3,023 research outputs found

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Incompleteness of States w.r.t. Traces in Model Checking

    Get PDF
    Cousot and Cousot introduced and studied a general past/future-time specification language, called mu*-calculus, featuring a natural time-symmetric trace-based semantics. The standard state-based semantics of the mu*-calculus is an abstract interpretation of its trace-based semantics, which turns out to be incomplete (i.e., trace-incomplete), even for finite systems. As a consequence, standard state-based model checking of the mu*-calculus is incomplete w.r.t. trace-based model checking. This paper shows that any refinement or abstraction of the domain of sets of states induces a corresponding semantics which is still trace-incomplete for any propositional fragment of the mu*-calculus. This derives from a number of results, one for each incomplete logical/temporal connective of the mu*-calculus, that characterize the structure of models, i.e. transition systems, whose corresponding state-based semantics of the mu*-calculus is trace-complete

    Finite-State Abstractions for Probabilistic Computation Tree Logic

    No full text
    Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for probabilistic verification of discrete-time Markov chains. Probabilistic model checking is a technique that verifies or refutes whether a property specified in this logic holds in a Markov chain. But Markov chains are often infinite or too large for this technique to apply. A standard solution to this problem is to convert the Markov chain to an abstract model and to model check that abstract model. The problem this thesis therefore studies is whether or when such finite abstractions of Markov chains for model checking PCTL exist. This thesis makes the following contributions. We identify a sizeable fragment of PCTL for which 3-valued Markov chains can serve as finite abstractions; this fragment is maximal for those abstractions and subsumes many practically relevant specifications including, e.g., reachability. We also develop game-theoretic foundations for the semantics of PCTL over Markov chains by capturing the standard PCTL semantics via a two-player games. These games, finally, inspire a notion of p-automata, which accept entire Markov chains. We show that p-automata subsume PCTL and Markov chains; that their languages of Markov chains have pleasant closure properties; and that the complexity of deciding acceptance matches that of probabilistic model checking for p-automata representing PCTL formulae. In addition, we offer a simulation between p-automata that under-approximates language containment. These results then allow us to show that p-automata comprise a solution to the problem studied in this thesis

    Expressiveness and Completeness in Abstraction

    Full text link
    We study two notions of expressiveness, which have appeared in abstraction theory for model checking, and find them incomparable in general. In particular, we show that according to the most widely used notion, the class of Kripke Modal Transition Systems is strictly less expressive than the class of Generalised Kripke Modal Transition Systems (a generalised variant of Kripke Modal Transition Systems equipped with hypertransitions). Furthermore, we investigate the ability of an abstraction framework to prove a formula with a finite abstract model, a property known as completeness. We address the issue of completeness from a general perspective: the way it depends on certain abstraction parameters, as well as its relationship with expressiveness.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    Labelled transition systems as a Stone space

    Get PDF
    A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.Comment: Changes since v2: Metadata updat

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176
    • …
    corecore