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Abstract

The research presented in this thesis explores the use of consumer virtual reality

technology for training, comparing its validity to more traditional training formats.

The need to evaluate the effectiveness of training in virtual environments is critical

as a wider audience gains access to an array of emerging virtual reality consumer

devices. Training is an obvious use case for these devices. This is motivated by

the well-known success of domain-specific training simulators, the ability to train

in safe, controlled environments and the potential to launch training programs when

the physical components required to complete a task are not readily available.

In this thesis, we present four user studies that aim to compare the effectiveness

of systems with varying levels of immersion for learning transfer of several tasks,

ranging from object location spatial memory to more complex assembly procedures.

For every study, evaluation of the effectiveness of training took place in a real-

world, physical environment. The first two studies compare geometric and self-

motion models in describing human spatial memory through scale distortions of real

and virtual environments. The third study examines the effect of level of immersion,

self-avatar and environmental fidelity on object location memory in real and virtual

environments. The fourth study compares the effectiveness of physical training and

virtual training for teaching a bimanual assembly task.

Results highlight the validity of virtual environments for training. The overall

conclusion is that virtual training can yield a resulting performance that is superior

to other, more traditional training formats. Combined, the outcomes of each of the

user studies motivate further study of consumer virtual reality systems in training

and suggest considerations for the design of such virtual environments.
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Chapter 1

Introduction

1.1 Research Problem
The availability of affordable consumer Virtual Reality (VR) technology has raised

the manufacturing industry’s interest in Virtual Environments (VEs) for assembly

line operation training. The possibility of training programs to be initiated before

physical workstations, parts and tools are available sounds enticing as it could

enhance the end-to-end manufacturing process. Moreover, these systems offer

unique capabilities related to trainee safety and performance metric gathering

as well as the ability to parallelise training by removing dependencies on the

aforementioned physical components.

Accordingly, this thesis is concerned with the effectiveness of VEs in training.

We focus specificially on level of immersion, understood as the objective fidelity

of sensorial stimuli offered by a VR system, as the main parameter that mediates

the transfer of knowledge from VEs to real-world scenarios. In other words, in

this thesis we explore the ability to use the knowledge that has been acquired in a

specific context (the virtual space) in a new or different one (the physical space).

We designed and ran a series of user studies with the goal of comparing the

effectiveness of training in systems with different levels of immersion for a series

of tasks. These tasks ranged from basic object location memory to more complex,

bimanual procedural tasks. Common across all studies is that performance of

training was always measured in the real world. Thus, all participants were tested
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in solving the user study task in a physical environment with physical components.

This experimental design choice was informed by the fact that previous studies on

the effectiveness of VEs on training have commonly evaluated the effectiveness of

the training transfer in computer-generated environments.

1.2 Scope
The work presented in this thesis focuses on level of immersion as the main

parameter that mediates the transfer of knowledge from virtual to real environments.

For each of the studies presented in this thesis we defined levels of immersion and

included physical training with physical components in the real world as a baseline

training system against which to compare the validity of training in VEs. We also

defined performance metrics relevant to each of the user study tasks such as distance

errors for object location memory tasks and assembly time for procedural tasks,

amongst others.

Although relevant to the research topic, haptics, locomotion techniques and

spatialised audio were not investigated. In addition, studies related to this project

did not examine display systems other than consumer Head-Mounted Displays

(HMDs) - namely the HTC Vive, the Oculus Rift Development Kit 2 and the Oculus

Rift Consumer Version 1 - and desktop computers. In our performance analysis we

did not evaluate or compare software and hardware used to build the training VE

systems. Additionally, the cost of generating training VEs as well as the deployment

and adoption of this training format by industry was not within the scope of this

project.

1.3 Contributions
The main contribution in this thesis is the evaluation of the effectiveness of VEs in

training for a range of tasks through user studies with participants. The experimental

design and method for each of these studies is introduced in the corresponding

chapters for replicability. Results encourage further exploration of consumer VR

systems in training and highlight their superiority over desktop computer training.

We discuss the limitations and include recommendations.
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1.3.1 Methodological Contributions

1. An experimental protocol for exploring the effect of spatial distortions on

object location memory in physical environments (Chapter 3).

2. An experimental protocol for exploring the effect of spatial distortions on

object location memory in VEs (Chapter 4).

3. An experimental protocol for exploring the effect of level of immersion,

environmental fidelity and self-avatar on object location memory in VEs

(Chapter 5).

4. An experimental protocol for comparing virtual and physical training transfer

of bimanual assembly tasks, extending on previous work [2] (Chapter 6).

1.3.2 Substantive Contributions

1. Research findings that highlight the differences and similarities between

object location recall in virtual and physical environments after boundary

distortions (Chapter 3 and Chapter 4).

2. Research findings that explore the effect of level of immersion, environmental

fidelity and self-avatar on object location training in VEs (Chapter 5).

3. Research findings that support the validity of VEs for bimanual assembly

tasks and their superiority over other, more traditional training formats

(Chapter 6).

1.3.3 Analysis Contributions

1. Two proposed selection criteria for determining how object location models

best describe individual participant responses in user studies that explore

the effect of spatial transformations of the boundaries of an environment

(Chapters 3 and 4).
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1.4 Collaborations
The project is based on a series of user studies, two of them being sections of a

large collaboration with other University College London (UCL) departments and

supported through a James S. McDonnell Foundation Scholar award to Dr. Hugo

J. Spiers and a UCL Grand Challenges Small Grant. These user studies are

reported in Chapter 3 and Chapter 4. The main project collaborators, afiliations

and contributions are described in Table 1.1. Other contributors to these studies

include:

• Dominic Zisch, Charles Middleton, Aaron Breuer-Weil, Rowan Haslam,

Ludovico Saint Amour di Chanaz, William De Cothi and Thomas Reed, who

helped running and piloting the study.

• Derrick Boampong, Tatsuto Suzuki, Nikos Papadosifos and Biao Yang, who

provided technical support at the UCL Pedestrian Accessibility Movement

Environment Laboratory (PAMELA) facility.

• Simon Julier, who offered technical advice on Three Dimensional (3D)

tracking for data collection.

The results presented in Chapter 3 and Chapter 4 are based on our own analysis,

performed independently from the rest of collaborators. We also contributed to the

design of the research protocol as well as decided on some of the hypotheses.

1.5 Structure
The rest of this thesis is organised as follows. Chapter 2 covers background literature

related to the research topic. This chapter introduces relevant research on the

parameters of VR systems that mediate learning transfer to the real world as well as

on human spatial cognition.

Chapter 3 reports the experimental design, method, results and discussion of a

collaborative study. This chapter discusses the plausibility of running a study where

participants learn and recall object locations following alterations to the boundaries

of a real-world environment.
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Table 1.1: Project collaborators, UCL affiliations and contributions (in alphabetical order
by first surname).

Collaborator UCL Affiliation Contributions

Greaves, Jacob Brain Sciences
Study design
Study execution
Data analysis

Motala, Anisa Biosciences
Study design
Study execution
Data analysis

Murcia López, Marı́a Computer Science

Study design
Study execution
Data analysis
Technical expertise (3D tracking)

Spiers, Hugo J. Institute of Behavioural Neuroscience
Supervision
Study design

Steed, Anthony Computer Science
Supervision
Study design
Technical expertise (3D tracking)

Tyler, Nick Civil, Environmental and Geomatic Engineering
Supervision
Facility support

Zisch, Fiona E.
Institute of Behavioural Neuroscience
The Bartlett School of Architecture

Study design
Technical expertise (architecture)

Chapter 4 reports the experimental design, method, results and discussion of

a study exploring the effect of scale transformations of a VE on spatial memory

through object location memory and recall.

Chapter 5 reports the experimental design, method, results and discussion of

a study exploring the effect of level of immersion, varied feature fidelity and self-

avatar on object location memory.

Chapter 6 reports the experimental design, method, results and discussion of a

study comparing real and virtual training of a multi-step bimanual assembly task.

Chapter 7 contains conclusions as well as directions for future work.



Chapter 2

Background

2.1 Motivation
This project has been largely motivated by the well-known success of domain-

specific training simulators in medical, military, navigation and pilot training,

amongst other fields. Consumer VR systems offer the possibility to train in

safe, controlled environments and the potential to launch training programs when

the physical components required to complete a task are not readily available.

Moreover, these systems are becoming more accessible to a wider audience through

a range of affordable consumer devices. VEs could deliver cost-efficient, safe,

controlled and potentially effective training. If proven adequate, virtual training

would also allow for the completion of operator instruction prior to the installation

of physical workstations, tools and components, with optional built-in automatic

capture of data relating to system and user performance. This would accelerate

the end-to-end manufacturing process and, consequently, increase efficiency of

production. However, evidence is needed to ascertain the effectiveness of consumer

VR devices for training as opposed to more traditional training formats.

We aim to continue to address the common interest in the fields of

neuroscience, experimental psychology and VR for better understanding the way

humans perceive, navigate, interpret and recall 3D space [3, 4, 5]. Essential to the

survival of motile living species, navigation of environments and recall of specific

locations within them highly rely on spatial memory. This is the component of
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memory responsible for capturing, storing and utilising information about one’s

external surroundings and spatial orientation. The ability to understand and

ultimately predict the behaviour of humans in environments could have a number

of benefits: enhanced user experience and layout optimisation for VR training

applications, enhanced design of the built environment for urban lifestyles [6, 7]

and advanced diagnostic tools for Alzheimer’s disease [8], amongst others.

By advancing our knowledge on how humans acquire, store and use spatial

representations, we could better inform the design of VEs for spatial training [9].

Various aspects of the user experience design of VR applications, including spatial

layout and features of the VEs and objects within it, as well as the user’s starting

location and facing direction, could be rooted in more complete models that

optimise the learning transfer of spatial information.

