3,089 research outputs found

    The Effect of Environmental Features, Self-Avatar, and Immersion on Object Location Memory in Virtual Environments

    Get PDF
    One potential application for virtual environments (VEs) is the training of spatial knowledge. A critical question is what features the VE should have in order to facilitate this training. Previous research has shown that people rely on environmental features, such as sockets and wall decorations, when learning object locations. The aim of this study is to explore the effect of varied environmental feature fidelity of VEs, the use of self-avatars, and the level of immersion on object location learning and recall. Following a between-subjects experimental design, participants were asked to learn the location of three identical objects by navigating one of the three environments: a physical laboratory or low and high detail VE replicas of this laboratory. Participants who experienced the VEs could use either a head-mounted display (HMD) or a desktop computer. Half of the participants learning in the HMD and desktop systems were assigned a virtual body. Participants were then asked to place physical versions of the three objects in the physical laboratory in the same configuration. We tracked participant movement, measured object placement, and administered a questionnaire related to aspects of the experience. HMD learning resulted in statistically significant higher performance than desktop learning. Results indicate that, when learning in low detail VEs, there is no difference in performance between participants using HMD and desktop systems. Overall, providing the participant with a virtual body had a negative impact on performance. Preliminary inspection of navigation data indicates that spatial learning strategies are different in systems with varying levels of immersion

    Virual world users evaluated according to environment design, task based adn affective attention measures

    Get PDF
    This paper presents research that engages with virtual worlds for education users to understand design of these applications for their needs. An in-depth multi-method investigation from 12 virtual worlds participants was undertaken in three stages; initially a small scale within-subjects eye-tracking comparison was made between the role playing game 'RuneScape' and the virtual social world 'Second Life', secondly an in-depth evaluation of eye-tracking data for Second Life tasks (i.e. avatar, object and world based) was conducted, finally a qualitative evaluation of Second Life tutorials in comparative 3D situations (i.e. environments that are; realistic to surreal, enclosed to open, formal to informal) was conducted. Initial findings identified increased users attention within comparable gaming and social world interactions. Further analysis identified that 3D world focused interactions increased participants' attention more than object and avatar tasks. Finally different 3D situation designs altered levels of task engagement and distraction through perceptions of comfort, fun and fear. Ultimately goal based and environment interaction tasks can increase attention and potentially immersion. However, affective perceptions of 3D situations can negatively impact on attention. An objective discussion of the limitations and benefits of virtual world immersion for student learning is presented

    The effectiveness of training in virtual environments

    Get PDF
    The research presented in this thesis explores the use of consumer virtual reality technology for training, comparing its validity to more traditional training formats. The need to evaluate the effectiveness of training in virtual environments is critical as a wider audience gains access to an array of emerging virtual reality consumer devices. Training is an obvious use case for these devices. This is motivated by the well-known success of domain-specific training simulators, the ability to train in safe, controlled environments and the potential to launch training programs when the physical components required to complete a task are not readily available. In this thesis, we present four user studies that aim to compare the effectiveness of systems with varying levels of immersion for learning transfer of several tasks, ranging from object location spatial memory to more complex assembly procedures. For every study, evaluation of the effectiveness of training took place in a real-world, physical environment. The first two studies compare geometric and self-motion models in describing human spatial memory through scale distortions of real and virtual environments. The third study examines the effect of level of immersion, self-avatar and environmental fidelity on object location memory in real and virtual environments. The fourth study compares the effectiveness of physical training and virtual training for teaching a bimanual assembly task. Results highlight the validity of virtual environments for training. The overall conclusion is that virtual training can yield a resulting performance that is superior to other, more traditional training formats. Combined, the outcomes of each of the user studies motivate further study of consumer virtual reality systems in training and suggest considerations for the design of such virtual environments

