynamical arrest transitions are observed, leading, for in-
stance, to the formation of attractive and asymmetric glasses
[29–34].

The existence of distinct glassy states in highly asymmetric
binary mixtures of HS has been long known [29–40]. How-
ever, and despite several earlier studies on the dynamics of this
system, presently there is no systematic and detailed investi-
gation that explores the full parameter space and that com-
pares experiments, simulations and theory near the different
dynamical arrest transitions observed and predicted in these
mixtures. Such a comprehensive coverage, however, is cru-
cial to obtain a deeper understanding of the glassy behavior
in multicomponent systems, where distinct length and time
scales compete in a non-trivial way leading to a complex dy-
namical arrest landscape. In particular, the recent advent of
differential dynamic microscopy (DDM) [31–34] renders the
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experimental characterization of the dynamics of both species
in the large asymmetric regime possible. These novel ad-
vancements allow us thus to develop and test a consistent de-
scription of the GT in the binary HS model, which was miss-
ing. This provides the main motivation of this work.

We present such a description in terms of experimentally
accessible quantities: the wave-vector dependent collective
intermediate scattering functions (ISF) and its single-particle
counterpart, the self -intermediate scattering functions (SISF).
The ISF probe the overall changes in structure (on a cer-
tain wave-length) due to collective rearrangements of parti-
cles, while the SISF allow to quantify the statistics of the
movements of individual particles. The latter is connected,
in the low-wave-vector limit, to the mean-squared displace-
ment (MSD) of the particles as an easily interpreted observ-
able to quantify particle mobility. As we will show below, the
different glasses that emerge in binary mixtures – called the
single glass and the double glass – are best characterized by
their different wave-vector dependence of the collective dy-
namics regarding the species-resolved ISF, and by the degree
of coupling between the self -dynamics probed in the SISF of
each species and the collective dynamics probed in the ISF.
The characterization thus requires the ability to resolve both
species’ dynamics in experiments and simulations.

From the theoretical point of view, the well known mode
coupling theory (MCT) of the GT [41–44] laid down a strong
basis for the first-principles description of dynamical arrest in
multicomponent glass-forming liquids [33, 35, 36]. More re-
cently, the self-consistent generalized Langevin equation (SC-
GLE) theory of dynamical arrest [45–48] has joined MCT on
this endeavor [37, 38]. Despite the different starting points
adopted in deriving each theoretical framework, a generic
asymptotic solution valid for either MCT or SCGLE can
be constructed close to conditions of dynamical arrest [49].
Thus, it is not surprising to find several similarities in the
results provided by both approaches when they are applied
to a specific model. A prominent example is the case of a
HS binary mixture with disparate sizes [35–38], where the
GT scenarios of MCT and SCGLE are essentially the same
and qualitatively describe the few available experimental data
for colloidal HS [29–33] and the limited number of results
of molecular dynamics (MD) simulations for soft-sphere mix-
tures [23, 39, 40].

To date, however, these theoretical predictions have not
been rigorously and systematically validated against corre-
sponding results of both simulations and experiments, and this
provides an additional motivation for the present work. We
then specifically show that the SCGLE qualitatively (and often
semi-quantitatively) agrees with the data obtained from MD
and DDM, thus providing a trustworthy fundamental tool to
extrapolate the simulations and experimental results to those
states or observables that are not easily accessible with both
techniques, and to establish a generic picture of the physical
mechanisms of glass formation in mixtures with two disparate
length scales. Therefore, our work also paves the way to es-
tablish the quality of the SCGLE-based description for the
technologically highly relevant situation of slowly evolving
colloidal suspensions, and other more complex glassy mix-

tures such as polymers [5, 6] and metallic alloys [1–4], using
highly asymmetric binary mixtures of colloidal HS as proto-
typical models for multicomponent glass-forming liquids.

We combine experimental techniques based on DDM able
to resolve the dynamics of the two species, extensive event-
driven MD simulations and theoretical calculations within the
SCGLE formalism to explore the full parameter space and
provide a consistent description of the different paths to amor-
phous solidification of these systems. We specifically show
how, depending on the concentration of big and small spheres
and taking into account specifically the dynamical contribu-
tion of the small and large particles, one can identify two
different glassy scenarios, which are characterized by distinct
dynamical features at the level of both the self and collective
dynamics.

We organize the data from experiments and simulations
along different Paths of state points that approach dynami-
cal arrest by increasing the overall packing fraction in differ-
ent ways. These Paths are grouped into those that approach
the single (S) and the double (D) glass, respectively. The
grouping also serves to emphasize that the different ways to
approach a transition (for example, by increasing the overall
packing fraction at fixed composition, or by adding particles
of one species) are qualitatively equivalent.

After showing that the theoretical framework provided by
the SCGLE accurately describes the data for the dynamics ob-
tained from MD simulations and DDM experiments, we em-
ploy the theory to outline the main features of each glassy
state in terms of the length-scale dependence of the so-called
non-ergodicity parameters, leading to the development of an
arrested states diagram, which qualitatively classifies all the
results. Details of the simulations and experiments are pro-
vided, respectively, in appendices A and B, whereas a brief
summary of the SCGLE theory can be found in appendix C

II. RESULTS

We investigate two fundamentally distinct GT, referred to
as fluid to single glass (F-SG) and fluid to double glass (F-
DG). For this, we have studied binary mixtures of HS via
event-driven MD simulations (see appendix A) and colloidal
HS suspensions (appendix B) with a size ratio δ ≈ 0.2. The
choice of this value is motivated by several reasons. First, this
is a size ratio particularly interesting in terms of the physics
of the mixture, because the two aforementioned dynamical ar-
rest scenarios can be investigated experimentally [31, 33, 35–
37]. At larger values of δ, the physical mechanisms associ-
ated to the two different length scales become too similar, and
hence, one of the transitions would not exist or would be more
difficult to distinguish. Second, this size ratio can be real-
ized in experiments with both particle species undergoing sig-
nificant Brownian (diffusive) motion within the experimental
time scale and still being resolvable. Third, a larger size dis-
parity is not only more difficult to achieve experimentally, but
also implies a significant increase in the number of small par-
ticles in the simulations, and thus, on the required computing
time. Furthermore, within a reasonable range of size ratios,
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FIG. 1: (Color online) State space defined by the volume fractions
of big, φb, and small, φs, particles of a binary mixture of hard

spheres (HS) with size ratio δ = 0.2. Arrows indicate the distinct
Paths studied in this work via MD simulations (colored symbols)

and DDM experiments (black symbols). All Paths are also
investigated with the SCGLE theory. Paths S1,S2,S3 are used to

investigate the dynamics of the transition from fluid to a single glass
(F-SG), varying distinct control parameters as indicated in Table I.
Paths D1,D2 allow to study the transition from fluid to the double

glass (F-DG). The lines delimiting the boundaries between regions
F, SG and DG are predictions of the SCGLE [37] for the glass

transitions of a binary HS mixture (δ = 0.2) using the Percus-Yevick
approximation [50] combined with the Verlet-Weis correction [51]

for the partial static structure factors.

the exact value of δ is not expected to play a crucial role in the
determination of (metastable) amorphous states. This is no-
tably different for equilibrium crystalline states, which might
depend sensitively on size asymmetry. The SCGLE theory
predicts that the physical scenario does not change qualita-
tively, for instance, when decreasing the size ratio from 0.2 to
δ = 0.1 (see appendix C). Thus, we expect our results to be
generic in the sense that they do not crucially depend on the
size ratio, as long as δ is small enough to provide a reasonable
separation of length scales.

Sample φb φs SCGLE MD EXP Transition
S 1a 0.40 0.05 X X × F-S G
S 1b 0.45 0.05 X X × F-S G
S 1c 0.50 0.05 X X × F-S G
S 1d 0.55 0.05 X X × F-S G
S 1e 0.60 0.05 X X × F-S G

S 2a 0.5225 0.0275 X × X F-S G
S 2b 0.551 0.029 X × X F-S G
S 2c 0.5795 0.0305 X × X F-S G

S 3a 0.594 0.006 X × X F-S G
S 3b 0.6039 0.0061 X × X F-S G
S 3c 0.6138 0.0062 X × X F-S G

D1a 0.30 0.20 X X × F-DG
D1b 0.35 0.20 X X × F-DG
D1c 0.40 0.20 X X × F-DG
D1d 0.45 0.20 X X × F-DG

D2a 0.30 0.25 X × X F-DG
D2b 0.30 0.30 X × X F-DG

TABLE I: List of the state points studied by means of MD simula-
tions, DDM experiments and SCGLE theory for the transitions from
the fluid (F) state to the single glass (SG) and to the double glass
(DG), respectively.