2.2 Virtual Environments

2.2.1 Level of Immersion

The term immersion can be understood as the objective fidelity of sensorial stimuli

offered by a VR system. Slater et al. have defined it as “a description of a

technology” [10]. Slater suggests to use the term to refer to “what the technology

delivers from an objective point of view” [11]. In his later work, he argues that

“we describe immersion not by the displays plus tracking, but as a property of the

valid actions that are possible within the system” and that “the level of immersion

is completely determined by the physical properties of the system” [12]. Under this

definition, he claims that “system A is at a higher level of immersion than system

B if the valid actions of B form a proper subset of those of system A”. Immersion,

therefore, can be used to define systems in relation to other systems. Ragan et al.

recommend to speak of levels of immersion rather than terms such as nonimmersive

and immersive VR [13].

Bowman and McMahan describe immersion as an objective and measurable

multidimensional array formed by many components including Field of View

(FOV), Field of Regard (FOR), display size, display resolution, stereoscopy, head-
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based rendering, realism of lighting, frame rate and refresh rate [14]. In the

context of this research, we use the concept of level of immersion to refer to the

different widely available consumer displays and navigation techniques used by the

participants to explore the VEs designed for our user studies.

While many applications of VR in training have used desktop environments,

more immersive VR systems are now becoming widely available. Highly immersive

VR technology potentially increases experimental and environment realism, gives

researchers the ability to perform manipulations to an environment, and provides

new data sources, such as body tracking, amongst other benefits [15, 16]. When

being presented with a stereoscopic view and given access to self-motion cues,

participants can respond realistically to situations and events [12, 17].

Previous research has shown that display and interaction fidelity have a strong

effect on strategy and performance in a VR first-person shooter game [18]. As

technology moves towards augmentation of real world learning by the use of virtual

tools, performance in systems with different levels of immersion must be analysed

and compared with real world learning.

In this thesis we consider real world learning the highest level of immersion,

followed by HMD learning and then desktop learning. We also consider the

navigation technique associated with each learning system as an inherent and crucial

element of level of immersion. All training systems as well as the corresponding

navigation techniques are further detailed in each of the chapters reporting the

experiments relating to this thesis. Across all studies we expected the level of

immersion to have an effect on training transfer [19, 20].

2.2.2 Environmental Fidelity

When training in a VE it is important to have an understanding of the technological

variables that can be sacrificed without degrading learning effectiveness transfer to

the real world [16, 20]. One of these variables is environmental fidelity which can

be understood as the fidelity of mapping from a real-world space to a computer-

generated virtual replica. A distinction can be made between two broad types

of environmental cues: geometric, cues provided by environmental surfaces such
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as walls, and featural, nongeometric cues provided by the environment, such as

colour [21, 22, 23]. Previous research has demonstrated an inclination for spatial

localisation to be based mainly on geometric properties of an environment, rather

than featural cues [22, 24].

Although geometric fidelity of a space can be reproduced using basic 3D

objects, such as planes, spheres or cubes, high feature fidelity is not always

achievable or may result in the development of computationally expensive systems.

Previous studies have assessed the impact of rendering style on distance perception

accuracy in virtual replicas of concurrently occupied VEs [25, 26]. These

studies suggest that there are no indications of perceived compressed distances

in immersive VEs where participants can be certain of them being faithful

representations of their occupied space.

Slater et al. explored the effect of visual realism on sense of presence in

immersive VEs [12]. Participants were exposed to a VE rendered in two levels

of visual realism. They found that subjective presence was higher for the version

of the VE with higher visual realism. However, Masahiro Mori’s ‘Uncanny

Valley’ hypothesis [27] remains unanswered, since it is not clear whether higher

environmental fidelity might result in training enhancement up to a point after which

there might be a decrease in performance due to defect magnification.

Based on previous results, in Chapter 5 we directly compare performance

resulting from learning object locations in concurrently occupied virtual and real

environments. We explore learning and recall of multiple external object locations

as subjective measures of spatial perception. We focus on understanding which cues

are necessary for the design of virtual spaces that will ensure the optimal transfer of

spatial knowledge to the real world.

2.2.3 Self-Avatar

Slater and Usoh have suggested that the sense of presence in VEs, or the subjective

feeling of being there, can be enhanced by providing users with a virtual self-

avatar [28]. Results from several studies have suggested that a self-avatar is also

beneficial to performance on interaction tasks in VEs. McManus et al. found that
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participants with with a self-avatar or who saw a character animation performed

behavioural tasks faster and more accurately [29]. Other research has demonstrated

that a self-avatar may alleviate participant’s cognitive workload in a VE [30]. In

their study, Steed et al. found that participants who had an avatar and were allowed

to move their hands had significantly higher recall in a task where they had to

memorise pairs of letters, perform a spatial rotation exercise, and recall the pairs

of letters. They also found that participants who were allowed to move their hands,

but could not see their self-avatar, would often not move their hands or stop moving

them after a short while. Subjective feedback from participants has also highlighted

the utility of a full virtual body as a reference point for spatial tasks [31].

Related work has found that fully tracked, high fidelity virtual avatars can

improve distance estimation accuracy in non-photorealistic Ves [32, 33]. Similarly,

self-embodiment in highly realistic VEs has been reported to increase accuracy

in distance judgements [34]. These results suggest that high fidelity avatars can

facilitate enhanced spatial task performance in a VE without compromising the

ability for effective information transfer to the real world. A recent study also tested

the effect of avatar fidelity on the accuracy of distance estimations in the near-field,

comparing with real-world performance [35]. Results showed that estimations were

more accurate as visual fidelity of the avatar increased, with accuracy of high fidelity

avatars approaching real-world performance.

However, spatial perception enhancement seems to be compromised when

using low geometry avatar representation or single point tracking [36]. Other

results from studies on egocentric distance estimation indicate that simplified avatar

implementations (single-point rather than full body tracking and low fidelity based

on rendering small spheres at raw tracking marker locations rather than high fidelity

using a textured triangle mesh) are significantly less effective [37]. Moreover, in

this study participants who were given simplified avatar representations performed

only marginally more accurately than the participants who were given no avatar.

Similar results were observed in a study where participants that saw a fully-

articulated and tracked representation of themselves made more accurate judgments
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of absolute egocentric distance to locations than participants who saw no avatar

[38]. Nonanimated avatars also improved distance judgments but to a lesser degree.

Another study investigated the degree to which self-avatar movement must reflect

the actual movements of the participant for accurate distance estimation [38].

Results indicated that experience with an animated avatar, even if the movements of

the avatar did not correspond with the participant’s body movement, favoured more

effective distance estimation.

The study presented in Chapter 5 explores the use of single point tracking

virtual avatars based on head tracking with no animations in an object location

memory task. The aim is to explore if a low tracking fidelity virtual avatar

can enhance performance in an object memory location task, where there is no

interaction with the environment and the virtual objects in it, other than unguided,

exploratory navigation. We report how results from this study could inform the

design of future training systems in which robust avatar motion fidelity involving

full body tracking or high fidelity avatars may not be available.

2.2.4 Virtual Environments as Proxies

Our work relates to the overarching theme of visual fidelity in VR training: to what

extent does a VE have to look real so that the learning and recall of information

presented in it is optimal [20, 16, 39]. Findings from relevant spatial cognition

studies have highlighted which geometric and featural cues play the most important

role and to what degree they are necessary in the training of spatial information [22,

21, 23]. We are also interested in scenarios in which the training VE is potentially

different to the environment where the acquired skills are going to be used (the

work enviornment). This could happen in cases in which either the layout of the

work environment is unknown or it is difficult to replicate in VR.

Similarly, research projects that investigate human spatial cognition can require

complicated setups or simulations, difficult or impossible to construct as a physical

space [40, 5]. In the study presented in Chapter 3, the specific premise was to build a

featureless physical large-scale room (approximately 5 x 5m in surface area) which

could change its size and shape. These transformations had to be achieved in a very
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short period of time to keep experimental task timings within reasonable limits.

Solving this involved a very elaborate series of design decisions involving materials,

technology, architecture and labour force under restricted research budget. In

Chapter 4, we present a study in which we use a virtual replica of this physical setup

with a sufficient degree of visual fidelity, where its shape and size can be effortlessly

modified. This replica VE can be used to test initial hypotheses and develop models

before the laborious and time-consuming task of performing real-world studies and

analysis of the real-world data.

In the field of psychology, VEs have been used in lieu of real world

environments for several decades [15, 41, 42, 4, 43]. Loomis et al. analyse the

benefits and drawbacks of immersive VE technology, as compared with traditional

experimental research methods in psychology [15]. On one hand, experimental

realism is increased and researchers are provided with the ability to perform

alterations that would be impossible, or highly complicated, by other means. New

data sources, such as body tracking, can be acquired, providing deeper analysis

of body behaviour and navigation. On the other hand, they point out the high

complexity of hardware and software as factors that can increase the likelihood

of artefacts contaminating results and after-effects such as motion sickness, as

disadvantages of the use of this technology in research.

2.2.5 Training in Virtual Environments

Previous research has highlighted the effectiveness of immersive mixed reality

training in different disciplines, including military training, medical training

and vehicle driving simulators [44, 45], as well as navigation and spatial

knowledge training [20, 46], amongst others. Despite the recognised success in the

aforementioned fields, studies on immersive virtual training transfer have reported

contrasting results.

Several studies have shown that spatial information of the kind required

for navigation transfers effectively from virtual to real situations, confirming the

potential and benefits of VR technology in spatial training [47]. In particular,

this work studied how information about the spatial layouts of virtual buildings
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acquired from the exploration of 3D computer simulations transfered to their real-

world counterpart. Similarly, results to date from several studies have further shown

that following several virtual tours of a building, disabled children acquired a

considerable degree of spatial competence [48, 49, 50, 51]. Another study examined

transfer of spatial learning from a VE to a real-world equivalent environment using

a simulation of a shopping centre with elderly participants. Results confirmed the

potential of training in VEs for the elderly [52].

