644 research outputs found

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications

    Get PDF
    In real-time systems, the application's behavior has to be predictable at compile-time to guarantee timing constraints. However, modern streaming applications which exhibit adaptive behavior due to mode switching at run-time, may degrade system predictability due to unknown behavior of the application during mode transitions. Therefore, proper temporal analysis during mode transitions is imperative to preserve system predictability. To this end, in this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new predictable Model of Computation (MoC) to efficiently capture the behavior of adaptive streaming applications. Then, as an important part of the operational semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our novel protocol for mode transitions. The main advantage of this transition protocol is that, in contrast to self-timed transition protocols, it avoids timing interference between modes upon mode transitions. As a result, any mode transition can be analyzed independently from the mode transitions that occurred in the past. Based on this transition protocol, we propose a hard real-time analysis as well to guarantee timing constraints by avoiding processor overloading during mode transitions. Therefore, using this protocol, we can derive a lower bound and an upper bound on the earliest starting time of the tasks in the new mode during mode transitions in such a way that hard real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    StreamDrive: A Dynamic Dataflow Framework for Clustered Embedded Architectures

    Get PDF
    In this paper, we present StreamDrive, a dynamic dataflow framework for programming clustered embedded multicore architectures. StreamDrive simplifies development of dynamic dataflow applications starting from sequential reference C code and allows seamless handling of heterogeneous and applicationspecific processing elements by applications. We address issues of ecient implementation of the dynamic dataflow runtime system in the context of constrained embedded environments, which have not been sufficiently addressed by previous research. We conducted a detailed performance evaluation of the StreamDrive implementation on our Application Specic MultiProcessor (ASMP) cluster using the Oriented FAST and Rotated BRIEF (ORB) algorithm typical of image processing domain.We have used the proposed incremental development flow for the transformation of the ORB original reference C code into an optimized dynamic dataflow implementation. Our implementation has less than 10% parallelization overhead, near-linear speedup when the number of processors increases from 1 to 8, and achieves the performance of 15 VGA frames per second with a small cluster configuration of 4 processing elements and 64KB of shared memory, and of 30 VGA frames per second with 8 processors and 128KB of shared memory
    corecore