At fixed δ, the state space of a binary mixture composed
of N = Nb + Ns spherical particles is spanned by the two
volume fractions (φb, φs), where φi ≡ πρiσ

3
i /6 (i = b, s) and

ρi = Ni/V . Alternatively, one could also choose the total vol-
ume fraction, φ = φb + φs, and the composition, xs = φs/φ, as
control parameters [31–33]. For the study of the F-SG and F-
DG transitions, we have considered the dynamics of the mix-
ture at distinct state points in the plane (φb, φs), organized for
clarity in different Paths as shown in Fig. 1. For instance,
Paths S1,S2,S3 were used to study the F-SG case, where S1
(colored symbols) was followed using MD simulations and
S2-S3 (black symbols) with DDM experiments. Similarly,
we ran simulations along Path D1, complemented with DDM
measurements along Path D2 to test the F-DG transition. In
all cases, we investigate the dynamics at the same state points
also using the SCGLE theory. To facilitate the discussion, all
the state points explored are summarize in Table I.

Let us mention in advance that the two lines delimiting the
boundaries of the F region in Fig. 1, and the line separating
region SG from DG, correspond to theoretical predictions of
the SCGLE for the GT in a HS binary mixture, with δ = 0.2,
using the Percus-Yevick approximation [50] combined with
the Verlet-Weis correction [51] for the partial structure fac-
tors. After presenting the main results from MD and DDM,
we provide a detailed discussion concerning the determina-
tion of these transition lines and other features predicted by
the SCGLE (Sec. II D). The main details of the theory are
provided in appendix C and can also be found in Ref. [37].
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A. Dynamics of the F-SG transition

To describe the dynamics of the mixture towards the F-SG
transition, let us start with Path S1. As shown in Table I, this
Path considers a fixed φs = 0.05 while increasing φb, and was
investigated via SCGLE and MD simulations, thus allowing
to resolve both the self and collective dynamics of the two
species.

Figs. 2(a) and 2(b) display a comparison of the SCGLE pre-
dictions and MD results, respectively, for the behavior of the
SISF, FS

i (q, t) ≡ 〈exp [iq · ∆R(i)(t)]〉, evaluated at q∗ = 7.18;
where ∆R(i)(t) denotes the displacement of any of the Ni parti-
cles of species i(= b, s) over a time t, q is the scattering vector,
and the reduced wave number, q∗ ≡ qσb, is used. To allow for
a one-to-one comparison between the SCGLE results and the
MD simulations, we have used the molecular version of the
SCGLE theory [52] (see also Section 1 of appendix A).

As shown in these figures, the SISF of the small particles
decay much faster (open symbols) than those of the large ones
(solid symbols) at all the state points of Path S1. Upon in-
creasing φb, a general slowing down is observed in both FS

s
and FS

b , but the slow down is much more pronounced for the
large particles. This scenario is essentially the same in both
theory and simulations, except for small differences in time
scales. The MD results show a slightly faster decay of FS

b
for low φb (S1a-S1d) and a slower decay for large φb (S1e).
In addition, in the simulations FS

s develops a final stretched
relaxation pattern that is reminiscent of that seen in the dy-
namics of tracers moving in crowded environments [33], for
instance, diffusion in heterogeneous porous media [53].

The SISF of the small species always decays to zero, in
contrast with that of the large spheres, which becomes much
slower and eventually does not decay within the observation
time window of the MD simulations. Furthermore, the theory
predicts that FS

b eventually develops a two-steps relaxation,
characteristic of the GT of a HS system, and occurring at the
critical volume fraction φ(g)

b = 0.638 (orange solid line in Fig.
2(a)). This state point, however, has no counterpart in the
simulations because aging effects (which are observed even at
S 1e) become too severe. Also, the MD simulations at S 1e
show a static structure of the large particles that is very dif-
ferent from the other state points along Path S1, although it is
compatible with that of a highly amorphous solid (see section
2 of appendix A). Thus, at the level of self dynamics, only the
large species show a signature of arrest.

We now turn to the collective dynamics and consider the
normalized ISF, fii(q, t) ≡ Fii(q, t)/S ii(q), with Fii(q, t) =

〈
∑N

j,k exp(iq · [r(i)
j (t) − r(i)

k (0)])〉/N, where r(i)
j (t) describes the

position of the j-th particle of species i at time t, and S ii(q)
denotes the corresponding partial static structure factor (i.e.,
S ii(q) = Fii(q, t = 0)). Figs. 2(c) and 2(d) display the pre-
dictions of the SCGLE compared to MD data for q∗ = 7.18,
which both provide essentially the same scenario. One notices
first that the behavior of fbb is essentially the same as that of
FS

b , in contrast with fss which qualitatively differs from FS
s .

At the state point S 1a, for instance, the relaxation patterns
of the SISF and ISF of the small species are clearly distinct

FIG. 2: (Color online) Self and collective intermediate scattering
functions (SISF and ISF) of the large and small particles, calculated

along the state points of Path S1 (as indicated), at fixed reduced
wave number q∗ ≡ qσb = 7.18, and as a function of the reduced

time t∗ ≡ t/t0
b, where t0

b = σb
√

Mb/kBT , Mb is the mass of any of the
large particles, kB the Boltzmann constant and T the absolute
temperature (see Ref. [52] and appendix A). (a) Results of the

SCGLE theory for the SISF FS
b (q∗ = 7.18, t∗) (solid symbols) and

FS
s (q∗ = 7.18; t∗) (open symbols), including the (orange) solid and

dashed curves for, respectively, the big and small particles, at the
critical value φ(g)

b = 0.638. (b) Corresponding results obtained with
event-driven MD simulations. (c)-(d) Corresponding results for the

ISF fbb(q∗ = 7.18, t) (solid symbols) and fss(q∗ = 7.18, t) (open
symbols).

(black open circles), where the latter exhibits a two-step relax-
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FIG. 3: (Color online) Collective ISF of the large, fbb(q∗, t) (solid
symbols), and small, fss(q∗, t) (open symbols) particles along Path
S2 (as indicated), at fixed q∗ = 7.20 as a function of the scaled time
tB ≡ t/τB, where τB = σ2

b/D
0
b. The top panel displays predictions of

the SCGLE and the bottom panel DDM measurements. To scale
experimental data we used τB = 150s (see appendix B).

ation pattern not observed in the former. Upon increasing φb,
fss gradually evolves and eventually follows the same trend as
fbb, not only at long delay times but for almost all times. This
feature is not observed in the self dynamics. Thus, approach-
ing the F-SG transition the normalized collective ISFs of both
species become slower and coupled at wavenumber q∗ = 7.18.
These features are qualitatively the same in both SCGLE and
MD results, although in the MD results one observes again
slightly different relaxation times.

Let us now consider Path S2, along which xs = 0.05 is
fixed (rather than fixing φs) and φ increases towards the F-SG
transition. As mentioned before this Path was investigated
by means of DDM experiments yielding the ISF of the two
species. The results are shown in Fig. 3. Despite the limited
time window of the experiments (lower panel), one notices
that the measured ISF display similar behavior as that found
along Path S1, where with increasing concentration both cor-
relation functions become slower and fss starts to follow, in
particular at long times, fbb. The qualitative similarity be-
tween the results of Paths S1 and S2 suggests that the over-
all dynamical scenario does not depend on the specific route
along which the transition is approached.

We have additionally analyzed the q∗-dependence of
fii(q∗, t∗) for the more concentrated samples along Paths S1
and S2, i.e., the points S 1e and S 2c. Results for both state
points show good qualitative agreement between theory, sim-
ulations and experiments, as shown in Fig. 4 and Fig. 5, re-
spectively. Both fbb and fss display an initial acceleration of
the decay with increasing q∗, a slowing down for q∗ = 7, and a
second acceleration for larger q∗ at the state point S 1e. As we

FIG. 4: (Color online) Collective ISF of the large, fbb(q∗, t∗) (solid
symbols), and small, fss(q∗, t∗) (open symbols) particles, at the state
point S 1e, for different wave numbers q∗ (as indicated) as a function

of the reduced time t∗, obtained from the SCGLE theory (upper
panel) and MD (lower panel). The vertical dashed line in the lower

panel indicates t∗ = 10, at which the values fii(q∗, t) have been
extracted for the comparison in Fig.15(a).

will discuss later in Sec. II D, these effects can be attributed to
the modulation of the structure factor of large particles. Ad-
ditionally, for q∗ > 7, fss develops distinct relaxation patterns
to those observed in fbb; a faster initial decay followed by
an intermediate inflection point, whose height oscillates with
increasing q∗. This reflects the increasingly smaller fraction
of small particles that are temporarily trapped at increasingly
shorter length scales (larger q∗ values). These features are also
observed in the experimental results at S 2c displayed in Fig.
5, although with some minor quantitative differences with re-
spect to the theory, thus suggesting a void structure slightly
different in the theoretical and experimental samples or hy-
drodynamic interactions playing a significant role.

One notices that for samples S 1e and S 2c, experiments
and simulations are consistent with the theoretical predictions.
The data displays essentially the same behavior and the struc-
tural relaxation times are roughly equal for q∗ . 7. The
two samples correspond, however, to overall packing frac-
tions φ = 0.65 and φ = 0.60, respectively. Hence, the results
support the theoretical prediction that, towards the F-SG tran-
sition, the total volume fraction to reach the GT in the binary
mixture increases upon the addition of small particles [36, 37].