Hall and Horwitz compared retention of procedural knowledge of equipment

operation in an immersive VE and in a 2D computer environment and found no

significant differences [53]. They claimed that VR training may not be superior

to conventional electronic media for training certain skills. Gavish et al. evaluated

the use of VR and augmented reality technology for industrial maintenance and

assembly task training [54]. They concluded that an augmented reality platform was

more suitable for training of this type of tasks and encouraged further evaluation of

VR-based training.

In a more recent study Gonzalez-Franco et al. compared collaborative

conventional face-to-face training with a mixed reality training setup for a

manufacturing procedure of an aircraft door [55]. Their results indicated that

performance levels yielded by the immersive mixed reality training system were

not significantly different from the conventional face-to-face training format. Rose

et al. evaluated the transfer from a VE to the real world of a simple sensorimotor

task [56]. Overall, virtual training resulted in equivalent or even better real world

performance than real or physical training of the task. However, they advise that

their findings may not apply to other types of training tasks.

Sowndararajan et al. found an effect of level of immersion in memorising a

complex procedure [57]. In their study, participants trained in the system with the

higher level of immersion (a large L-shaped projection display) completed tasks

significantly faster and with fewer errors than participants trained in the system

with lower level of immersion (using a typical laptop display).
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Other studies have shown effective learning transfer in VEs with the addition

of haptic force-feedback devices. For instance, Adams et al. conducted a study to

explore the benefits of haptic feedback for virtual training of a manual task [58].

They reported that force-feedback was a requirement for higher learning transfer in

VEs.

Our work preseented in Chapter 6 is inspired by the work of Carlson et

al. in 2015 [2], itself motivated by previous work [59, 60, 61]. In a between-

subjects experimental design, Carlson et al. compared the effectiveness of virtual

bimanual haptic training versus traditional physical training of an assembly task

consisting of a six-piece burr puzzle. Their results indicated that physically trained

participants initially outperformed virtually trained participants. However, virtually

trained participants improved their testing times after two weeks. Results also

showed that virtual training was enhanced by using coloured blocks as they helped

participants remember the assembly process. We ran a similar task comparing

paper- and video-based training with virtual training in the absence of a haptic

force-feedback device [62].

We agree with Carlson et al. in that 3D burr puzzles are suitable proxy tasks

or abstractions of context-specific manual assembly tasks, such as engine assembly

operations at vehicle manufacturing plants. We therefore decided to use the same

type of task in our study. Following their reported methods, we complemented the

training task with a series of mental rotation tests to distribute participants amongst

the condition groups in our between-subjects experimental design [63, 64, 65].

We also decided to colour-code the puzzle blocks and instructions as well as to

use a semi-transparent virtual representation of the hands in the VE [66, 67],

amongst other recommendations made by the authors which are further explained

in Section 6.1.

Our work presented in Chapter 6 extends and builds on previous work by

comparing a number of virtual and physical training formats, the latter representing

the most common formats (video and paper instructions) in current assembly

process training programmes. The main aim of this research is to verify whether
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exposure to a virtual training environment is sufficient for effective training. We

are specifically interested in situations in which haptic devices are not available

and when the physical components and tools used in the process are not accessible

during training.

2.3 Human Spatial Cognition

2.3.1 Neural Correlates of Spatial Representations

Since the discovery of place cells in the mammalian hippocampal formation of

rodents in 1971 [68], the fields of cognitive and behavioural neuroscience interested

in space have made substantial advances in understanding how the human brain

builds a neural representation of the external environment. Place cells activate

when an animal moves through a unique location in an environment, referred to

as the place field. Through the overlap of place fields, the activity of multiple

place cells can determine the location of the animal in the environment, as well

as potentially store other locations within the space [69]. Also identified in bats

[70, 71], researchers have attempted to model the firing and network interactions

of place cells and other spatially tuned neurons to explain spatial representations in

the human brain.

Termed the cognitive map, this internal representation forms the foundation for

navigational abilities, as well as enabling feelings of being embodied and embedded

in the world [72]. In order to successfully navigate the world, it is crucial for

the brain to not only construct an internal representation of spatial geometry and

features, but to also represent one’s own position, orientation, and movement and

likewise objects within the environment.

In 1973 Kaplan suggested the following definition of the cognitive map:

“The cognitive map is a construct that has been proposed to explain

how individuals know their environment. It assumes that people store

information about their environment in a simplified form and in relation

to other information they already have. It further assumes that this

information is coded in a structure which people carry around in their
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heads, and that this structure corresponds, at least to a reasonable

degree, to the environment it represents. It is as if an individual carried

a map or model of the environment in his head. The map is far from

a cartographer’s map, however. It is schematic, sketchy, incomplete,

distorted, and otherwise simplified and idiosyncratic. It is, after all, a

product of experience, not of precise measurement.” (pp. 275-6) [73].

The cognitive map is constructed by integrating egocentric and allocentric

reference frames [74]. In an egocentric frame of reference, spatial geometry and

the location of objects are represented in relation and relative to the self (the head

or a limb). Egocentric frameworks exist as a series of visual snapshots of the

environment [75]. They allow animals to estimate directions and distances to

external cues in relation to their own body, allowing them to guide themselves to,

reach - or avoid - objects [76]. In an allocentric frame of reference geometric

cues are represented in relation to each other in a viewport-independent, quasi

absolute manner. This allows for novel route calculation and topography estimation,

including salient environmental cues and their spatial relationships, as well as

the animal’s location within the environment [68]. There is evidence that both

egocentric and allocentric representations are necessary for successful navigation

of environments [74].

A range of theories and models have been proposed to explain which and how

neural processes might parse the environment to allow navigation and action in

space. As a basis, these models share an understanding of the cells that are involved

in the systematic construction of a map. Place cells in the hippocampus represent

locations along the path travelled by laying down place fields in each respectively

traversed location [77]. It is thought that, together with medial entorhinal grid

cells [78], boundary vector cells and border cells in the medial entorhinal cortex and

subiculum [79, 80, 81], and head-direction cells in limbic brain regions (including

the presubiculum and entorhinal cortex [82]), these cells form a neural correlate of

space: the cognitive map. In order to build a robust and accurate map, the ability to

move around the respective environment appears essential. A process known as path
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integration relates self-motion information to velocity as well as angular and linear

direction to pinpoint one’s current location, orientation and trajectory [83]. This

information is integrated with geometric information from the environment, such

as boundaries, and featural information, such as textures or sounds, to form a

comprehensive map of one’s environment.

2.3.2 Behavioural Studies on Spatial Cognition

Theoretical models of spatial cognition have proven difficult to validate given

the complexity of the study of electrical activity of living neurons and signaling

in humans as well as the low resolution of current neuroimaging techniques.

Novel technologies, such as consumer VR systems, have recently allowed for

new viewpoints, combining neural and behavioural observations to advance these

models.

The behavioural study of spatial cognition in combination with neuroimaging

methodologies has proven valuable in confirming the role of the hippocampus in

spatial memory. For example, a study using VR technology with London taxi

drivers in 1998 showed that activation of the right hippocampus was strongly

associated with accurately knowing the location of places and accurately navigating

between them [84].

Behavioural studies on spatial cognition have also helped to discern egocentric

and allocentric representations in spatial memory tasks. Mou et al. investigated

the frames of reference used in memory to represent the spatial structure of the

environment [85]. They found that spatial memories are defined with respect to

intrinsic frames of reference selected on the basis of egocentric experience and

environmental cues.

However, contrasting results have been reported through behavioural studies

with human participants with regards to how humans learn and recall locations

within an environment. Previous findings suggest that the human brain might

combine mechanisms based on geometric properties of the environment with self-

motion information [86, 87, 88, 5, 89]. Moreover, it is not clear whether these

strategies are the same when encountering real world and VEs with varying levels
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of immersion.

Previous research has looked at the effects of landmark configuration on search

behaviour. Using a desktop VR system, Spetch et al. analysed the effect of

expansions of an array of landmarks on the locus of search for an object presented in

a location equidistant to the landmarks [86, 87]. Their results indicated that humans

focus on locations that preserve all angles to the landmarks, preserving ratios of

distances between landmarks rather than distances.

Waller et al. reported contrasting results when exploring the role of metric

distances and angular information of landmarks on location learning in immersive

VR [89]. Participants observed a cued location in relation to three landmarks in

an immersive VE. They were then asked to return to the location during testing.

Landmark configuration was modified between learning and testing to differentiate

the effects of distance and inter-landmark angular information. They found that,

overall, participants relied more on distance information than angular information.

There is also evidence for spatial updating of egocentric representations [88,

90, 91]. Wang & Simons showed that locations of objects on a circular table can be

better remembered if participants navigate around it, rather than using the equivalent

rotation of the table [88]. These results highlight the role of proprioceptive and

vestibular inputs during self-motion.

In 1996 O’Keefe and Burgess designed and conducted a study aimed at

identifying the environmental features controlling the location and shape of the

place fields of the place cells of rodents [69]. Extending this work, Hartley et al.

used a desktop VE to investigate the effect of manipulations to spatial boundaries

of on object location during learning and recall with human participants [5]. The

aim of this study was to conceptually replicate previous studies with rodents where

alterations to the environmental geometry caused changes in place cell firing.

Participants were presented with an object in a rectangular arena, with distant

features to help orient themselves. After the learning stage and a brief delay, they re-

entered the arena and were asked to mark the location where the object had been in

the learning stage. The geometry of the environment was altered between the stages
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of learning and recall in some of the trials. Response data was compared with a

series of spatial distributions predicted by various geometric models described in

Section 2.3.3. The experiment found that responses that maintained fixed distances

from nearby walls were more common after expansions of the arena and for

locations nearer to the boundaries, whereas responses that preserved fixed ratios

between opposing walls were more common after contractions of the arena and

for locations nearer to the centre. A model derived from response properties of

place cells in the rat hippocampus which matches distances of the cue to the four

boundaries of the arena was the best fit for their results. Hartley et al. concluded

that their results were consistent with the neural representation of location in the

hippocampus [79, 5].

