6,620 research outputs found

    Assessment of multipath and shadowing effects on UHF band in built-up environments

    Get PDF
    Ultra-high frequency (UHF) bands are radio frequencies in the range of 300 MHz and 3 GHz. These bands are used for television broadcasting, mobile cellular systems, Wi-Fi, satellite communications and many others. Effective communication link in the UHF band requires direct line of sight between the transmitters and receivers. However, this is not always the case in built-up areas where diverse obstacles such as large buildings, trees, moving objects and hills are present along the communication path. These obstacles result in signal degradation as a result of shadowing (blockages) and multi-path, which are two major causes of signal losses. Path loss models are used in predicting signal losses but, the accuracy of these models depend on the fitness between the model's predictions and measured loses. In this work, the multi-path and shadowing effects on signal impairment were investigated through the use of empirical and semi-empirical path loss models analysis in built-up environments. Electromagnetic field strength measurements were conducted using four television transmitters at UHF bands along four major routes of Osun State, Nigeria. Experimental and simulation results indicated that the empirical models provide a better fit than the semi-empirical models. It was also found that the poor performance of the Knife Edge Model which is a semi-empirical model was traced to the bases of its formulation, which assumed point like knife edge for all obstacles on the path of radio propagation. The work therefore recommends that network planners employ empirical models found suitable for their kind of terrain when faced with coverage planning and optimization.Keywords: Path loss models, Radio propagation,  Terrain feature

    Optimizing Number, Placement, and Backhaul Connectivity of Multi-UAV Networks

    Full text link
    Multi-Unmanned Aerial Vehicle (UAV) Networks is a promising solution to providing wireless coverage to ground users in challenging rural areas (such as Internet of Things (IoT) devices in farmlands), where the traditional cellular networks are sparse or unavailable. A key challenge in such networks is the 3D placement of all UAV base stations such that the formed Multi-UAV Network (i) utilizes a minimum number of UAVs while ensuring -- (ii) backhaul connectivity directly (or via other UAVs) to the nearby terrestrial base station, and (iii) wireless coverage to all ground users in the area of operation. This joint Backhaul-and-coverage-aware Drone Deployment (BoaRD) problem is largely unaddressed in the literature, and, thus, is the focus of the paper. We first formulate the BoaRD problem as Integer Linear Programming (ILP). However, the problem is NP-hard, and therefore, we propose a low complexity algorithm with a provable performance guarantee to solve the problem efficiently. Our simulation study shows that the Proposed algorithm performs very close to that of the Optimal algorithm (solved using ILP solver) for smaller scenarios, where the area size and the number of users are relatively small. For larger scenarios, where the area size and the number of users are relatively large, the proposed algorithm greatly outperforms the baseline approaches -- backhaul-aware greedy and random algorithm, respectively by up to 17% and 95% in utilizing fewer UAVs while ensuring 100% ground user coverage and backhaul connectivity for all deployed UAVs across all considered simulation setting.Comment: To appear in IEEE Internet of Things Journa

    Sustainable optimizing WMN performance through meta-heuristic TDMA link scheduling and routing

    Get PDF
    Wireless mesh networks (WMNs) have become a popular solution for expanding internet service and communication in both urban and rural areas. However, the performance of WMNs depends on generating optimized time-division multiple access (TDMA) schedules, which distribute time into a list of slots called superframes. This study proposes novel meta-heuristic algorithms to generate TDMA link schedules in WMNs using two different interference/constraint models: multi-transmit-receive (MTR) and full-duplex (FD). The objectives of this study are to optimize the TDMA frame for packet transmission, satisfy the constraints, and minimize the end-to-end delay. The significant contributions of this study are: (1) proposing effective and efficient heuristic solutions to solve the NP-complete problem of generating optimal TDMA link schedules in WMNs; (2) investigating the new FD interference model to improve the network capacity above the physical layer. To achieve these objectives and contributions, the study uses two popular meta-heuristics, the artificial bee colony (ABC) and/or genetic algorithm (GA), to solve the known NP-complete problems of joint scheduling, power control, and rate control. The results of this study show that the proposed algorithms can generate optimized TDMA link schedules for both MTR and FD models. The joint routing and scheduling approach further minimizes end-to-end delay while maintaining the schedule's minimum length and/or maximum capacity. The proposed solution outperforms the existing solutions in terms of the number of active links, end-to-end delay, and network capacity. The research aims to improve the efficiency and effectiveness of WMNs in most applications that require high throughput and fast response time

    Enabling and Understanding Failure of Engineering Structures Using the Technique of Cohesive Elements

    Get PDF
    In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a natural outcome of the numerical simulation. Numerical examples suggest that the irreversible cohesive zone model can serve as an efficient tool to predict fatigue crack growth. Key issues such as crack path deviation, convergence and mesh dependency are also discussed
    corecore