To further investigate the influence of both φs and φb on
the dynamics of the small particles close to the F-SG sce-
nario, we also consider Path S3, which corresponds to experi-
mental data previously reported for fss(q∗, t), at φ ≈ 0.61 and
xs = 0.01 (i.e., φs ≈ 0.006, see Table I ) [33]. The results dis-
played in Fig. 6 show that, in comparison to Paths S1 and S2
(where φs = 0.05 and φs ≈ 0.03, respectively), the height of
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FIG. 5: (Color online) Collective ISF for the large, fbb(q∗, t∗) (solid
symbols), and small, fss(q∗, t∗) (open symbols) particles, at the state
point S 2c, for different wave numbers q∗ (as indicated) as a function

of the scaled time tB. The top panel displays predictions of the
SCGLE theory and the bottom panel DDM measurements.

the plateaus in fss is generally lower at comparable q∗ values.
This implies that due to crowding, i.e., increasing φs, local-
ization involves a larger fraction of small particles down to
smaller length scales. Again, experiment and SCGLE are in
good overall agreement. However, obvious differences arise
at q∗ ≈ 7. This value corresponds to the length scale set by
the nearest-neighbor cages of big particles, and it is associ-
ated to a strong peak in the static structure factor of the large
species. The differences may represent the deviations of the
idealized binary HS mixture assumed in the theoretical cal-
culations from the experimental model system. For example,
in the experimental samples both species are polydisperse to
avoid crystallization. Thus, one expects that density fluctua-
tions around the value q∗ ≈ 7 will be noticeably affected by the
degree of polydispersity in the large particles; this is not ac-
counted for in the theory. For the strictly binary model system,
one observes important variations in both the static structure
factor and the fbb(q, t) around q∗ = 7 that are strongly smeared
out due to polydispersity. Hence, a comparison of plateau val-
ues at this length scale over-emphasizes the differences in the
q-dependent structure functions.

We finally consider the behavior of the mean squared dis-
placements (MSD) along Path S1. Fig. 7 reports a compar-
ison of the results obtained from MD (symbols) and SCGLE
(lines). The features of the self dynamics towards the F-SG
transition previously illustrated in terms of the SISF (Figs.
2(a) and 2(b)), are also manifested in the corresponding MSDs
W∗i (t; φb, φs) ≡ 〈(∆ri(t))2〉/6σ2

b, (i = s, b). For instance, one
observes that, at intermediate and long times, W∗s (t) only de-
creases by a factor of approximately one order of magnitude
along Path S1. Instead, W∗b (t) decreases by more than two or-

FIG. 6: (Color online) Collective ISF of the small particles,
fss(q∗, t), along Path S3 for different values of q∗ (as indicated) as a
function of the scaled time tB. Left column: experimental results
reported in Ref. [33]. Right column: SCGLE predictions for the
same state points. The vertical dashed line in the upper left panel
indicates the time, tB = 66.7 (i.e., t = 104 s), at which the values

fss(q∗, tB = 66.7) were extracted for the comparison shown further
below in Fig. 15(c).

ders of magnitude and exhibits an increasingly extended sub-
diffusive regime at intermediate times with larger φb.

In summary, the dynamics of the binary mixture approach-
ing the F-SG transition was outlined with the assistance of
SCGLE, MD and DDM experiments. In the self dynamics of
the system only the large spheres display arrest. The small
particles, instead, undergo long-ranged transport even if the
mixture as a whole is in a non-ergodic state. In contrast, on the
level of collective dynamics, one observes that the two species
display non-ergodic behavior, with the small spheres follow-
ing the dynamical arrest of the large ones, and with modu-
lations in the wave number dependence of the dynamics due
to the frozen structure of the big spheres. This indicates that
the small particle’s density fluctuations cannot decay indepen-
dently from the very slow dynamics of the frozen background
formed by the large species. Thus, the F-SG transition indeed
is induced by the arrest of a single species, the large particles
which, however, leads also to the arrest of the collective mo-
tion of the small spheres, but still allowing individual small
particles to explore the voids left by the large particles.
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FIG. 7: (Color online) MSD for the large (solid symbols and solid
lines) and small particles (open symbols and dashed lines) along

Path S1 (as indicated) obtained from MD simulations (symbols) and
the SCGLE theory (lines).

B. Dynamics of the F-DG transition

We now consider the F-DG transition. For this, theory and
simulation results for constant φs = 0.2 and increasing φb,
i.e., along Path D1, are first discussed. Figs. 8(a) and 8(b)
report the behavior of the SISF along this Path, and at fixed
q∗ = 7.18. Different from the case of approaching the F-SG
transition, one notices that the relaxation patterns displayed
by FS

b and FS
s are now rather similar. The latter still show the

faster decay, but upon increasing φb, both SISF slow down by
a similar factor. No signature of a stretched relaxation in FS

s
is observed, and FS

b now decays within the observation time
window. These results reflect thus the lubricating effect of the
large enough fraction of small particles on the big particles’
dynamics, as suggested by previous experimental studies [11,
20, 26–28, 31, 32] (compare, for instance, the behavior of FS

b
at the two state points S 1e (Figs. 2(a) and 2(b)) and D1d, both
represented by (magenta) down triangles, and both satisfying
φs + φb = 0.65).

The corresponding collective ISF are displayed in Figs.
8(c) and 8(d). For the large particles, fbb behaves quite simi-
lar to FS

b , and also decays faster in comparison to the behav-
ior found along Path S1. In contrast, fss differs from FS

s and
shows a qualitatively distinct behavior with respect to Path S1.
The collective ISF of the small species now rapidly shows a
relaxation pattern that, from intermediate times onwards, re-
sembles that of the large particles fbb. Approaching the F-DG
transition, these correlation functions become essentially in-
distinguishable.

To test the influence of φs on the qualitative features ob-
served in the collective dynamics approaching the double

FIG. 8: (Color online) Self and collective intermediate scattering
functions (SISF and ISF) of the large and small particles, calculated
along the state point of Path D1 (as indicated), at fixed q∗ = 7.18, as
a function of the reduced time t∗ ≡ t/t0

b. (a) Results of the SCGLE
theory for the SISF FS

b (q∗ = 7.18, t∗) (solid symbols) and
FS

s (q∗ = 7.18; t∗) (open symbols). (b) Corresponding results
obtained with event-driven MD simulations. (c)-(d) Corresponding

results for the ISF fbb(q∗ = 7.18, t) and fss(q∗ = 7.18, t).

glass scenario, we next consider another route in which φb is
kept constant (at about 0.3) and φs is increased; i.e., Path D2.
Fig. 9 shows the results for the measured fbb and fss along
this Path. Due to the limited measurement time (on the order
of a day), the experimental data extend over a smaller time-
window. Thus, the final decay of both fbb(q, t) and fss(q, t) is
not accessible in the experiments. Nevertheless, the trends are
compatible with the results of MD simulations along Path D1,
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FIG. 9: (Color online) Collective ISF of the large, fbb(q∗, t) (solid
symbols), and small, fss(q∗, t) (open symbols) particles, along Path
D2 (as indicated), at fixed q∗ = 7.20 as a function of the scaled time
tB ≡ t/τB. The top panel displays predictions of the SCGLE and the

bottom panel DDM measurements.

where the relaxation of fbb and fss becomes slower and prac-
tically indistinguishable but now with increasing φs. Fig. 9
also shows theoretical results for the states measured in DDM.
They agree in the sense that the relaxation functions associ-
ated to the small and large particles resemble each other as
the glass transition is approached. The theory predicts a much
weaker variation in the final structural relaxation time between
the two state points along this path, than that observed in ex-
periments. This could indicate that the glass-transition point
predicted by the theory is located at a slightly higher pack-
ing fraction than corresponds to the experimental system. It
could be a quantitative error of SCGLE, but also due to the
differences between the experimental system and the binary
HS model used in the theory, or uncertainties in the experi-
mental determination of the volume fraction [54].

The fact that the results along Path D1 and Path D2 share
similar qualitative features again highlights that the dynam-
ical arrest scenario that is associated to the F-DG transition
does not qualitatively change if the Path used to approach the
transition is varied.

As above, we also study the q∗-dependence of the collec-
tive dynamics for the most concentrated samples, i.e., D1d
and D2b (Figs. 10 and 11, respectively). One notices that, for
values q∗ / 7, the decay of both fbb and fss is very similar and
essentially independent of q∗ in MD and experiments. In the
theory, only a small and rather irrelevant acceleration with in-
creasing q∗ is observed. For q∗ > 7, the relaxation time of both
ISF continues monotonically and only moderately decreasing,
but a slightly different initial relaxation is observed in fss, fol-
lowed by an inflection point and transient plateaus (in the ex-
periments this effect appears shifted to larger q∗(≈ 14) with

FIG. 10: (Color online) Collective ISF for the large, fbb(q∗, t∗) (solid
symbols), and small particles, fss(q∗, t∗) (open symbols), at the state

point D1d, for different wave numbers q∗ (as indicated) as a
function of the reduced time t∗, obtained from the SCGLE theory

(upper panel) and MD (lower panel). The vertical dashed line in the
lower panel indicates t∗ = 10 at which the values fii(q∗, t∗ = 10)

were extracted for the comparison in Fig. 15(b).

respect to MD and theory). Furthermore, the height of these
plateaus is significantly larger than those appearing at the state
points S 1e (Fig. 4) and S 2c (Fig. 5), thus suggesting weak
structural effects on the collective dynamics towards the F-
DG transition.