Building on the idea that the cognitive map is an exact and corresponding

representation of space, the map should distort in precise correlation with changes to

spatial geometry. Through two behavioural user studies (presented in Chapter 3 and

Chapter 4) we relate our observations to neuronal knowledge derived from single

cell recordings from rodent studies, and test the validity of the different models of

spatial representation, crucially focusing on the role of physical immersion (and

resulting embodiment and embeddedness) in an immersive VR experience. In

contrast to earlier, albeit desktop based, studies that found evidence for geometric

computations built on distances and ratios to environmental boundaries [86, 5],

our hypothesis was informed by observations made in a pilot experiment. We

propose and present evidence that when self-motion is available, models combining

geometric properties and path integration could hold greater validity for object

location memory.

2.3.3 Object Location Models

Previous studies have looked at the effects of altering the geometry of an

environment on object location learning and placement during learning and

recall [5]. These studies have compared the spatial distribution of participant

responses with locations predicted by different geometric models, some derived

from previous neurophysiological experiments [92, 79]. The relevant models,
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described below, were selected and used in our analysis in Chapter 3 and Chapter 4.

The predicted locations following transformations of the spatial boundaries in our

study are based on these models and were compared with participant response

locations. All model definitions are restricted to environments consisting of four

main walls and are further illustrated in Figure 2.1.

• Fixed Ratio Allocentric (FRA) model: an object’s location is represented as

the ratio of distances between opposing walls [5].

• Fixed Ratio Egocentric (FRE) model: an object’s location is represented as

the ratio of distances between opposing walls [5]. The participant reorients to

the initial facing direction (see Figure 2.1).

• Fixed Distance Allocentric (FDA) model: an object location is represented as

the perpendicular distance from it to its two closest walls [5].

• Fixed Distance Egocentric (FDE) model: an object’s location is represented

as the perpendicular distance from it to the two closest walls [5]. The

participant reorients to the initial facing direction (see Figure 2.1).

• Absolute Distance (AD) model: an object’s location is represented by the

absolute distance to its original location in world coordinates, regardless of

any changes in the environment geometry.

• Path Integration (PI) model: an object location is represented as the vector

resulting from a cumulative record of the movements made by the participant

from an initial location to the object [93]. The participant replicates the

movement maintaining the current facing direction.

• Path Vector (PV) model: based on the PI model, an object’s location is

represented as the vector resulting from a cumulative record of the movements

made by the participant from an initial location to the object [93]. The

participant replicates the movement by reorienting to the initial facing

direction (see Figure 2.1).
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Figure 2.1: 2D top views of the models in an example scenario for a room transition
where the length of the room walls is scaled by a factor of two between
learning and placement. Room a) shows the object’s initial location (circle)
and participant starting location and facing direction (box and arrow). The
rest of the sketches show the predicted object location for each model for a
new given participant starting location and facing direction (box and arrow).
For the Absolute Distance model (d), the initial environment has been overlaid
to illustrate that the object XY coordinates for the model coincide with the
initial object location. Please note that, under this specific configuration, FDA
and PV predictions are the same. These would be different if the participant
starting location was different. Also note that in this example and under this
configuration the PVR model (i) provides with a predicted location that falls
outside the boundaries of the placing room, which in our study would be
considered a null model for a given change in environment geometry.

• Path Vector Ratio (PVR) model: an object’s location is represented as a scaled

vector resulting from a cumulative record of the movements made by the

participant from an initial location to the object [93]. The vector is scaled in

a way that linearly matches the environment transformation between learning

and testing. The participant replicates the movement by reorienting to the

initial direction (see Figure 2.1).

2.4 Summary
This chapter has been divided into three main sections. Section 2.1 introduces

the motivation for the work presented in this thesis. We discuss the potential

benefits of virtual training. We also introduce the common interest in the fields
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of neuroscience, experimental psychology and VR to advance our knowledge on

how humans understand, acquire, store and use representations of space.

Section 2.2 discusses related work on the parameters that mediate the transfer

of knowledge from virtual to real environments. We review definitions on the

concept of immersion and describe how this term is used throughout the thesis.

Across all studies, we consider real world learning as the highest level of immersion,

followed by HMD learning and then desktop learning. We discuss previous

work on environmental fidelity and the distinction between two broad types of

environmental cues: geometric and featural. We introduce self-avatars and their

role in distance estimation accuracy in VEs, noting that previous work has shown

that low geometry avatar representation or single point tracking can degrade spatial

perception. The work listed on environmental fidelity and self-avatar was used to

design the experiment presented in Chapter 5. We review the benefits of using VEs

as proxies in research. We also examine past studies on the use of VEs in training,

which informed the design of the study presented in Chapter 6.

Section 2.3 contains an overview of human spatial cognition. We discuss

the neural correlates of spatial representations, introducing the cognitive map as

well as egocentric and allocentric reference frames. We review behavioural studies

on spatial cognition, which have proven valuable in advancing our understanding

of human spatial cognition given the difficulty of validating theoretical models.

Finally, we introduce a series of object location models derived from previous

neurophysiological experiments. These models were compared with the spatial

distribution of participant responses in the studies presented in Chapter 3 and

Chapter 4.



Chapter 3

Experiment: Distorting Physical

Space

The question of how humans remember space and the objects within it is crucial

in the design of VEs for spatial training. In this chapter we present a study on

spatial memory in physical space. Participants were asked to complete a simple

spatial memory task: to collect an object in a room, exit the room, re-enter

the room and then place the object back where they had found it. The room

was geometrically transformed between collection and placement of the object.

The participants’ responses were compared with a set of models derived from

previous neurophysiological experiments with rodents and desktop VR studies

in which geometry was manipulated between exposures to the environment (see

Section 2.3.3). Results suggest that models which combine memory for geometry

and self-motion may hold greater validity in describing human spatial memory.

3.1 Experimental Design and Hypotheses
Participants entered a room in one of the three spatial configurations and were

asked to collect an object. After a period of time in a separate physical waiting

area, they entered a different configuration of the room and were asked to place the

object back where they had initially found it. This process was repeated twice.

The experimental trials and room dimensions are shown in Table 3.1. Room

configuration, object location and participant starting location as well as facing
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Figure 3.1: Photograph of the physical reconfigurable room on the UCL PAMELA research
facility platform.

direction for each trial are shown in Figure 3.2. Figure 3.1 shows a photograph of

the physical reconfigurable room on the UCL PAMELA research facility platform.

Figure 3.3 shows a photograph of the physical reconfigurable room and object in

the 2.4×2.4m configuration (corresponding to the learning stage of the first trial).

Figure 3.4 shows a photograph of the physical reconfigurable room and object in the

4.8×4.8m configuration (corresponding to the learning stage of the second trial).

Participants could navigate the room by physically walking around it. We

recorded participant navigation in the room as well as the location of the object

after being placed by the participant in the placement stage of each trial. We

then compared participant behaviours with the different models (see Section 2.3.3).

This was achieved by calculating the Euclidean distance between object location as

placed by the participants and the location predicted by these models for each trial.

Two selection criteria, one based on quadrants and the other based on distance, are

also presented to further illustrate our results. These are described in Section 3.3.
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a) Trial 1 - Learning stage

d) Trial 2 - Placing stagec) Trial 2 - Learning stage

Participant starting location Participant facing direction Object

a) Trial 1 - Placing stage

Figure 3.2: 2D top views of the room layouts for each of the trials. Circles represent
the object’s location during the learning stage for each trial. Box and arrows
indicate the participant’s initial location and facing direction. The amber
rectangle represents the two rows of amber LED lights suspended over the
room.

Since no salient landmark cues were available in the room, it was decided to

use light as an orientation cue. This would allow participants to reorient themselves

when starting trial stages at different starting locations and with different facing

directions. The in situ LED lighting system suspended from the ceiling at UCL

PAMELA facility was used for this and all other light sources were turned off. All

lights were set to white except for two rows of amber light on the north side of

the room (see Figure 3.5). The row of amber lights remained constant throughout

the experiment and provided a non-geometric and non-landmark cue. A blackout
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Figure 3.3: Photograph of the physical reconfigurable room and object in the 2.4 × 2.4m
configuration (corresponding to the learning stage of the first trial).

Table 3.1: Experimental trials, stages and room dimensions (in m).

Trial Stage Room Dimensions (m)

1
Learn 2.4 × 2.4
Place 4.8 × 4.8

2
Learn 4.8 × 4.8
Place 2.4 × 4.8

curtain was suspended from the lighting grid above the platform around the room

so participants could not see any external cues within the UCL PAMELA facility.
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Figure 3.4: Photograph of the physical reconfigurable room and object in the 4.8 × 4.8m
configuration (corresponding to the learning stage of the second trial).

Groups of six to nine participants were recruited for each lab session. They

were gathered together in the waiting room to complete individually each step of the

experiment, one at a time. Experimenters ensured that the waiting times between

steps were kept constant throughout the entire study, regardless of the number of

participants present at each session.

The study was conducted by three experimenters, each responsible for

three distinct tasks: chaperoning the waiting room, overseeing the testing room

(containing the reconfigurable room) and escorting between the two rooms. The

experimenter chaperoning in the waiting room was responsible for distributing
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Figure 3.5: Photograph of the real world reconfigurable environment showing the two rows
of amber LED lights used as an orientation cue.

and collecting the different questionnaires to the groups of participants. The

experimenter in the testing room was responsible for the technical equipment as

well as positioning participants in the correct starting locations and facing directions

for each trial. The third experimenter was in charge of escorting participants from

and to the waiting room, as well as helping the other experimenters as needed.

