91 research outputs found

    Implementation and Evaluation of a Thermal-Aware Campus Grid

    Get PDF
    Volunteer and grid computing framework systems have helped create several of today’s largest resource pools for scientific and engineering computing. At the same time, as computers evolve, there is a greater demand for more environmental-aware scheduling systems to be deployed with these frameworks in order to address existing concerns of the preservation of resources like energy, and computers themselves. In response to this concern, the High Performance Computing Services Center of Universiti Teknologi PETRONAS (HPC-UTP) sought to incorporate thermal-aware scheduling into its campus grid. To achieve this, the center decided to modify an existing Volunteer Computing (VC) framework to make use of different schedulers at run time, without the need to recompile the server. This thermal-aware, dynamic-scheduling capable framework will be deployed on a test environment, to assess its viability for the university’s campus grid

    Implementation and Evaluation of a Thermal-Aware Campus Grid

    Get PDF
    Volunteer and grid computing framework systems have helped create several of today’s largest resource pools for scientific and engineering computing. At the same time, as computers evolve, there is a greater demand for more environmental-aware scheduling systems to be deployed with these frameworks in order to address existing concerns of the preservation of resources like energy, and computers themselves. In response to this concern, the High Performance Computing Services Center of Universiti Teknologi PETRONAS (HPC-UTP) sought to incorporate thermal-aware scheduling into its campus grid. To achieve this, the center decided to modify an existing Volunteer Computing (VC) framework to make use of different schedulers at run time, without the need to recompile the server. This thermal-aware, dynamic-scheduling capable framework will be deployed on a test environment, to assess its viability for the university’s campus grid

    A complete simulator for volunteer computing environments

    Get PDF
    Volunteer computing is a type of distributed computing in which ordinary people donate their idle computer time to science projects like SETI@home, Climateprediction.net and many others. BOINC provides a complete middleware system for volunteer computing, and it became generalized as a platform for distributed applications in areas as diverse as mathematics, medicine, molecular biology, climatology, environmental science, and astrophysics. In this document we present the whole development process of ComBoS, a complete simulator of the BOINC infrastructure. Although there are other BOINC simulators, our intention was to create a complete simulator that, unlike the existing ones, could simulate realistic scenarios taking into account the whole BOINC infrastructure, that other simulators do not consider: projects, servers, network, redundant computing, scheduling, and volunteer nodes. The output of the simulations allows us to analyze a wide range of statistical results, such as the throughput of each project, the number of jobs executed by the clients, the total credit granted and the average occupation of the BOINC servers. This bachelor thesis describes the design of ComBoS and the results of the validation performed. This validation compares the results obtained in ComBoS with the real ones of three different BOINC projects (Einstein@home, SETI@home and LHC@home). Besides, we analyze the performance of the simulator in terms of memory usage and execution time. This document also shows that our simulator can guide the design of BOINC projects, describing some case studies using ComBoS that could help designers verify the feasibility of BOINC projects.Ingeniería Informátic

    The Lattice Project: A Multi-model Grid Computing System

    Get PDF
    This thesis presents The Lattice Project, a system that combines multiple models of Grid computing. Grid computing is a paradigm for leveraging multiple distributed computational resources to solve fundamental scientific problems that require large amounts of computation. The system combines the traditional Service model of Grid computing with the Desktop model of Grid computing, and is thus capable of utilizing diverse resources such as institutional desktop computers, dedicated computing clusters, and machines volunteered by the general public to advance science. The production Grid system includes a fully-featured user interface, support for a large number of popular scientific applications, a robust Grid-level scheduler, and novel enhancements such as a Grid-wide file caching scheme. A substantial amount of scientific research has already been completed using The Lattice Project

    On Correlated Availability in Internet Distributed Systems

    No full text
    International audienceAs computer networks rapidly increase in size and speed, Internet-distributed systems such as P2P, volunteer computing, and Grid systems are increasingly common. A precise and accurate characterization of Internet resources is important for the design and evaluation of such Internet-distributed systems, yet our picture of the Internet landscape is not perfectly clear. To improve this picture, we measure and characterize the time dynamics of availability in a large-scale Internet-distributed system with over 110,000 hosts. Our characterization focuses on identifying patterns of correlated availability. We determine scalable and accurate clustering techniques and distance metrics for automatically detecting significant availability patterns. By means of clustering, we identify groups of resources with correlated availability that exhibit similar time effects. Then we show how these correlated clusters of resources can be used to improve resource management for parallel applications in the context of volunteer computing

    Non-cooperative scheduling considered harmful in collaborative volunteer computing environments

    Get PDF
    Abstract-Advances in inter-networking technology and computing components have enabled Volunteer Computing (VC) systems that allows volunteers to donate their computers' idle CPU cycles to a given project. BOINC is the most popular VC infrastructure today with over 580,000 hosts that deliver over 2,300 TeraFLOP per day. BOINC projects usually have hundreds of thousands of independent tasks and are interested in overall throughput. Each project has its own server which is responsible for distributing work units to clients, recovering results and validating them. The BOINC scheduling algorithms are complex and have been used for many years now. Their efficiency and fairness have been assessed in the context of throughput oriented projects. Yet, recently, burst projects, with fewer tasks and interested in response time, have emerged. Many works have proposed new scheduling algorithms to optimize individual response time but their use may be problematic in presence of other projects. In this article we show that the commonly used BOINC scheduling algorithms are unable to enforce fairness and project isolation. Burst projects may dramatically impact the performance of all other projects (burst or non-burst). To study such interactions, we perform a detailed, multi-player and multi-objective game theoretic study. Our analysis and experiments provide a good understanding on the impact of the different scheduling parameters and show that the non-cooperative optimization may result in inefficient and unfair share of the resources

    Enhancing reliability with Latin Square redundancy on desktop grids.

    Get PDF
    Computational grids are some of the largest computer systems in existence today. Unfortunately they are also, in many cases, the least reliable. This research examines the use of redundancy with permutation as a method of improving reliability in computational grid applications. Three primary avenues are explored - development of a new redundancy model, the Replication and Permutation Paradigm (RPP) for computational grids, development of grid simulation software for testing RPP against other redundancy methods and, finally, running a program on a live grid using RPP. An important part of RPP involves distributing data and tasks across the grid in Latin Square fashion. Two theorems and subsequent proofs regarding Latin Squares are developed. The theorems describe the changing position of symbols between the rows of a standard Latin Square. When a symbol is missing because a column is removed the theorems provide a basis for determining the next row and column where the missing symbol can be found. Interesting in their own right, the theorems have implications for redundancy. In terms of the redundancy model, the theorems allow one to state the maximum makespan in the face of missing computational hosts when using Latin Square redundancy. The simulator software was developed and used to compare different data and task distribution schemes on a simulated grid. The software clearly showed the advantage of running RPP, which resulted in faster completion times in the face of computational host failures. The Latin Square method also fails gracefully in that jobs complete with massive node failure while increasing makespan. Finally an Inductive Logic Program (ILP) for pharmacophore search was executed, using a Latin Square redundancy methodology, on a Condor grid in the Dahlem Lab at the University of Louisville Speed School of Engineering. All jobs completed, even in the face of large numbers of randomly generated computational host failures

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    • …
    corecore