Finally, let us refer to the behavior of the MSD along Path
D1. This is shown in Fig. 12. For the state points we consid-
ered, the small-particle MSD slows down by about one decade
in the final mobility, while in the case of the large-particles
only by roughly a factor of 50. This is to be contrasted with
the conditions found along Path S1, Fig. 7, where a similar
slowing down of a factor of 10 in the small-particle MSD is
caused by a much more drastic effect in the large-particle self
dynamics (amounting to a factor of 500).

In summary, the results of this section reveal a different
scenario towards the F-DG transition, where the self dynam-
ics of the large and small spheres become slower simultane-
ously. The collective dynamics also shows similar trends for
the two species at all the relevant length scales, and displays
weak structural effects. These results suggest that both big
and small spheres become arrested in the self and collective
dynamics towards the DG domain.

C. Comparison of the Dynamics towards the F-SG and F-DG
transitions

The self and collective dynamics approaching the F-SG and
F-DG transitions have been described above and will now
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FIG. 11: (Color online) Collective ISF for the large, fbb(q∗, t∗) (solid
symbols), and small, fss(q∗, t∗) (open symbols) particles, at the state

point D2b, for different wave numbers q∗ (as indicated) as a
function of scaled time tB. The top panel displays predictions of the

SCGLE theory and the bottom panel DDM measurements.

be compared. For this, notice that for each state point along
Path D1, there is a corresponding point along Path S1 having
the same total volume fraction, φ, but a different composition
xs ≡ φs/φ. To highlight the corresponding samples, in Figs.
2 (Path S1) and 8 (Path D1) we have used the same symbols
and colors to represent those state points with the same φ.

In Fig. 13, the evolution of the self dynamics along both
Paths is compared in terms of the φ-dependence of the struc-
tural relaxation times (also called α-relaxation times) τS

i , ap-
proximated here as FS

i (q∗ = 7.18, τS
i ) = 1/e. For samples

with the same φ, the relaxation time of the small species is
moderately larger along Path D1 (φs = 0.2) than Path S1
(φs = 0.05), but τS

s displays essentially the same overall be-
havior in the φ-range considered. This comparison, however,
does not take into account the distinct relaxation patterns that
are observed in FS

s along Paths S1 (Figs. 2(a) and 2(b)) and
D1 (Figs. 8(a) and 8(b)). The different nature of the slowing
down is revealed by considering the large-species’ dynamics
in addition. For φ < 0.6, the difference in the relaxation of FS

b
along both paths is smaller in comparison to the case of the
small spheres, with τS

b being slightly larger along Path D1.
A crossover, however, is observed at φ ≈ 0.6 and, for higher
φ(= 0.65), τS

b becomes noticeable larger along Path S1. Over-
all, for the range of packing fractions φ shown in Fig. 13, a
slowing down of the dynamics (as set by the large particles)
to a factor of about 1000 along Path S1, is compared to only
a factor of about 50 along Path D1. In other words, a similar
effect on the small-particle dynamics corresponds to a much
stronger slowing down of the large particles along Path S1
than along Path D1. This is consistent with the picture that
towards the F-SG transition the slowing down of the small

FIG. 12: (Color online) MSD for the large (solid symbols and solid
lines) and small particles (open symbols and dashed lines) along
Path D1 (as indicated) obtained from MD simulations (symbols)

and the SCGLE theory (lines).

species is driven by the large particles, whereas towards the
F-DG transition both species undergo an arrest transition. The
theoretical results shown in Fig. 13 are in reasonable agree-
ment with the MD simulation data; except for the structural
relaxation time of the large spheres at the highest φ, where the
theory predicts a less drastic splitting for the relative slowing
down of the large and that of the small particles, i.e., it under-
estimates the differences in the two transition scenarios for the
specific Paths chosen here.

To compare the collective dynamics close to the F-SG and
F-DG transitions, we similarly consider collective relaxation
times defined by fii(q∗, t∗ = τi) = 1/e, for different q∗-values,
and at the state points S 1e and D1d, respectively (Fig. 14).
For q∗ ≤ 7.18, the relaxation times of the small and large par-
ticles are strongly coupled for both compositions, with Path
D1 displaying the slower relaxation for q∗ < 7 and a crossover
at q ≈ 7.18 similar to the behavior of τS

i . At q∗ > 7.18 and
large xs (i.e., many small particles, D1d) the relaxation of
each species is essentially the same, which reflect a more pro-
nounced contribution of the small-particles dynamics to the
slowing down of the mixture. In contrast, if the fraction of
small particles is decreased (small xs) and the F-SG is close
(S 1e) one observes two separate relaxation times, with the
small species displaying a faster decay reflecting their ability
to explore the local environment.

D. Non-ergodicty parameters and localization lengths

The previous results provide the cornerstone elements to
develop a general and unified description of the glassy dy-
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FIG. 13: (Color online) Self α-relaxation times of large (solid
symbols, solid lines) and small particles (open symbols, dashed
lines) along Paths S1 and D1 as a function of the total volume

fraction φ. Symbols represent MD data and lines SCGLE results, as
indicated.

namics in highly asymmetric HS binary mixtures. In order
to systematically analyze our observations, we now use the
SCGLE and subsequently compare its results to simulations
and experiments. Our previous discussion demonstrates that
this theoretical framework reasonably describes the features
observed in MD and DDM upon approaching dynamical ar-
rest. Thus, we employ the theory to construct the GT lines
in the parameters space and to summarize the structural and
dynamical features of the single and double glass states. This
is particularly helpful because a precise determination of GT
points from experiments and simulations is notoriously diffi-
cult, since all the samples close to a transition tend to show se-
vere instabilities and display history dependence. A common
protocol consists in estimating these points from the diver-
gence of the α-relaxation times, τS

i , or alternatively, from an
extrapolation of the long-time diffusion coefficients DL

i . Nev-
ertheless, these methods are prone to errors since they intrin-
sically involve large uncertainties in the choice of the specific
extrapolation function and the fit range.

We consider the predictions for the GT lines of a HS bi-
nary mixture, with δ = 0.2, provided by the SCGLE. Let us
briefly remind some technical details regarding the determina-
tion of GT lines within this theoretical framework. The theory
provides closed equations for the nondecaying components of
the collective ISF, commonly referred to as non-ergodicity pa-
rameters (NEP) [10, 11] and defined as f∞ii (q) ≡ lim

t→∞
fii(q, t)

and for the parameters γi, related to long time limit of the
MSD of species i, lim

t→∞
〈[∆ri(t)]2〉 [37]. The quantities γ−1

b

and γ−1
s play the role of order parameters in the determina-

tion of the ergodic-to-non-ergodic transitions of the mixture.

FIG. 14: (Color online) Collective α-relaxation times of large (solid
symbols, solid lines) and small (open symbols, dashed lines)

particles as a function of reduced wave number q∗, at the state
points S 1e and D1d, as indicated, predicted by the SCGLE theory.

Both are zero in a fully ergodic fluid state (F), leading also to
f∞bb(q) = f∞ss (q) = 0. Any other solution indicates partial or
total loss of ergodicity. For example, one finds a region (SG)
in the (φb, φs) plane characterized by the condition γ−1

b , 0,
γ−1

s = 0, f∞bb(q) , 0 and f∞ss (q) , 0. This condition describes
thus states where the self dynamics of the small particles re-
mains ergodic, whereas that of the large species become ar-
rested, and where the collective ISF of both species undergo
arrest. Similarly, another region (DG) is found where both or-
der parameters and all fii(q) are different from zero. Hence,
based on the SCGLE, three different states of the mixture can
be distinguished: a fluid, where both species diffuse, a dou-
ble glass, in which both components become arrested in the
collective and self dynamics, and a single glass, where the
collective dynamics of the system undergo a GT, but with the
small particles still diffusing through the voids left by the large
spheres. The locus of the boundaries between these regions
define the transition lines shown in Fig. 1.

The two different boundaries enclosing the ergodic region
F describe: The transitions from a fluid state to a single
glass state (i.e., the F-SG transition), represented by the (red)
dashed line in Fig.1; and the transitions from a fluid state to
a double glass (F-DG) which corresponds to the (black) solid
line in the same figure. The F-SG line runs from the state
point (φb = 0.582, φs = 0), i.e., the GT point in the absence
of small particles, and represents a monotonically increasing
function of φs, which indicates that the total volume fraction
of the mixture to reach the F-SG increases with φs. Therefore,
a single glass state can be melted upon the addition of small
particles [26]. As mentioned before, the previous results for
samples S 1e (MD), S 2c and S 3a (DDM) are consistent with
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this prediction. In contrast, the F-DG line corresponds to a
distinct type of transition, where the total volume fraction for
the GT becomes a monotonically decreasing function of φs
and which intersects the vertical axis of Fig. 1 at the point
(φb = 0, φs = 0.582), i.e., the GT point in the absence of big
particles. Recall that the samples D1d and D2b (correspond-
ing to φ = 0.65 and φ = 0.6, respectively) displayed essen-
tially the same dynamics, and thus, are in qualitative agree-
ment with this scenario. In the limit of small φb, this line
describes a special type of asymmetric glass, where the large
particles are localized in a glass of small spheres [36, 37], as
already observed in previous experimental work [30–32].