The experimental design, data collection and preliminary data analysis

exploring a subset of the models, as well as a pilot study were reported in two

unpublished MSc student theses [94, 95]. The main purpose of the pilot study was

to test the setup and logistics of the physical room transitions. The experience of

running the pilot study informed the experimental design of the study presented in

this chapter, with the goal of minimising the number of physical room transitions

in each session.

Based on preliminary results obtained from the pilot experiment and in contrast

to earlier desktop VR studies [86, 87, 89, 5], we hypothesised that responses

maintaining fixed distances from nearby walls would be more common after
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expansions of the room and for objects closer to the boundaries of the room, and

fixed ratios between opposing walls would be more common after contractions of

the environment and for locations closer to the centre of the environment.

3.2 Method

3.2.1 Materials

A physical room was built consisting of a reconfigurable four-walled room, erected

on the moveable platform at the UCL PAMELA research facility. The platform at

PAMELA is made of 58 1.2m x 1.2m modules. These are controlled wirelessly

and provide interchangeable surfaces. The lighting system at the facility allows

the simulation of numerous conditions, ranging from daylight to darkness, ambient

to direct light, or variously coloured light scenarios. Each of the four walls was

custom-made from four plywood panels measuring 1.2× 2.4m. The largest room

was 4.8 wide ×2.4m long, the smallest room was 2.4 wide ×2.4m long. All walls

were painted white and a grey carpet was placed to cover the original flooring.

It was necessary to provide a way for participants to orientate themselves

globally, as they were starting in a different corner each time. Hartley et al.'s

experimental design used a mountain range projected at infinity as a way of

providing participants with a directional cue [79]. In a physical setup this mode

of operation is not feasible. Projecting a panorama onto the wall would provide

landmark rather than distal cues; resulting in an environmental feature rather than

a constant allowing participants to orientate within the environment. We therefore

used PAMELA’s programmable LED lighting to light one side of the room in amber

as an orientation cue (as detailed in Figure 3.1).

The object used for both learning and recall was a white Tam Tam plastic stool

from Habitat (shown in Figure 3.6). The stool is easy to hold when blindfolded,

lightweight and provides no misleading (or otherwise) orientation cue to the

participant. This object was selected due to its specific rotational symmetry along

the vertical axis, eliminating the question of object orientation. The stool has a

diameter of 0.31m at the widest section and a height of 0.45m.



3.2. Method 43

Figure 3.6: Image of the object used in the study.

Twelve Optitrack cameras were suspended from the UCL PAMELA lighting

structure and used to track the final location of the stool as well as the participant

navigation in the room. To enable object tracking we placed three retro-reflective

markers on the top of the object. The cameras tracked the location of both the

object reflecting infrared light. The data was recorded using the OptiTrack Motive

software. As a backup to the tracking system failing a video camera was placed

above the center of the room so that the final object location could be estimated in

the event of tracking failure.

3.2.2 Participants

A total of 29 participants (18 female, 11 male; average age 44.8 years, SD = 15.5)

were recruited from the student and staff population at UCL. Participants were

required to be aged between 18 and 65 and have been based in London for at

least five years as recent findings indicate cultural variation in spatial navigation

strategies [96]. One participant was older than the required age range and was

excluded from the study. Another participant was partially sighted and therefore

was also excluded. All participants signed a consent form and the study was

approved by the UCL Research Ethics Committee (Project ID: CPB/2013/015).

Participants were paid £10 per hour for participation. The experimental task lasted

approximately 1.5 hours.
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3.2.3 Procedure

The study was conducted in two different rooms at UCL PAMELA: a waiting room

and a testing room, which contained the room setup for the study. Each session

of the study began with groups of participants (between six and nine) gathering in

the waiting room for an induction. They were asked to sign a paper copy of the

consent form and read an information sheet with written instructions describing the

experimental task. One of the experimenters then proceeded to explain the task

and participants had the chance to ask questions. An outline of the task was also

displayed on a white board in both the waiting and testing rooms. Participants were

also told that the experimenters would remind them throughout the procedure which

stage would come next. They were also shown a physical version of the Tam Tam

stool from Habitat for reference.

The experiment consisted of two trials, specified in Table 3.1. Each trial

involved two stages: a learning stage and a placing stage. In the learning stage

participants were asked to collect the object. In the placement stage they were asked

to place the object back where they had found it in the learning stage. Participants

completed the learning stange and the placing stage of each trial individually.

Table 3.2 contains an outline of the experimental task with the steps followed by

participants between the waiting and testing rooms.

Before accessing the testing room in each of the trial stages, participants

were blindfolded and asked to grab the two ends of a cardboard tube with their

hands. The facilitator escorting participants then grabed the middle of the pole

and guided participants into the testing room. Along the way, the facilitator would

disorient and guide the participant to the starting location for the corresponding

stage (using figures of eight). Participants were disoriented to stop them from

finding correspondences between the starting position during the learning stage and

the starting position during the placement stage.

When participants reached the testing room, the facilitator guided them to

the task starting position within the four reconfigurable walls through an open

corner. The facilitator would leave space within the four reconfigurable walls
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Table 3.2: Experimental task outline with steps followed by participants. Individual stages
were completed by all participants, one at a time following the same order for
each stage. All transitions between waiting and testing involved an experimenter
escorting the participant between these rooms.

Step Room Trial Stage Group/Individual

1 Waiting Induction - Group

2 Testing
Practice (VR version) -

Individual
Trial 1 Learn

3 Waiting Questionnaires - Group

4 Testing
Trial 1 Place

Individual
Trial 2 Learn

5 Waiting Questionnaires - Group
6 Testing Trial 2 Place Individual
7 Waiting Payment - Group

and experimental assistants would close them, with the participants inside. The

facilitator would then indicate to the participants that they could remove the

blindfold and complete the task. They were also asked to indicate to the

experimenter when they had completed each stage. Once the task was complete,

participants were asked to place their blindfold on again and wait for the facilitator

to hand over the cardboard tube in order to be escorted to the next stage of the study.

Participants were asked to complete all stages as quickly and as accurately

as possible. They were not informed about the changes in room configuration

between learning and placement stages and variations of starting location and facing

direction. They were advised that there was no correct response and to try their best

if they were in doubt as to where to place the object.

While participants waited for their turn in the waiting room, participants were

asked to complete a Santa Barbara Sense-of-Direction Scale as well as a Myers

Briggs Personality Test [97, 98]. Participant payment was processed once all

experimental trials and questionnaires were completed.
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Figure 3.7: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 1. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile− 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 3.4 for pairwise interactions.

3.3 Results
Participant response placement data was used to calculate the Euclidean distance

between object positions as placed by participants and locations calculated from the

different models for each of the trials (see Section 2.3.3). We label this distance

as the model error and use it to quantify how accurate a model is in predicting

participant responses for the given trials. Figure 3.7 and Figure 3.8 show boxplots

for mean model errors for Trial 1 and Trial 2, respectively. Figure 3.9 shows cluster

heat maps and scatter plots showing participant response XY placement during the

testing stage each trial.
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Figure 3.8: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 2. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile− 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 3.5 for pairwise interactions.

Given that no standard procedure for analysing this type of data exists, for

informative purposes we defined two different selection criteria to determine which

models or subset of models could best describe individual participant responses

for each trial (see Section 2.3.3). This was done in order to filter out outliers or

participant responses that lay far from the predicted locations. The first selection

criteria, refered to as Quadrant Criteria (QC), divided each room into four quadrants.

These quadrants were defined by dividing the room into four equal sections with two

conceptual lines perpendicular to the walls, intersecting at the centroid of the room.

Following this selection criteria, only responses falling in the same quadrant as the
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Figure 3.9: Cluster heat maps and scatter plots showing participant response placement
during the testing stage for trial 1 (left) and trial 2 (right).The columns represent
X-axis and the rows represent Y-axis positions (in m). Each cell is colorized
based on the level of response counts in each region.

predicted location given by the corresponding model were considered. The second

criteria, labelled Distance Criteria (DC), was defined such that only responses

falling within 0.5m from the predicted location given by the corresponding model

were computed. Table 3.3 shows the number of participant responses that met each

of the selection criteria for each model in each of the trials and overall. We also

included results of the union of both criteria.

Table 3.4 and Table 3.5 show pairwise comparisons between models using

a paired-samples t-test with Bonferroni corrections for Trial 1 and Trial 2,

respectively, without excluding outliers.

For Trial 1, we found a statistically significant difference between the FRE

model (M = 3.11,SD = 1.66) and the FDE model (M = 3.48,SD = 1.90). We also
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Table 3.3: Participant responses that met each of the selection criteria for each model in
each of the trials and overall (both trials combined). The last row indicates the
total number of participant responses (N). Note that model PI is a null model (the
predicted object location falls outside the boundaries of the room) and therefore
does not belong to any of the four valid quadrants. Both the QC and the DC are
not applicable in this case.

