47,571 research outputs found

    A review of intensity data banks online

    Get PDF
    The investigation of the records of past earthquakes in Europe and in other countries of the world produced in recent years a large amount of information, such as historical seismicity studies, earthquake catalogues and collections of intensity data points. The rapid growth of computerized information systems allowed for management of data in digital form, while the evolution of Information and Communication Technologies initiated a new era of sharing, transferring and disseminating the output of this investigation. This paper outlines the availability and use of collections of intensity data points which are increasingly being offered to users through Internet such as: DOM and CFTI, Italy; SISFRANCE, France; ECOS, Switzerland; EMID, a starting point towards a European-Mediterranean Intensity Database; NGDC/NOAA database, US; CERESIS catalogue, South America

    NEOREG : design and implementation of an online neonatal registration system to access, follow and analyse data of newborns with congenital cytomegalovirus infection

    Get PDF
    Today's registration of newborns with congenital cytomegalovirus (cCMV) infection is still performed on paper-based forms in Flanders, Belgium. This process has a large administrative impact. It is imortant that all screening tests are registered to have a complete idea of the impact of cCMV. Although these registrations are usable in computerised data analysis, these data are not available in a format to perform electronic processing. An online Neonatal Registry (NEOREG) System was designed and developed to access, follow and analyse the data of newborns remotely. It allows patients' diagnostic registration and treatment follow-up through a web interface and uses document forms in Portable Document Format (PDF), which incorporate all the elements from the existing forms. Forms are automatically processed to structured EHRs. Modules are included to perform statistical analysis. The design was driven by extendibility, security and usability requirements. The website load time, throughput and execution time of data analysis were evaluated in detail. The NEOREG system is able to replace the existing paper-based CMV records

    Electronical Health Record's Systems. Interoperability

    Get PDF
    Understanding the importance that the electronic medical health records system has, with its various structural types and grades, has led to the elaboration of a series of standards and quality control methods, meant to control its functioning. In time, the electronic health records system has evolved along with the medical data's change of structure. Romania has not yet managed to fully clarify this concept, various definitions still being encountered, such as "Patient's electronic chart", "Electronic health file". A slow change from functional interoperability (OSI level 6) to semantic interoperability (level 7) is being aimed at the moment. This current article will try to present the main electronic files models, from a functional interoperability system's possibility to be created perspective. \ud \u

    Computerized key to the genus Bursaphelenchus Fuchs, analysis of species clusters based on morphology, using information of insect vectors and associated plants, with a revision of the genus.

    Get PDF
    The genus Bursaphelenchus includes B. xylophilus (Steiner et Buhrer, 1934) Nickle, 1981, which is of world economic and quarantine importance. Distinction among several species of the pinewood nematodes species complex (PWNSC) is often difficult. Besides standard morphology, morphometrics and molecular biology, new tools are welcome to better understand this group. The computerized (or e-) key of this genus, presented in this communication, includes 74 species (complete list of valid species of the world fauna) and 35 characters, that were used by the taxonomic experts of this group, in the original descriptions. Morphology of sex organs (male spicules and female vulval region) was digitized and classified to distinguish alternative types. Several qualitative characters with overlapping character states (expressions) were transformed into the morphometric indices with the discontinuous ranges (characters of ratios of the spicule dimensions). Characters and their states (expressions) were illustrated in detail and supplied by brief user-friendly comments. E-key was created in the BIKEY identification system (Dianov & Lobanov, 1996-2004). The system has built-algorithm ranging characters depending on their diagnostic values at each step of identification. Matrix of species and the character states (structural part of the e-key database) may be easily transformed using statistical packages into the dendrograms of general phenetic similarities (UPGMA, standard distance: mean character difference). It may be useful in the detailed analysis of taxonomy and evolution of the genus and in its splitting to the species groups based on morphology. The verification of the dendrogram using the information on the species links with insect vectors and their associated plants, provided an opportunity to recognize the five clusters (xylophilus, hunti, eremus sensu stricto, tusciae and piniperdae sensu stricto), which seem to be the natural species groups. The hypothesis about the origin and the first stages of the genus evolution is proposed. A general review of the genus Bursaphelenchus is presented

    The Mental Database

    Get PDF
    This article uses database, evolution and physics considerations to suggest how the mind stores and processes its data. Its innovations in its approach lie in:- A) The comparison between the capabilities of the mind to those of a modern relational database while conserving phenomenality. The strong functional similarity of the two systems leads to the conclusion that the mind may be profitably described as being a mental database. The need for material/mental bridging and addressing indexes is discussed. B) The consideration of what neural correlates of consciousness (NCC) between sensorimotor data and instrumented observation one can hope to obtain using current biophysics. It is deduced that what is seen using the various brain scanning methods reflects only that part of current activity transactions (e.g. visualizing) which update and interrogate the mind, but not the contents of the integrated mental database which constitutes the mind itself. This approach yields reasons why there is much neural activity in an area to which a conscious function is ascribed (e.g. the amygdala is associated with fear), yet there is no visible part of its activity which can be clearly identified as phenomenal. The concept is then situated in a Penrosian expanded physical environment, requiring evolutionary continuity, modularity and phenomenality.Several novel Darwinian advantages arising from the approach are described

    Evolving information systems: meeting the ever-changing environment

    Get PDF
    To meet the demands of organizations and their ever-changing environment, information systems are required which are able to evolve to the same extent as organizations do. Such a system has to support changes in all time-and application-dependent aspects. In this paper, requirements and a conceptual framework for evolving information systems are presented. This framework includes an architecture for such systems and a revision of the traditional notion of update. Based on this evolutionary notion of update (recording, correction and forgetting) a state transition-oriented model on three levels of abstraction (event level, recording level, correction level) is introduced. Examples are provided to illustrate the conceptual framework for evolving information systems

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge
    • …
    corecore