Moreover, a third transition (blue dashed-dotted line in Fig.
1) separates the SG-DG regions. This transition describes the
dynamical arrest of the small particles in the arrested large
spheres. We have not considered this transition in the MD or
DDM since this would require to perform extremely demand-
ing simulations and experiments due to the very slow dynam-
ics with pronounced aging effects [33]. Notice, however, that
the SCGLE predicts that samples along Path S3 belong to the
SG domain, in agreement with the experimental conditions
reported in Ref. [33].

Fig. 15 illustrates the different structural features associ-
ated with the distinct GTs, as they are expected from the pre-
dictions of the SCGLE theory. We show the NEP of the big,
f∞bb(q∗), and small, f∞ss (q∗), particles at three points located on
the F-SG, F-DG and SG-DG lines, respectively, as a func-
tion of the reduced wave number q∗. To allow for a compar-
ison with MD data, we have chosen the points on the F-SG
and F-DG transition lines that correspond, respectively, to the
crossing points with Paths S1 and D1. Similarly, we have con-
sidered the extrapolation of Path S3 with the SG-DG line for
a comparison with DDM results.

For the point at the intersection of the extended Path S1
with the F-SG line (Fig. 15(a)), one observes an oscillatory
behavior in both f∞bb(q∗) and f∞ss (q∗), associated with the mod-
ulations of the structure factor of the big species, S bb(q∗). The
two NEP appear coupled and they are essentially identical up
to q∗ ≈ 7.18, which approximately corresponds to the loca-
tion of the main peak of S bb(q∗). Thus, at large length scales,
the collective dynamics of the small spheres is controlled by
the confinement by the large particles. For q∗ > 7.18, oscilla-
tions are still present, but become decoupled. The NEP cease
to oscillate and decay to nearly zero at values q∗ ≈ 20 in the
case of f∞ss (q∗) and q∗ ≈ 30 for f∞bb(q∗). This indicates that,
at smaller length scales, the small spheres can still explore the
local environment.

In contrast, for the point at the intersection of the extended
Path D1 with the F-DG transition line (Fig. 15(b)), the theory
predicts a different behavior. Both f∞bb(q∗) and f∞ss (q∗) remain
close to unity and without oscillations for q∗ ≤ 7.18, thus
indicating the tendency of both ISF to develop higher plateaus
with respect to the previous case. For q∗ > 7.18, the NEPs
behave different and large oscillations appear in fss(q∗). Also,
a larger spectrum of non-decaying components in the ISF of
both species are observed up to q∗ ≈ 150 (not shown).

In Fig. 15(c), the SCGLE predictions for the behavior of
the NEP at the intersection of the SG-DG transition line with

FIG. 15: (Color online) Non-ergodicity parameters (NEP) of the
large particles, f∞bb (q∗) (solid lines), and of the small particles,

f∞ss (q∗) (dashed-lines), as a function of the reduced wavenumber q∗

predicted by the SCGLE formalism (a) at the intersection of Path S1
with the F-SG transition line; estimates of the NEP obtained from

MD simulations for fbb(q∗, t∗ = 10) (solid symbols) and
fss(q∗, t∗ = 10) (open symbols) at the state point S 1e are also
displayed, (b) at the intersection of Path D1 with the F-DG
transition line; estimates of both NEP obtained from MD

simulations at the state point D1d are also shown, (c) at the
intersection of Path S3 with the SG-DG transition line; experimental
data from Ref. [33] for fss(q∗, t = 104) (+ symbols) at the state point

S 3a are also dsplayed.

the extended Path S3 are shown. The behavior is qualitatively
similar to that observed at the F-SG transition, but fss(q∗) is
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noticeable smaller than fbb(q∗) for q∗ ≤ 7.18, and becomes
nearly zero for q∗ > 7.18. Hence, at this transition the small
particles become trapped in voids created by big particles,
thus resembling a localization transition in random porous
media [53].

Due to the technical reasons explained above, simulations
and experiments could not be performed at the GT. However,
the dynamics observed in both techniques close to the GT is
compatible with these theoretical predictions. Fig. 15 also
shows estimates of the NEP obtained from MD and DDM. As
estimates, we use values of the ISF at an intermediate time
that is long enough to be outside the initial decay but short
enough to not yet probe the final structural relaxation towards
zero. As shown in Figs. 15(a) and 15(b), the data extracted
from the state points S 1e (Fig. 4) and D1d (Fig. 10) follow
the qualitative trends discussed above for the F-SG and F-DG
transition lines, respectively. Along Path S1, the simulations
confirm much lower plateau values for the small-particle dy-
namics than the large particle dynamics, while along Path D1
the nonergodic contributions from both species are roughly
identical. To probe the features of the SG-DG transition, we
estimate plateau values for f∞ss (q∗), obtained from DDM ex-
periments (Fig. 6, at t = 104s) along Path S3. Here, the state
S 3a was chosen as a proxy because the data for S 3c proved to
be too noisy. Given these restrictions, the experimental data is
in good qualitative agreement with the theoretical prediction,
as shown in Fig. 15 (c).

We finally discuss the behavior of the long-time plateau of
the MSD, i.e., the parameters γb and γs. In an ordinary HS
glass, its height indicates the maximum possible displacement
inside a nearest-neighbors cage [31, 32]. The square-root of
this value is called localization length, li, and is a measure of
the local confinement. In Fig. 16, the behavior of the localiza-
tion lengths calculated along the F-SG and F-DG lines is re-
ported. For the F-SG line, the normalized localization length
l∗b ≡ lb/σb of the big spheres is found to be l∗b ≈ 10−1 (notice
that along this line the total volume fraction of the mixture
increases). Hence, their characteristic cage size corresponds
to approximately 10% of their diameter, a typical feature of
an ideal glass of HS. On the other hand, the normalized lo-
calization length of the small particles, l∗s ≡ ls/σb, is infinite,
indicating that the latter ones are not localized and diffuse (a
feature not observed for a small degree of asymmetry [28]).
These results are in qualitative agreement with the scenario
for the self dynamics provided by the MD simulations (Figs.
2 and 7).

At the intersection of the F-SG and F-DG lines, l∗b dis-
continuously jumps from ∼ 10−1 to ∼ 10−2 and l∗s becomes
suddenly finite with a value l∗s ∼ 10−1. This indicates that
along the F-DG line both species are localized, with the small
particles being less localized than the large ones. The latter
become even more localized than along the F-SG transition
in agreement with previous experimental results [31, 32] (see
section 1 of appendix C). As mentioned before in this case,
the total volume fraction decreases when going from the in-
tersection point towards the point (φb = 0, φs = 0.582). Both
l∗b and l∗s become smaller with decreasing φ and increasing φs,
which implies that the cage size along the F-DG line is con-

FIG. 16: (Color online) Normalized localization lengths l∗b (solid
symbols) and l∗s (open symbols) of the large and small particles,

respectively, as function of the volume fraction of small particles,
φs, calculated with the SCGLE formalism along the two transition

lines enclosing region F (Fig. 1).

trolled by the small spheres.
Despite this qualitative agreement between SCGLE, MD

and DDM results, one should also refer to the quantitative dif-
ferences found in comparison to additional experimental data.
For instance, for a higher degree of asymmetry (δ = 0.1) the
theory less accurately determines the locus of the GT lines
[29, 30] (see Fig. 18 in appendix C). Nevertheless, the SC-
GLE results remain in qualitative agreement with the main
physical scenario emerging from such experimental charac-
terizations, and the theory reproduces also the behavior ob-
served for measurements at similar degree of asymmetry [31].
We believe that these differences are due to the very simplified
character of the theory and the approximations applied in the
determination of the static structure factor [50, 51], as well
as polydispersity, residual charges and other effects present
in the experimental samples, in particular, hydrodynamic in-
teractions (HI). However, the consistent picture of the arrest
scenarios that emerges from our discussion of both MD simu-
lation data (where no HI are present by definition) and experi-
ments on colloidal suspensions suggests that HI do not change
the qualitative aspects of the different glasses found in binary
hard-sphere mixtures.

III. CONCLUDING REMARKS

By combining experiments, molecular dynamics simula-
tions and theoretical calculations based on the SCGLE theory,
we have presented a general and consistent physical descrip-
tion of glassy dynamics in highly asymmetric binary mixtures
of hard spheres. Two fundamentally different glass states – the
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single glass and the double glass – as well as the correspond-
ing transitions from the fluid were examined and characterized
in terms of the experimentally accessible scattering functions,
namely, the collective ISF and the tagged-particle SISF. Both
glasses lead to dynamical arrest of the large particles, and, for
the case of the single-glass upon further densification, even-
tually also the small particles. Hence, both transitions are re-
lated to distinct signatures in the dynamics.