QC DC QC ∪ DC

Trial 1 Trial 2 Overall Trial 1 Trial 2 Overall Trial 1 Trial 2 Overall

FRA 2 8 10 0 5 5 0 2 2
FRE 2 3 5 2 0 2 2 0 2
FDA 9 4 13 0 1 1 0 0 0
FDE 9 14 23 5 1 6 5 1 6
AD 2 8 10 0 4 4 0 2 2
PI - - - - - - - - -
PV 18 14 32 0 3 3 0 2 2

PVR 9 4 13 1 8 9 1 3 4

N 29 29 58 29 29 58 29 29 58

Table 3.4: Pairwise comparison t and p values between all models for Trial 1. The last row
shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR

FRA 0.63 -0.12 -0.35 1.79 -3.53a 2.68b -1.15
FRE -0.68 -3.24b -0.16 -3.11b 0.87 -2.10b

FDA -0.31 0.98 -3.74a 2.54b -0.96
FDE -0.84 -2.32b 1.61 -1.33
AD -3.78a 2.14b -1.80
PI 5.86a 1.73
PV -2.13b

M 3.34 3.11 3.35 3.48 3.16 5.37 2.80 3.81
a interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)
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Table 3.5: Pairwise comparison t and p values between all models for Trial 2. The last row
shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR

FRA -1.73 -11.26a -2.78b 3.17b -18.01a 2.09b 2.06b

FRE -0.36 -4.75a 3.86a -25.24a 5.04a 4.68a

FDA -0.77 6.39a -15.68a 4.55a 4.16a

FDE 4.64a -19.72a 5.71a 5.20a

AD -28.01a -0.10 0.52
PI 32.67a 37.08a

PV 0.80

M 1.53 1.96 2.05 2.27 1.12 6.46 1.13 1.05
a interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)

found that model PI (M = 5.37,SD = 2.77) had a significantly higher model error

than all other models, except model PVR (M = 3.81,SD = 2.13). This was due to

the fact that the predicted location from this model fell outside the room, making this

model null for this trial. We found that, overall, model PV (M = 2.80,SD = 0.63)

had the lowest model error, and was significantly lower than model FRA (M =

3.34,SD = 0.87), model FDA (M = 3.35,SD = 1.10), model AD (M = 3.16,SD =

0.66), the null model PI (M = 5.37,SD = 2.77) and model PVR (M = 3.81,SD =

2.13), but not significantly different from the egocentric models (models FRE and

FDE). This model was also the one with the highest number of paricipant responses

meeting the QC for Trial 1, but not the DC (see Table 3.3). This is due to a high

overall model error across all participants, higher than 0.5m.

For Trial 2, we found that the lowest model error corresponded to model AD

(M = 1.12,SD = 0.65), model PV (M = 1.13,SD = 0.59) and model PVR (M =

1.05,SD = 0.77). These models were significantly lower from all other models, but

showed no significant difference amongst themselves. Note that, similar to Trial 1,

the location predicted by the PI model fell outside the room, making this model null

for this trial. For model AD distances are preserved in world coordinates, regardless
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of any changes in the environment geometry. This suggests that participants may

have attempted to map the object location in the room using static, absolute cues

(such as marks on the carpet). Other significant interactions were found and are

shown in Table 3.5. Similar to the results of Trial 1, model PV was one of the two

models with the highest number of participant responses meeting the QC for Trail

1 (see Table 3.3). This was not the case for model AD and model PVR. Due to

the high overall model error across all participants, the DC is not very relevant in

explaining participant responses for this trial.

Results for the Santa Barbara Sense-of-Direction Scale and the Myers Briggs

Personality Test, and their relation with object location memory results are not

reported as part of this thesis. Separate statistical analysis showed no effect of

gender or age on model error.

3.4 Discussion
Overall, results highlight strong differences in participant behaviour, with

contrasting models describing different response object locations. No single model

can account for all participant behaviour. Models based on self-motion seem

to hold greater accuracy in describing part of our responses, whereas the model

that preserves the absolute distance to its original location in world coordinates,

regardless of any changes in the environment geometry, seemed to work best in

explaining other participant responses. More data would be needed to understand

what makes participants behave in ways best represented by different models.

Constructing a reconfigurable, featureless large-scale room in the real world

is a complex exercise. Progressive wear and tear caused by room reconfiguration

can inevitably create cues on the walls and floor that participants could be using to

learn and recall the object’s location. This could nullify the intended effect of the

experimental design. Similarly, lack of control over external sounds can provide

participants with strong directional cues when taking part in the different trials.
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The relevant models decribed and explored in our study represent some

individual participant behaviour. Unlike Hartley et al. [5], we did not find strong

evidence to suggest that responses maintaining fixed distances from nearby walls

were more common after expansions of the room and for objects closer to the

boundaries of the room, and fixed ratios between opposing walls were more

common after contractions of the environment and for locations closer to the centre

of the environment. Models based on self-motion seemed to better explain part

of our participant responses. This highlights the need to explore more complex

paradigms which combine models based on spatial geometry and models based on

self-motion or navigation.

The relative success of the AD model in Trial 2, where an object location is

represented by the absolute distance to its original location in world coordinates,

regardless of any changes to the environment geometry, could have several

explanations. On the one hand, participants could have used some of the cues

produced by wear and tear of the physical walls or the carpet. This includes a

line between the seams of two pieces of carpet as well as the LED light grid on

the ceiling of the room. These did not change between trial stages, providing

participants with cues that remained constant and would have aided in placing the

object in its original location in world coordinates.



Chapter 4

Experiment: Distorting Virtual

Space

In this chapter we present the VR equivalent study to the one presented in Chapter 3.

Results from our study highlight the role of spatial layout as well as the user’s

starting location and facing direction, which have a strong effect on participant

behaviour. Similar to the study presented in Chapter 3, results suggest that

models which combine memory for geometry and self-motion may be better at

describing object location memory in immersive VEs. All in all, our VR study

on spatial cognition offers promising outcomes, further illustrating its potential as a

fundamental research tool in this and similar fields of study.

4.1 Experimental Design and Hypotheses
The experimental design of our immersive VR study is based on Hartley et al.’s

2004 desktop VR study [5]. It is part of a larger research project, which includes

a real world version of the study, presented in Chapter 3. In the study presented

in this chapter we generated the VEs from a series of 3D scans of the physical

environments, where four white wall panels made of four flats each were used to

build a space in three different configurations (see Figure 4.1).

Participants used a HMD to enter the VE with the reconstructed room in one

of the three configurations and were asked to collect a virtual object. All 3D scans

were performed under the same lighting conditions, providing very similar virtual
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Figure 4.1: Photograph of the real world reconfigurable environment and object (left) and
render of the VE and virtual object (right) used in the study. The real world
environment was 3D scanned to construct the VEs. A 3D virtual replica of the
object was used in the study. Three retroreflective markers are shown in the left
image on the object since these were used to 3D track its location in the real
world. Markers were not necessary in our virtual version of the task.

replicas of the real world environments. After a period of time in a separate physical

waiting room, they entered a different configuration of the VE and were asked to

place the object back where they had initially found it. This process was repeated

twice. The experimental trials are shown in Table 3.1. Room configuration, object

location and participant starting location as well as facing direction for each trial

are shown in Figure 3.2.

Participants could navigate the VEs by physically moving around them within

the tracked 3D space. We recorded participant navigation around the VEs as well

as the location of the virtual object after being placed by the participant in the

placement stage of each trial. We then compared participant behaviours with the

different models (see Section 2.3.3). This was achieved by calculating the Euclidean

distance between object location as placed by the participants and the location

predicted by these models for each trial. Two selection criteria, one based on

quadrants and the other based on distance, are also presented to further illustrate

our results. These are described in Section 3.3.

Groups of six to nine participants were recruited for each lab session. They

were gathered together in a waiting room. They completed individually each step of

the experiment, one at a time. Experimenters ensured that the waiting times between

steps were kept constant throughout the entire study, regardless of the number of
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participants present at each session.

The study was conducted by three experimenters, each responsible for

three distinct tasks: chaperoning the waiting room, overseeing the testing room

(containing the VR system) and escorting between the two rooms. The experimenter

chaperoning in the waiting room was responsible for distributing and collecting the

different questionnaires to the groups of participants. The experimenter in the

testing room was responsible for the technical equipment as well as positioning

participants in the correct starting locations and facing directions for each trial. The

third experimenter was in charge of escorting participants from and to the waiting

room, as well as helping the other experimenters as needed.

Based on preliminary results obtained from our real world pilot experiment

and in contrast to earlier desktop VR studies [86, 87, 89, 5], we hypothesised that,

by providing participants with idiothetic cues in both a physical and an immersive

VE set-up, models based on self-motion would hold the highest validity for object

location memory [95].

4.2 Method

4.2.1 Materials

The three VEs consisted of high fidelity point clouds obtained from 3D laser scans

of the real environments, rendered with a bespoke GPU-based point cloud renderer.

The real world environment consisted of a reconfigurable four-walled room, built

at UCL PAMELA. Each of the four walls was made from four plywood panels and

was 4.8m wide x 2.4m tall. All walls were painted white and a grey carpet was

placed to cover the UCL PAMELA facility’s flooring. 3D scanning was performed

with a Faro Focus 3D S120 laser scanner. The scanned floor was substituted by a

texturized plane to fill in the missing points from the scanner’s dead spot beneath it.

The VEs were rendered in a HTC Vive Developer Edition at 1:1 scale in Unity

at 90FPS with a vertical FOV of 60 degrees. The computer had an Intel Core i7-

6700 CPU @ 3.40GHz, with 32GB RAM and an Nvidia GTX 980 Ti GPU running

Windows 10 Enterprise. The HTC Vive Developer Edition base stations were placed
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in opposite corners of the 4.8m x 4.8m surface area (corresponding to the largest

room configuration).

Participants used one HTC Vive Developer Edition wireless controller

throughout the study. In each trial, the application would always begin with an

empty virtual space where only the virtual controller was visible. This enabled

the experimenters to make sure that the controller was not out of battery and

fully functioning. Participants could then begin the corresponding stage of the

experiment by pressing the front red system button. During each stage, participants

could grab the object by pressing the rear trigger whenever the controller was within

a 5cm range of the object. By releasing the trigger button, the object would then

fall to the floor level and rotate to a vertical position.

The object used in the study was a virtual replica of a white Tam Tam plastic

stool from Habitat, detailed in Section 3.2.1 and shown in Figure 4.1.

4.2.2 Participants

A total of 39 participants (14 female, 25 male; average age 30.8 years, SD =

10.9) were recruited from the student and staff population at UCL. Participants

were required to be aged between 18 and 65 and have been based in London

for at least five years as recent findings indicate cultural variation in spatial

navigation strategies [96]. All participants signed a consent form and the study

was approved by the UCL Research Ethics Committee (Project ID: CPB/2013/015).

Participants were paid £10 per hour for participation. The experimental task lasted

approximately 1.5 hours.