    Object Location Memory Error in Virtual and Real Environments

    Get PDF
    We aim to further explore the transfer of spatial knowledge from virtual to real spaces. Based on previous research on spatial memory in immersive virtual reality (VR) we ran a study that looked at the effect of three locomotion techniques (joystick, pointing-and-teleporting and walking-in-place) on object location learning and recall. Participants were asked to learn the location of a virtual object in a virtual environment (VE). After a short period of time they were asked to recall the location by placing a real version of the object in the real-world equivalent environment. Results indicate that the average placement error, or distance between original and recalled object location, is approximately 20cm for all locomotion technique conditions. This result is similar to the outcome of a previous study on spatial memory in VEs that used real walking. We report this unexpected finding and suggest further work on spatial memory in VR by recommending the replication of this study in different environments and using objects with a wider diversity of properties, including varying sizes and shapes

    Re-embodied fear : Designing deep learning methods in virtual reality to unravel emotional body loops

    Get PDF
    This thesis is an experimental research that theoretically examines the ontological nature of virtual reality (VR) and its possible implications to be used in designing new emotional learning environments and experiences. The focus is set on fear as an emotion that physically and mentally manifests itself as a specific phobia. The applications of using virtual reality as a psychological tool for treating negative emotions are questioned by making apparent the unanswered questions about our emotions and perception taking abilities. Through different case studies related to the manipulations of our sense of embodiment in VR, the plasticity of our mind and body is researched and applied into emotion theories. The thesis examines how VR could be harnessed to reveal the phenomenal ‘body loops’ with the help of sensor technology (HRV) and ultimately, be designed to unravel the maladaptive loops. Hypothetically, it considers taking advantage of the virtual space design and our sense of embodiment by literally creating new perspectives for experiencing through virtual body manipulations. Through problematization and the ideology of ontological design, it is suggested that we should adapt more radical design in VR to overcome the existing scientific paradigms about emotional learning

    I am here - are you there? Sense of presence and implications for virtual world design

    Get PDF
    We use the language of presence and place when we interact online: in our instant text messaging windows we often post: Are you there? Research indicates the importance of the sense of presence for computer-supported collaborative virtual learning. To realize the potential of virtual worlds such as Second Life, which may have advantages over conventional text-based environments, we need an understanding of design and the emergence of the sense of presence. A construct was created for the sense of presence, as a collaborative, action-based process (Spagnolli, Varotto, & Mantovani, 2003) with four dimensions (sense of place, social presence, individual agency, and mediated collaborative actions). Nine design principles were mapped against the four dimensions. The guiding question for the study\u27s exploration of the sense of presence was: In the virtual world Second Life, what is the effect on the sense of presence in collaborative learning spaces designed according to the sense of presence construct proposed, using two of the nine design principles, wayfinding and annotation? Another question of interest was: What are the relationships, if any, among the four dimensions of presence? The research utilized both quantitative and qualitative measures. Twenty learners recruited from the Graduate School of Education and Psychology at Pepperdine University carried out three assigned collaborative activities in Second Life under design conditions foregrounding each of the two design conditions, and a combination of the two. Analyses from surveys, Second Life interactions, interviews and a focus group were conducted to investigate how various designed learning environments based in the virtual world contributed to the sense of presence, and to learners\u27 ability to carry out collaborative learning. The major research findings were: (a) the construct appears robust, and future research in its application to other virtual worlds may be fruitful; (b) the experience of wayfinding (finding a path through a virtual space) resulted overall in an observed pattern of a slightly stronger sense of place; (c) the experience of annotation (building) resulted overall in an observed pattern of a slightly stronger sense of agency; and (d) there is a positive association between sense of place and sense of agency

    ARWalker: A Virtual Walking Companion Application

    Full text link
    Extended Reality (XR) technologies, including Augmented Reality (AR), have attracted significant attention over the past few years and have been utilized in several fields, including education, healthcare, and manufacturing. In this paper, we aim to explore the use of AR in the field of biomechanics and human movement through the development of ARWalker, which is an AR application that features virtual walking companions (avatars). Research participants walk in close synchrony with the virtual companions, whose gait exhibits properties found in the gait of young and healthy adults. As a result, research participants can train their gait to the gait of the avatar, thus regaining the healthy properties of their gait and reducing the risk of falls. ARWalker can especially help older adults and individuals with diseases, who exhibit pathological gait thus being more prone to falls. We implement a prototype of ARWalker and evaluate its systems performance while running on a Microsoft Hololens 2 headset
    • …
    corecore