Below a certain volume fraction of small spheres, a transi-
tion to a single glass is observed. The slowing down of the
dynamics of the system is dominated by the large species,
whose SISF and collective ISF indicate an approach to arrest
with the typical characteristics of the well-known glass transi-
tion of hard spheres. At large length scales, the collective ISF
of the small particles follows a pattern dictated by the struc-
ture and dynamics of the big species, while at short length
scales, appears decoupled. Moreover the self dynamics of the
small spheres does not arrest, but resembles the behavior of a
fluid embedded in a heterogeneous medium, including a pro-
nounced stretched decay in the relaxation functions at long
times. In this regime, we find that the overall volume fraction
to reach the glass transition becomes larger with increasing
volume fraction of small particles, i.e., the small spheres serve
to fluidize the mixture.

In the double-glass transition, both species show a broadly
similar approach to dynamical arrest. In consequence, the
same amount of slowing down in the large-particle dynam-
ics is accompanied by a much more pronounced concomitant
slowing down of the small particles than in the approach to
the single glass transition. The strong coupling between the
two species is observed at essentially all length scales, i.e., the
microstructure and dynamics is determined by both particles.
Consistent with this behavior, in this regime the overall pack-
ing fraction required for dynamical arrest becomes smaller
with increasing packing fraction of the small particles.

Our characterization is based on the species-resolved col-
lective and tagged-particle scattering functions, the ISF and
the SISF, respectively. Broadly speaking, both intermedi-
ate scattering functions measure how a many-body system
changes with time on a given length scale. The ISF probes the
changes in the overall particle arrangement, while the SISF
is a measure of individual motion. A typical case is that the
motion of individual particles already suffices to induce a loss
of overall structure, and in these conditions the SISF and the
ISF decay roughly equally. This is, essentially, the case for
the double-glass.

If however, as in the single-glass, some part of the overall
structure remains intact even though individual particles are
able to move, the SISF of the small spheres decays faster than
that of the large spheres, and also faster than the collective
ISF of the two species. In this sense, a decoupling between
self and collective dynamics arises towards the single-glass.
Note that this implies that the remnant structure of the large
particles inhibits an overall structural relaxation of the large
as well as small-particle structure, and thus no decoupling is
observed between the ISF of the two species. Therefore, a
quantification of small-particle mobility in the single glass re-
quires the measurement of the SISF of this species.

As predicted by the SCGLE, a collective quantity that al-
lows to distinguish the single and double glass is the propaga-
tor, Ψαβ(q, t), defined by Ψ(q, t) ≡ F(q, t) · S−1(q) (where bold
symbols indicate matrices in the species indices). The quan-
tity Ψαβ(q, t) can be interpreted as the effect of the static struc-
ture associated to the species β on the collective dynamics of
the species α. In the double glass, all entries of Ψ(q, t) remain
finite [37], whereas in the single glass only the Ψαβ associated
with β = b remain finite (positive or negative) whereas those
associated with β = s relax to zero (see section 2 of appendix
C). This indicates that in the single-glass, the big-particles
static structure affects the glassy (long-time) dynamics of the
small species, but the glassy dynamics of large spheres is not
influenced by the static structure of the small particles (but
only by their dynamics).

However, as discussed above, even in the collective ISF
distinct features arise due to the length-scale dependent
microstructure, and therefore wave-vector resolved experi-
ments provide valuable information to distinguish the differ-
ent glassy regimes of binary mixtures with disparate length
scales. A mere discussion of structural relaxation times at a
single length scale does not reveal the full information on the
different transition scenarios. Experiments that are able to re-
solve the dynamics of both the large and the small species
are required to fully characterize the different glassy states.
This also points to the fact that effective single-species mod-
els where the motion of one species (typically the small one) is
integrated out to yield an effective potential, are not sufficient
to understand the evolution from single to double glass.

Our simulations and the experimental data presented above
provide the first thorough validation of the SCGLE theory of
glass transitions in binary mixtures. Using the SCGLE the-
ory as an experimentally validated basis, we have constructed
a generic state diagram of size-disparate binary hard-sphere
mixtures. The effects are generic to the appearance of com-
peting length scales in the system, and therefore should be ap-
plicable also to a wider range of colloidal (non-hard-sphere)
mixtures and also polymeric or protein solutions with different
length scales and possibly also certain metallic alloys.

Recently, the SCGLE approach has been extended to a non-
equilibrium (NE-SCGLE) theory of irreversible processes in
liquids out of thermal equilibrium [55–57]. The NE-SCGLE
provides a microscopically founded tool for the understanding
of essential characteristics of the aging kinetics of solidifying
liquids or the processing-protocol dependence of amorphous
solids [58]. In this regard, the NE-SCGLE theory has proven
to be advantageous in its ease of generalization and applica-
tion over more rigorous (and technically involved) theories,
for example those based on MCT. The results that we present
here are thus an important step in extending SCGLE to the
description of non-equilibrium transformations in amorphous
mixtures, which are the systems of applicational relevance.
We hope that this provides a basis to facilitate the rational
design of amorphous materials and eventually the industrial
processes involved in their fabrication.
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Appendix A: Simulations

1. Technical details

We have carried out event-driven Molecular Dynamics
(MD) simulations for a HS binary system with size asymme-
try δ ≡ σs/σb = 0.2. We have simulated Nb big spheres and
Ns small spheres in a volume V . We have investigated the
dynamics of the mixture following two different Paths in the
plane (φb, φs), representing fixed φs = 0.05 (for Path S1 in
Fig.1) and φs = 0.2 (for Path D1), respectively, and increas-
ing φb towards the dynamical arrest transitions enclosing the
fluid region F predicted by the SCGLE theory.

For Path S1, we have simulated a system of fixed Nb =

200 big particles and a variable number of small particles Ns.
More specifically, we have considered the following values for
each point investigated (Fig. 1): (S 1a) Ns = 3125, (S 1b) Ns =

2778, (S 1c) Ns = 2500, (S 1d) Ns = 2273 and (S 1e) Ns =

2083. For each state point, the size of the cubic simulation box
was adjusted, together with Ns, in order to match φb. Along
Path S1, 10 different seeds (realizations) of the system have
been used to explore the available phase space and to improve
statistics. For the points S 1a- S 1d we have used a waiting
time t∗w = 103, whereas for point S 1e we let t∗w = 104 in order
to avoid aging effects.

For Path D1, we have simulated Nb = 100 big particles and
(D1a) Ns = 8333, (D1b) Ns = 7143 and (D1c) Ns = 6250
small particles. For the state point D1d, we have considered
Nb = 150 and Ns = 8333. Along Path D1, only 5 different
seeds were considered for each state point and a waiting time
t∗w = 103.

In the simulations, the unit of length is defined by the di-
ameter of the large particles, σb, and the unit of mass is de-
fined as the mass of the big particles, Mb. The mass densi-
ties, ρM

α ≡ Mα/vα (vα = 4π(σα/2)3/3, α = s, b), are set equal
to define the mass of the small particles. In each time step,
the velocity distribution is updated in order to fix the veloc-
ity of the center of mass of the system to zero. Thus, set-
ting kB = 1, the unit of time is defined from the equipartition
theorem 〈v2〉 = 3kBT/2Mc.m.. Periodic boundary conditions

were employed in all directions. Finally, in order to gener-
ate non-overlapping initial configurations, a soft standard MD
with repulsive short-range potential and decreasing tempera-
ture was implemented [59]. This soft-core MD starts from a
completely random initial configuration.

2. Comparison of SCGLE theory and Molecular Dynamics

The SCGLE formalism is a theoretical framework to de-
scribe the dynamics of colloidal mixtures, i.e., dynamics orig-
inating from the Brownian nature of the microscopic parti-
cle motion. In our work, the SCGLE analysis is compared
with results of MD simulations for HS, which are based on
the Newtonian character of the individual particle motion and
hence rather represent the motion of atoms. The long-time dy-
namical equivalence between a colloidal and an atomic liquid
that share the same interparticle potential is well established
[60–63]. In contrast, a fundamental difference appears in the
short-time dynamics, colloidal motion is diffusive at all rele-
vant time scales, whereas atoms show a crossover from bal-
listic to diffusive behavior after a few particle collisions. In
a recent contribution [52], a SCGLE theory for the dynam-
ics of multicomponent atomic fluids has been derived. When
complemented with a Gaussian approximation, the resulting
theory provides a reasonable representation of the transition
from ballistic to diffusive behavior in atomic liquids, allow-
ing us to quantitatively compare theory and MD simulations.
The details of this approach and its specific implementation
are discussed in Ref. [52].

3. Radial distribution function along Path S1

Besides the slowing down of both self and collective dy-
namics of the large spheres along Path S1 (Figs. 2 and 7),
the MD simulations also revealed structural behavior similar
to that of a highly amorphous material at the state point S 1e.
This is seen in the evolution of the radial distribution of the
large species, gbb(r), along the state points of Path S1 shown
in Fig. 17.