4.2.3 Procedure

The study was conducted in two different rooms at UCL: a waiting room and a

testing room, which contained the VR setup. Each session of the study began with

groups of participants (between six and nine) gathering in the waiting room for an

induction. They were asked to sign a paper copy of the consent form and read an

information sheet with written instructions describing the experimental task. One of

the experimenters then proceeded to explain the task and participants had the chance
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to ask questions. An outline of the task was also displayed on a white board in both

the waiting and testing rooms. Participants were also told that the experimenters

would remind them throughout the procedure which step would come next.

Participants were informed that they would be able to see the SteamVR

chaperone grid when using the VR system. The chaperone grid is a security system

embedded in SteamVR that renders a virtual blue grid over the VE when the user

approaches the boundaries of the tracking space. SteamVR does not allow for

deactivation of the chaperone grid for security reasons. Participants were told

that when they saw the blue grid this meant they were approximately 40cm away

from the physical limits of the room and asked to ignore it when completing the

experimental task. They were also shown a physical version of the Tam Tam stool

from Habitat for reference.

The experiment consisted of two trials, specified in Table 3.1. Each trial

involved two stages: a learning stage and a placing stage. In the learning stage

participants were asked to collect the virtual object. In the placement stage they

were asked to place the virtual object back where they had found it in the learning

stage. Participants completed the learning stange and the placing stage of each trial

individually. Table 3.2 contains an outline of the experimental task with the steps

followed by participants between the waiting and testing rooms.

For each stage in the testing room, the participant was asked to wear the

HTC Vive Developer Edition HMD as well as to hold a controller with his or

her preferred hand. The experimenter would take hold of the opposite side of

the controller and guide as well as disorient the participant to the starting location

for the corresponding stage (using the HMD as a blindfold). Participants were

disoriented to stop them from finding correspondences between the physical testing

room and the VEs. Starting locations were marked with tape in the testing room to

help the experimenters place participants at the starting location and in the correct

facing direction for each stage.

Participants were also asked to indicate to the experimenter when they had

completed each stage. Once the task was complete, participants were asked to
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continue placing the controller to be escorted to the next stage of the study.

Participants were asked to indicate to the experimenter when they had completed

each stage.

Prior to the two experimental trials, participants completed a practice trial.

This was to ensure that they had a chance to familiarise themselves with the HTC

Vive controller, as well as grabbing and placing the virtual object. The practice VE

consisted of an empty space with a floor and a sphere (radius = 0.25m) to practice

interacting with the controller. Participants were asked to navigate to the sphere.

They were then asked to grab and release it as many times as needed until they felt

comfortable with the interaction.

Participants were asked to complete all stages as quickly and as accurately

as possible. They were not informed about the changes in VE configuration

between learning and placement stages and variations of starting location and facing

direction. They were advised that there was no correct response and to try their best

if they were in doubt as to where to place the virtual object.

While participants waited for their turn in the waiting room, participants were

asked to complete a Santa Barbara Sense-of-Direction Scale as well as a Myers

Briggs Personality Test [97, 98]. Participant payment was processed once all

experimental trials and questionnaires were completed.

4.3 Results
Participant response placement data was used to calculate the Euclidean distance

between object positions as placed by participants and locations calculated from

the different models for each of the trials (see Figure 4.5). We label this distance

as the model error and use it to quantify how accurate a model is in predicting

participant responses for the given trials. Figure 4.2 and Figure 4.3 show boxplots

for mean model errors for Trial 1 and Trial 2, respectively. PI, PV and PVR models

were calculated for each participant from their 3D tracked starting location and

facing direction, as this data slightly varied from participant to participant. This

was due to the experimental procedure, which involved the experimenter physically
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Figure 4.2: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 1. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile− 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 4.2 for pairwise interactions.

guiding and placing participants at the starting location and correct facing direction

for every trial stage. Placement data from two participants in Trial 2 was not logged

correctly and has therefore not been included in the analysis. Figure 4.4 shows

cluster heat maps and scatter plots showing participant response XY placement

during the testing stage each trial.

Given that no standard procedure for analysing this type of data exists, for

informative purposes we defined two different selection criteria to determine which

model or subset of models could best describe individual participant responses for

each trial (see Section 2.3.3). The criteria are described in Section 3.3). Table 4.1
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Figure 4.3: Boxplot for the distance between object positions as placed by participants in
the placement stage and the original and distorted locations calculated from the
different models for each of the trials (model errors) for Trial 2. Medians are
shown as dark horizontal lines. Boxes represent the IQR. Whiskers represent
either the extreme data points or extend to 1.5 x IQR. Outliers (data points
outside the whiskers) are shown by circles. A value, X, is an outlier if X <
lower quartile− 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR.
See Table 4.3 for pairwise interactions.

shows the number of participant responses that met each of the selection criteria for

each model in each of the trials and overall. We also included results of the union

of both criteria.

Table 4.2 and Table 4.3 show pairwise comparisons between models using

a paired-samples t-test with Bonferroni corrections for Trial 1 and Trial 2,

respectively, without excluding outliers. Results show a large number of significant

pairwise interactions at the p<0.05 level, but we will only report in detail the ones

we consider most relevant.
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Figure 4.4: Cluster heat maps and scatter plots showing participant response placement
during the testing stage for trial 1 (left) and trial 2 (right).The columns represent
X-axis and the rows represent Y-axis positions (in m). Each cell is colorized
based on the level of response counts in each region.

For Trial 1, there was a statistically significant difference in model error

for the FDE model and all other models, with the highest mean model error

(M = 4.68,SD = 1.37), followed by the FRE model (M = 4.13,SD = 1.27) and

the PVR model (M = 4.17,SD = 1.61). No statistically significant difference was

found between the FRA (M = 2.35,SD = 1.54), AD (M = 2.38,SD = 0.90) and

PI (M = 2.37,SD = 1.93) models, with the lowest mean model error. The rest

of pairwise interactions are contained in Table 4.2. In this trial, models based on

egocentric reference frames (FRE, FDE, PV and PVR) had a statistically higher

model error, indicating that most participants did not reorient to the initial facing

direction during the learning stage. Also, the models with statistically significant

lowest distance error (FRA and AD) were also the models with highest number of
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Figure 4.5: Trial 1 result plot for Participant 8 showing learning and placement stage
navigation data (red path) as well as object placement response location (red
circle) and all predicted locations (see legend). In this particular example the
participant’s reponse falls 0.03cm away from the FRA prediction. The amber
rectangle represents the two rows of amber LED lights suspended over the
room.

participant responses meeting the selection criteria (see Table 4.1). Note that the

location predicted by the PI model fell outside the room, making this model null for

this trial.

For Trial 2, there was a statistically significant difference in model error for the

PI model (M = 2.99,SD = 0.91), with the highest mean model error, and the rest

of the models. This is due to the fact that the location predicted by the PI model fell

outside the room, making this model null for this trial. There was also a statistically

significant difference in model error for the FRA model (M = 0.87,SD = 0.51),

with the lowest mean model error, and the rest of the models, but no significant

difference with the FRE model (M = 1.07,SD = 0.60). No statistically significant

difference was found between the AD (M = 0.95,SD =), FDA (M = 0.99,SD =

0.45) and FRE (M = 1.07,SD = 0.60) models. The rest of pairwise interactions

are contained in Table 4.3. Results indicate that this trial triggered object location

memory based on the geometry of the envionment (FRE, FRA, FDE, FDA, AD),

rather than self motion models (PV and PVR).

Overall, results highlight strong differences in participant behaviour, with

contrasting models describing different response object locations. No single model

can account for all participant behaviour: models based on spatial geometry seem



4.4. Discussion 63

Table 4.1: Participant responses that met each of the selection criteria for each model in
each of the trials and overall (both trials combined). The last row indicates the
total number of participant responses (N). Note that model PI is a null model (the
predicted object location falls outside the boundaries of the room) and therefore
does not belong to any of the four valid quadrants. Both the QC and the DC are
not applicable in this case.

QC DC QC ∪ DC

Trial 1 Trial 2 Overall Trial 1 Trial 2 Overall Trial 1 Trial 2 Overall

FRA 15 11 26 7 1 8 15 11 26
FRE 2 7 9 2 1 3 2 7 9
FDA 15 11 26 12 0 12 15 11 26
FDE 2 7 9 2 0 2 2 7 9
AD 15 12 27 0 8 8 15 12 27
PI - - - - - - - - -
PV 9 7 16 0 6 6 9 9 18

PVR 2 7 9 0 2 2 2 7 9

N 39 37 76 39 37 76 39 37 76

to hold greater accuracy in describing part of our responses, whereas models based

on self-motion best portray the rest of responses. However, more data would be

needed to understand what makes participants behave in ways best represented

by different models. Results also indicate that the light cue, designed to help

participants reorient back to the initial facing direction, was not salient enough in

Trial 1. This cue might have been more obvious in Trial 2, as participants had

become more familar with the VE’s features at this point in the experimental task.

Results for the Santa Barbara Sense-of-Direction Scale and the Myers Briggs

Personality Test, and their relation with object location memory results are not

reported as part of this thesis. Separate statistical analysis showed no effect of

gender or age on model error.

4.4 Discussion
The limitations listed in Section 3.4 can be conveniently solved using immersive

VR. Using this technology, the experimenter can have a higher level of control

over the experimental setup and provide ecologically valid stimuli without the noise

that is introduced in the real world. This includes easily and rapidly transforming
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Table 4.2: Pairwise comparison t and p values between all models for Trial 1. The last row
shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR

FRA -7.59a -4.46a -8.90a -0.24 0.23 -1.66 -5.76a

FRE -5.71a -19.37a 9.81a 3.86a 6.79a 2.33b

FDA -7.11a 1.45 0.75 -0.49 -4.08a

FDE 11.20a 4.83a 8.88a 7.23a

AD 0.36 -2.77b -8.66a

PI -1.756 -3.96a

PV -9.24a

M 2.35 4.13 2.63 4.68 2.38 2.37 3.04 4.17
a interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)

Table 4.3: Pairwise comparison t and p values between all models for Trial 2. The last row
shows mean model error values for each model (M). Interaction is not significant
unless it is explicitly indicated as specified in the legend.

