4,625 research outputs found

    Xampling: Signal Acquisition and Processing in Union of Subspaces

    Full text link
    We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two. Analog compression that narrows down the input bandwidth prior to sampling with commercial devices. A nonlinear algorithm then detects the input subspace prior to conventional signal processing. A representative union model of spectrally-sparse signals serves as a test-case to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy and software complexities. We conduct a comprehensive comparison between two sub-Nyquist acquisition strategies for spectrally-sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address lowrate signal processing and develop an algorithm for that purpose that enables convenient signal processing at sub-Nyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicely into our framework.Comment: 16 pages, 9 figures, submitted to IEEE for possible publicatio

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    Radio Science Experiment Data Analysis in the framework of the ESA Missions “Venus Express" and “Rosetta"

    Get PDF
    Occultation measurements exploit an observational geometry in which the spacecraft to Earth communication link is interrupted by the planet itself. Coherent, high-rate (100 ksamples/s) sampling of the down-converted RF incoming signal enables the OL receiving system to safeguard the high dynamics (up to 2 kHz/s) of the weak signals (attenuation > 50dB) emerging from the deep layers of the Venus atmosphere. The purpose of the developed software package, the Open-Loop data processing software (OL SW), is to extract the information embedded in noise by means of an iterative strategy. Essential skill of the OL SW is the progressive reduction of the signal bandwidth while at the same time maintaining high time resolution of the data. This implies high spacial resolution of the sounded media (i.e., the Venus atmosphere) and the capability of resolving effects of multipath propagation

    Optimal Requirements of a Data Acquisition System for a Quadrupolar Probe Employed in Electrical Spectroscopy

    Get PDF
    This paper discusses the development and engineering of electrical spectroscopy for simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity. A suitable quadrupolar probe is able to perform measurements on a subsurface with inaccuracies below a fixed limit (10%) in a bandwidth of low (LF) frequency (100kHz). The quadrupole probe should be connected to an appropriate analogical digital converter (ADC) which samples in phase and quadrature (IQ) or in uniform mode. If the quadrupole is characterized by a galvanic contact with the surface, the inaccuracies in the measurement of resistivity and permittivity, due to the IQ or uniform sampling ADC, are analytically expressed. A large number of numerical simulations proves that the performances of the probe depend on the selected sampler and that the IQ is better compared to the uniform mode under the same operating conditions, i.e. bit resolution and medium.Comment: 57 pages, 14 figures, 4 tables; Ann. Geophys. (2010

    Replacing the automatic gain control loop in a mobile, digital TV broadcast receiver by a software based solution

    Get PDF
    The power level (the amplitude) of an electro-magnetic signal wave suffers from attenuation the greater the distance between the transmitter and the receiver is. The receiver of that signal therefore has components which try to amplify the signal so that it can be processed optimally by a processor. In a mobile or portable environment the signal power level can vary strongly, because the position of the receiver to the transmitter is not fixed. In order to compensate that movement a control loop exists, which dynamically is adapting the front-end to the right level. This work describes a new, software-based way to handle the signal level control loop (formerly automatic gain control) in a digital TV receiver. Starting with a very basic introduction into digital communications, including the description of the traditional front-end architecture, followed by a detailed description of the new method. Finally some conclusions of this new method are made which are giving an idea about how in the future it might be possible to reach better receiving performances using this mechanism

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.
    corecore