Appendix B: Experiments

1. Materials

We have studied dispersions of sterically stabilized PMMA
particles of different diameters. For Path S3, σb = 3.1 µm
(polydispersity 0.07, not fluorescently labeled) mixed with
particles of diameter σs = 0.56 µm (polydispersity 0.13,
fluorescently labeled with nitrobenzoxadiazole). For Path
S2 and Path D2, σb = 3.1 µm (polydispersity 0.06, fluo-
rescently labeled with Nile Red) mixed with particles of
diameter σs = 0.56 µm (polydispersity 0.13, fluorescently
labeled with nitrobenzoxadiazole). This resulted in a size
ratio δ ≈ 0.18 for both systems. In all cases, the colloids
were dispersed in a cis-decalin/cycloheptylbromide mixture
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FIG. 17: (Color online) Evolution of the radial distribution function,
gbb(r∗), along the state points in Path S1 obtained from MD

simulations as indicated. The curves are vertically shifted for clarity
and r∗ ≡ r/σb.

that closely matches the density and refractive index of the
colloids. We added salt (tetrabutylammoniumchloride) to
obtain hard-sphere like interactions [64, 65]. The volume
fraction φb of a sediment of the large particles was estimated
to be φb = 0.65 by comparing with numerical simulations
and experiments [25, 66], the uncertainty ∆φb typically is
3 % [54]. In order to mix stock dispersions with comparable
dynamics and therefore distance from the glass transition, we
have assumed the generalized Stokes-Einstein relation [68]
to be valid, and therefore compared the linear viscoelastic
moduli of the one component dispersions of the two species.
The volume fraction of the small particles was adjusted until
the linear viscoelastic moduli, measured in units of the energy
density 6kBT/πσb

3, were comparable to those of the large
particles. The frequency was multiplied by the free-diffusion
Brownian time τB = 3πησb

3/kBT , where η = 2.2 mPa s
is the solvent viscosity. Note that comparable rheological
response and dynamics imply that the stock dispersions of
large and small particles have a slightly different φ due to the
different polydispersities. Samples with different total volume
fractions φ and compositions, quantified by the fraction of
small particles xs = φs/φ = 0.01, 0.05, were prepared by
mixing the one-component stock suspensions. We should
mention that the experimental system used in this work could
be employed in principle to study also the self dynamics
using a mixture of labeled and unlabeled particles of the
same batch. However, one could not easily obtain batches
of identical particles which are labeled and unlabeled. Such
kind of experiments will be performed in future investigations.

2. DDM measurements and Analysis

We used a Nikon A1R-MP confocal scanning unit mounted
on a Nikon Ti-U inverted microscope, with a 60x Nikon
Plan Apo oil immersion objective (NA = 1.40). Confocal
microscopy images were obtained in a plane taken approxi-
mately 30 µm from the coverslip. Images with 512×512 pix-
els, corresponding to 107 µm × 107 µm, were taken at two dif-
ferent rates: a fast rate of 30 frames per second to follow the
short time dynamics and a slow rate, between 0.07 and 0.33
frames per second (depending on sample) to follow the long-
time dynamics. The maximum pinhole diameter of 255 µm
was used. Time series of 104 images were acquired for 2 to 5
distinct volumes, depending on sample.
Details of the image analysis using the DDM approach to ob-
tain the intermediate scattering function f (q, t) have been re-
ported previously [33, 34]. For measurements along Path S2,
instabilities of the microscope setup, mainly caused by a slow
drift of the stage, limited the maximum measurement time.

Appendix C: Theoretical Analysis

1. Multicomponent SCGLE Theory

The SCGLE theory of colloid dynamics and dynamical ar-
rest was previously introduced [45, 46, 48] and further ex-
tended to mixtures [37, 38, 47]. It provides the time and
wavevector dependence of the relevant dynamical properties
of a colloidal mixture. Details of the derivation of this the-
ory and its application to colloidal model systems are pro-
vided in Refs. [37, 38, 47] and references therein. The
theory is summarized by a set of self-consistent equations
describing the time evolution of the matrix F (q, t), whose
αβ-elements are the partial intermediate scattering func-
tions (ISF), [F (q, t)]αβ ≡

〈
nα(q, t)nβ(−q, 0)

〉
, with nα(q, t) =∑Nα

i= j exp[iq · r(α)
j (t)]/

√
Nα being the Fourier transform of the

local density of particles of species α, nα(r, t) =
∑Nα

j=1 δ(r −
r(α)

j (t))/
√

Nα, and where r(α)
j (t) denotes position of the jth-

particle of species α at time t. The initial value F (q, 0) is thus
the static structure matrix, S(q), with elements [S(q)]αβ =〈
nα(q)nβ(−q)

〉
, and constitutes one input needed to solve

the SCGLE equations. In this contribution, we employ the
Percus-Yevick (PY) approximation [50] combined with the
Verlet-Weiss (VW) correction [51] to determine the matrix
S(q) of a binary mixture of hard spheres (HS). The SCGLE
also provides the time evolution of the self part of F (q, t),
referred to as self ISF matrix, F S (q, t), and with elements
defined as [F S (q, t)]αβ ≡ δαβ

〈
exp[iq · ∆rα(t)]

〉
, where ∆rα(t)

denotes the displacement of any of the Nα particles of species
α over a time t and δαβ is the Kronecker’s delta. Written in the
Laplace domain, the SCGLE equations read as [37, 47],

F (q, z) = {zI + q2D · [zI+

λ(q) · ∆ζ̂∗(z)]−1 · S−1(q)}−1 · S(q),
(C1)
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and

F S (q, z) = {zI + q2D · [zI + λ(q) · ∆ζ̂∗(z)]−1}−1, (C2)

where I is the identity matrix [I]αβ = δαβ,D and λ(q) are di-
agonal matrices defined as [D]αβ ≡ δαβD0

α and [λ(q)]αβ =

δαβ[1 + (q/qc
α)]−1, and with D0

α being the short-time self-
diffusion coefficient of species α. The parameter qc

α is an em-
pirical cut-off wave-vector written as qc

α = aqmax
α , in which

qmax
α denotes the position of the maximum of S αα(q), and

a > 0 is the only free parameter, eventually determined by
a calibration procedure [58].

The αα-element, ∆ζ∗α(z), of the diagonal matrix ∆ζ̂∗(z) that
appears in Eqs.(C1)-(C2) is the time-dependent friction func-
tion of particles of species α, given by [37, 47],

∆ζ∗α(t) =
D0
α

3(2π)3

∫
dq q2[F S (q, t)]αα×

[h(q) ·
√
n · S−1(q) · F (q, t) · S−1(q) ·

√
n · h(q)]αα,

(C3)

where the q-dependent matrix h is given in terms of S by
h =

√
n−1 · (S − I) ·

√
n−1, and with the elements of the

matrix
√
n defined as [

√
n]αβ ≡ δαβ

√
nα.

Thus, for a fixed point (δ, φb, φs) in the parameter space of
a binary mixture of HS one starts by determining the static
structure matrix, S(q), to further solve Eqs. (C1)- (C3), and
hence to obtain the self and collective ISF, and the mean-
square displacement (MSD) of each species.

The SCGLE also provides equations for the long-time
asymptotic values of the dynamical properties involved,
f∞αβ(q) ≡ lim

t→∞
Fαβ(q, t)/S αβ(q), f∞,Sα (q) ≡ lim

t→∞
FS
α (q, t), and

γα ≡ [lim
t→∞

∆ζ∗α(t)]−1D0
α, typically referred to as non-ergodicity

parameters (NEP), and which play the role of order parame-
ters for the determination of the ergodic-non-ergodic transi-
tions of the mixture [37]. The most fundamental of these re-
sults is the following equation for the asymptotic value of the
mean square displacement of species α, γα ≡ lim

t→∞
〈[∆rα(t)]2〉,

1
γα

=
1

3(2π)3

∫
d3kk2

{
λ[λ + k2γ]−1

}
αα

×
{
c
√
nSλ[Sλ + k2γ]−1 √nh

}
αα
,

(C4)

where c andh are, respectively, the direct and total matrices of
correlation functions, thus related toS byS = I+

√
nh
√
n =

[I −
√
nc
√
n]−1, and with [γ]αβ ≡ δαβγα. Hence, for the case

of the mixture, one can also use the matrix S(q) to solve Eq.
(C4) for the two parameters γb and γs, and the corresponding
equations for the diagonal components of the NEP, i.e., f∞bb(q),
f∞ss (q), f∞,Sb (q) and f∞,Ss (q) [37]. At each state point, the dy-
namical state of the system can be then classified using the
resulting values of these parameters.

At fixed δ, one can scan the subspace (φb, φs) calculating
the NEP at each state point, and determining the regions where
a dynamical transition in a subset, or in all these parameters
occurs. This procedure allows us to locate the boundaries be-
tween the dynamically arrested regions and the ergodic ones.
For δ . 0.38, one finds three main possibilities for the val-
ues of the NEP [37], namely: (i) γb and γs diverge, and

FIG. 18: (Color online) State space defined by the volume fractions
of big, φb, and small, φs, particles of a binary mixture of HS with

size ratio δ = 0.1. Lines are predictions for the glass transition
provided by the SCGLE theory, determined using Eq. (C4) and the

PY-VW approximation for the static structure matrix S(q). The
(black) solid line describes the transitions from the fluid (F) to the

double glass (DG) state. The (red) dashed line indicates the
transitions between the (F) and the single glass (SG) states. The
(blue) dashed-dotted line shows the transition from the SG to the

double glass DG state. The different state points (colored symbols)
along the dotted line correspond to those previously investigated by

means of confocal microscopy experiments in Ref. [32]. The
(black) open squares, instead describe the glassy samples reported
in Ref. [30] Inset: measured MSD of the large spheres for different
compositions xs (as indicated), constant volume fraction φ ≈ 0.60

and size ratio δ = 0.09 taken from Ref. [32].

f∞bb(q) = f∞ss (q) = f∞,Sbb (q) = f∞,Sss (q) = 0, i.e., both species
diffuse and the system is in a fully ergodic state (F); (ii) γb
is finite, γs diverges, f∞bb(q) , 0, f∞ss (q) , 0, f∞,Sbb (q) , 0
and f∞,Sss (q) = 0, indicating that the collective dynamics of
both big and small particles become arrested, whilst the self
dynamics of the small spheres remains ergodic, and thus, they
are still able to diffuse through the voids left by the large ones.
This is referred to as a partially arrested state (SG); and (iii)
all the NEP are finite, thus corresponding to a fully arrested
state (DG). In Fig. 18, the result of this procedure for the case
δ = 0.1 is illustrated.

2. Assessment of the Dynamical Arrest diagram: SCGLE vs
Confocal Microscopy Experiments

To test the scenario summarized in the dynamical arrest di-
agram of Fig. 18, we have considered confocal microscopy
data of colloidal HS binary mixtures. In addition to the sam-
ples reported above, we have also investigated samples with
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size ratio δ = 0.09, φ ≈ 0.60 and different compositions xs,
as previously reported [32]. A series of transitions to arrested
and ergodic states were observed for the big species in terms
of their MSD (inset of Fig. 18). In the absence of small
particles, xs = 0.0 ( ), the one-component system of large
spheres exhibits dynamical arrest, mainly characterized by a
long time plateau in the MSD, and with a characteristic lo-
calization length l∗b ≡ lb/σb ∼ 0.1. For xs = 0.01 (�), the
big particles remain arrested and display a slightly smaller l∗b.
Consistently, the SCGLE predicts that both state points be-
long to region SG. At xs = 0.1 (N), the MSD shows diffusive
behavior indicating that the glassy state of the big spheres is
melted. According to the theory, this state is now located in-
side the ergodic region F. Increasing the fraction of small par-
ticles to xs = 0.3 (H), the MSD slows down and appears sub-
diffusive, and for xs = 0.5 (J) an acceleration is observed. At
xs = 0.7 (∗), there is a further slowing down of the MSD. Ac-
cording to the theory, this state point approaches the transition
line separating regions F and DG. Finally, for xs = 0.9 (_),
the dynamics of the large particles become arrested again, but
with a smaller localization length (l∗b ≈ 0.05) in comparison to
the cases xs = 0.0 and xs = 0.1, consistent with the presence
of a glass of small spheres. According to the theory, this state
point belongs to region DG, thus providing qualitative consis-
tency between the SCGLE and these experimental results.

Despite this qualitative agreement, we should also refer to
the experimental samples of Ref.[30], shown as the black open
squares in Fig.18 and reporting glassy samples for the case
δ = 0.1. The qualitative results are essentially the same, both
show that, above a certain threshold for φs, the total volume
fraction of the mixture to reach the glass transition becomes
smaller with increasing φs (otherwise, a line adjusting the ex-
perimental data would be parallel to that describing the exper-
iments of Ref. [32]). In this case, however, the quantitative
agreement between theory and experiments is poor, since the
SCGLE overestimate the locus of the transition line. This dif-
ference may be attributed to several factors such as polidis-
persity, residual charges and other effects present in the ex-
perimental samples but not in the theory, in particular, hydro-
dynamic interactions. Furthermore, one should also consider
the simplified character of the theory which does neither ac-
count for these effects and uses the Percus-Yevick approxima-
tion combined with the Verlet-Weiss correction for the static
structure factor.

3. Collective dynamics of the F-SG transition

The SG domain describes a region of partially arrested
states, where the collective dynamics of both species are pre-
dicted to undergo dynamical arrest, whereas the self dynam-
ics of the small particles remain ergodic. This feature of the
F-SG transition was observed through the decoupling of the
SISF, FS

b (q∗ = 7.18, t) and FS
s (q∗ = 7.18) (Figs. 2(a)-2(b)),

and of the corresponding MSDs, 〈[∆ri(t)]2〉 (Fig. 7).
The collective dynamics, however, show a subtle feature

that deserves to be briefly commented. Collective diffusion
is conventionally described in terms of the so-called normal-

FIG. 19: (Color online) Comparison of the behavior of the
collective ISF fbb(q∗ = 7.18, t∗) (solid line) and fss(q∗ = 7.18, t∗)
(dashed line), and the collective propagators, Ψbb(q∗ = 7.18, t∗)

(solid circles) and Ψss(q∗ = 7.18, t∗) (empty circles), calculated at
the state point (δ = 0.2, φb = 0.638, φs = 0.05), corresponding to the

intersection of Path S1 with the SG transition line in Fig. 1. Inset
shows the behavior of the crossed propagators Ψbb(q∗ = 7.18, t∗)

(solid triangles) and Ψss(q∗ = 7.18, t∗) (empty triangles) at the same
state point.

ized ISF, fii(q, t) ≡ Fii(q, t)/S ii(q), defined in terms of the di-
agonal elements of the matrix F (q, t) of Eq. (C1) and the
initial values Fii(q, t = 0) = S ii(q), being the quantities ac-
cessible experimentally. These observables were extensively
investigated in this work combining DDM experiments, MD
simulations and theoretical calculations. Towards the F-SG
transition, both fbb(q∗ = 7.18, t) and fss(q∗ = 7.18) display
a slowing down in the relaxation and become strongly corre-
lated (see, for instance, Figs. 2(c) and 2(d)). This suggest
that, at the level of collective dynamics, it is only possible
to detect either fluid or arrested states, but not partially ar-
rested ones. This, however, is only the result of the conven-
tion adopted to describe collective dynamics, and hence, of the
normalization employed in the solution of Eq. (C1). To see
this, let us consider the collective propagator matrix Ψ(q, t) ≡
F (q, t)S−1(q), with initial condition Ψ(q, t = 0) = I . The
quantity Ψαβ ≡ [Ψ]αβ can be interpreted as the effect of the
static structure associated to the species β on the collective
dynamics of species α.

In terms of the diagonal propagators Ψbb(q, t) and Ψss(q, t),
the scenario for the collective dynamics of the F-SG transition
differs from that displayed by the ISF fbb(q, t) and fss(q, t).
Specifically, one finds that the collective propagator Ψbb(q∗ =

7.18, t) displays dynamical arrest, whereas Ψss(q∗ = 7.18, t)
decays to zero, in qualitative analogy with the behavior of the
self ISFs (for a detailed discussion, the reader is referred to
Sec. IV of Ref.[37]). These conditions are illustrated in Fig.
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19 by the results for Ψbb(q∗ = 7.18, t) and Ψss(q∗ = 7.18, t)
calculated at the state point (δ = 0.2, φb = 0.638, φs = 0.05),
corresponding to the intersection of Path S1 with the F- SG
transition line (see Fig. 1). In the same figure, the behavior
of both fbb and fss at the same state point is displayed for
comparison.

The relaxation of the crossed propagators Ψbs(q, t) and
Ψsb(q, t) also deserves a comment, in particular, in connec-
tion with partially arrested states. First, one must have in
mind that, despite the matrices F (q, t) and S(q) being sym-
metric, the product F (q, t)S−1(q), in general, is not, in other
words Ψbs(q, t) , Ψsb(q, t). Second, since Ψ(q, t = 0) = I ,
it is clear that Ψbs(q, t = 0) and Ψsb(q, t = 0) must van-
ish. Third, the off-diagonal elements of Ψ(q, t) are not nec-
essarily positive. In the inset of Fig. 19, the behavior of
these propagators at the aforementioned state point in the F-
SG transition line is shown. One observes that both quanti-

ties are negative and that Ψsb relaxes to a finite nonergodic
asymptotic value, although Ψbs is always much smaller and
relaxes to zero. On the other hand, it is straightforward to
show that fbb(q, t) = Ψbb(q, t) + [S sb(q)/S bb(q)]Ψbs(q, t) and
fss(q, t) = Ψss(k, t) + [S bs(q)/S ss(q)]Ψsb(q, t). Hence, since
Ψbs(q, t) is small and relaxes to zero, one finds that both fbb
and Ψbb display similar behavior. In contrast, although the
propagator Ψss does decay to zero, fss exhibits dynamic arrest
due to its linear dependence on Ψsb(q, t), which, as illustrated
in the inset of Fig. 19, relaxes to a non zero value.

Thus, at the F-SG transition only the Ψαβ(q, t) associated
with β = b do not relaxes to zero, which indicates that in the
single-glass, the big-particles static structure affects the glassy
(long-time) dynamics of the small species, but the glassy dy-
namics of large spheres is not influenced by the static structure
of the small particles (but only by their dynamics).
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