FRA FRE FDA FDE AD PI PV PVR

FRA -1.47 -2.55b -2.76b 5.60a -16.53a -3.60a -3.95a

FRE 0.64b -3.19b 0.88 -8.27a -7.58a -9.13a

FDA -1.78 0.71 -15.63a -3.20b -3.60a

FDE 2.14b -8.16a -3.58a -4.30a

AD -15.84a -3.14b -3.48a

PI 5.34a 5.28a

PV -3.89a

M 0.87 1.07 0.99 1.21 0.95 2.99 1.54 1.59
a interaction is significant at the 0.001 level (two-tailed)
b interaction is significant at the 0.05 level (two-tailed)
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the environment in a variety of ways such as scale transformations. It also allows

to automatically capture participant behaviour, including object placement and

navigation data, which are generally more difficult to acquire in the real world and

require the use of additional tracking devices and software.

The relevant models decribed and explored in our study represent some

individual participant behaviour. Unlike Hartley et al. [5], we did not find strong

evidence to suggest that responses maintaining fixed distances from nearby walls

were more common after expansions of the room and for objects closer to the

boundaries of the room, and fixed ratios between opposing walls were more

common after contractions of the environment and for locations closer to the centre

of the environment. Our results indicate that object location and participant starting

location as well as facing direction have a crucial impact on model error in a VE

with a low number of available landmarks. They also illustrate that the change in

boundary geometry has a crucial impact on participant object location memory. In

this study, the design of Trial 1 triggered reponses that were best modelled by the

FRA model, as well as the AD model. However, Trial 2 prompted responses best

modelled by models based on the geometry of the environment (FRE, FRA, FDE,

FDA, AD). This highlights the need to explore more complex paradigms which

combine models based on spatial geometry and models based on self-motion or

navigation.

Similar to the results from Chapter 3, we observed a relative success of the

AD model, where an object location is represented by the absolute distance to its

original location in world coordinates, regardless of any changes to the environment

geometry. An alternative hypothesis is that participants were attempting to find

a correspondence between the physical testing room and the virtual room. This

could have happen when participants entered the testing room and were asked to put

on the HMD. However, participants were disoriented before being escorted to the

starting location for each trial stage (wearing the HMD as a blindfold). Therefore,

this hypothesis would only hold for cases in which participants were exceptional at

mentally tracking the disorienting path. This encourages further work to understand
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to what extent the physical environment in which a VR simulation takes place has

an impact on spatial learning and recall of the VE.

Results from this studies combined with its real world counterpart motivate

the need for further analysis on behavioural differences in real and virtual spaces,

and the factors that affect these differences. Furthermore, the availability of

novel consumer VR systems could alleviate the need to build complex real world

enviornments to carry out specialist research on spatial cognition once these

differences are better understood.



Chapter 5

Experiment: The Effect of

Environmental Features, Self-Avatar

and Level of Immersion on Object

Location Memory in Virtual

Environments

In this chapter we present a user study on spatial memory based on the work

presented in Chapter 3 and Chapter 4. Using a modified version of the task

presented in these chapters, we explore the effect of varied environmental feature

fidelity of VEs, the use of self-avatars, and the level of immersion of a system

on object location learning and recall. Following a between-subjects experimental

design, participants were asked to learn the location of three identical objects by

navigating one of the three environments: a physical laboratory or low and high

detail VE replicas of this laboratory. Participants who experienced the VEs could

use either a HMD or a desktop computer. Half of the participants learning in the

HMD and desktop systems were assigned a virtual body. Participants were then

asked to place physical versions of the three objects in the physical laboratory

in the same configuration. We tracked participant movement, measured object

placement, and administered a questionnaire related to aspects of the experience.
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Figure 5.1: Screen captures of the high detail VE (left) and low detail VE (right).

HMD learning resulted in statistically significant higher performance than desktop

learning. Results indicate that, when learning in low detail VEs, there is no

difference in performance between participants using HMD and desktop systems.

Overall, providing the participant with a virtual body had a negative impact on

performance. Preliminary inspection of navigation data indicates that spatial

learning strategies are different in systems with varying levels of immersion.

5.1 Experimental Design and Hypotheses
In this study we aimed to explore the effect of level of immersion, the presence or

absence of a virtual body and the role of environmental features on object location

memory. We compared placement accuracy when object locations were learnt in

the real world and object locations were learnt in two distinct virtual replicas of

the environment: a high detail 3D scan, where colour, environmental and geometric

features are available, and a low detail non-photorealistic replica of the shape of

the room, where only geometric features were accessible. Participants learnt the

position of three identical objects in one of the three environments as shown in

Figure 5.1. Once learning was complete and after a short period of time, participants

were asked to place the three objects in the real room in their original positions (see

Figure 5.2).

Participants observed the VEs and learnt objects positions in different systems

following a 2 × 2 × 2 design, with fidelity (high detail, low detail) as a within-

subjects factor and avatar (body, no body) and level of immersion (HMD, desktop
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Figure 5.2: Participant placing the three objects in the recall stage. Plastic stools were used
as objects for the study. Three retroreflective markers were attached to each
stool for optical tracking.

learning system) as between-subjects factors. Real world learning in the real

environment with physical objects was treated as an additional learning system.

Table 5.1 contains a summary of the mixed design experimental conditions.

Participants in the learning system conditions with a virtual body were

assigned a single point tracking avatar model based on head tracking. In other

words, a fixed mannequin was placed underneath the participant’s head position,

with no other reference points or animated movements. Participants learning in the

real world and in the HMD learning system conditions were able to explore the

space by physically walking around the room. Participants learning in the desktop

system condition were able to navigate the room by using keyboard and mouse

control, to change position and view, respectively. All participants completed the

learning stage in one of the three learning systems and then placed the physical

objects in the real world (see Subsection 3.3). In addition to the between-subjects
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Table 5.1: Mixed design experimental conditions.

Learning System

Desktop body Desktop no body HMD body HMD no body Real world

Low detail VE
Desktop body Desktop no body HMD body HMD no body

–
Low detail VE Low detail VE Low detail VE Low detail VE

High detail VE
Desktop body Desktop no body HMD body HMD no body

–
High detail VE High detail VE High detail VE High detail VE

Real environment – – – – Real world

learning system variable, one variable was manipulated within participants learning

in the desktop and HMD systems: VE fidelity. Participants in the desktop and

HMD learning conditions repeated the task twice, once in the low detail VE and

once in the high detail VE. The order in which participants experienced the low

detail and high detail VEs was altered, ensuring that the two possible combinations

were tested equally. Participants learning in the real world repeated the same task

twice, always in the real environment. The dependent variable was placement error,

or the absolute distance between participant response and original object position,

based on x- and y-coordinates, in meters. We also recorded the navigation paths of

all participants when learning and recalling object locations.

We hypothesised that providing optic flow information, natural locomotion,

and access to idiothetic cues in a HMD would promote higher similarity with real

world learning in terms of placement accuracy and navigation. Previous results have

indicated that training in a VEs of relatively low fidelity allows people to develop

useful representations of large-scale navigable space [20], contrary to the thought

that increasing overall fidelity of a simulator will lead to increases in transfer [99].

Regarding the presence and absence of a single point tracked avatar, we intend to

further replicate and verify the results of previous studies in which this type of

low motion fidelity virtual body has degraded performance [37]. Because of the

availablity of geometric as well as environmental cues, we expected learning in the

high detail VE to result in greater accuracy than learning in the low detail VE when

placing the objects in their original positions. We predicted that spatial learning

and recall in systems with higher level of immersion would result in performance
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comparable to real world learning.

5.2 Method

5.2.1 Materials

The experiment was conducted in a research laboratory at UCL. The laboratory

consisted of a 6m long × 4m wide × 3m high open space. The high detail VE was

comprised of a high fidelity 3D laser scan point cloud of the room with textures

derived from photographs, rendered with a GPU-based point cloud renderer. 3D

scanning was performed with a Faro Focus 3D S120 laser scanner. The low detail

VE was modeled using diffuse shaded planes to reproduce the geometric shape of

the laboratory. Figure 5.1 shows screen captures of the low detail VE, high detail

VE and real room from the same viewport. All environments were rendered at scale

1:1 in Unity at 60FPS without VSync and a vertical FOV of 60 degrees for the

desktop system and 60FPS in each eye for the HMD on an Intel Xeon E7 CPU,

with 16GB RAM and Nvidia GTX 680 GPU running Windows 7. During the user

study the physical room contained a table and a computer that was not included in

the scanned virtual 3D model. The table and computer had not been in the room

when the 3D scanning took place but were necessary to support the experimental

setup.

Head tracking and object positional data was logged with a NaturalPoint

OptiTrack motion capture system using twelve Flex 3 cameras and retroreflective

markers, at a sampling rate of 60Hz. The measured mean tracking error was 3mm.

A 27 inch Dell U2713HM monitor and an Oculus Rift Development Kit 2 (DK2)

were used as displays for the desktop and HMD learning conditions, respectively.

High fidelity single point tracking virtual avatars, based on head tracking, were

used in the corresponding desktop body and HMD body conditions. A female and

male avatar model were obtained from the Rocketbox® Library [100]. These were

preprocessed to remove the heads before being included in the virtual scene. The

avatars were not animated and remained in an idle position throughout the task. An

Epson EB-585Wi projector was mounted in the ceiling of the laboratory, aligned
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Figure 5.3: Renders of the VE built for the user study. The top row shows the high detail
environment with no self-avatar, a female self-avatar and a male self-avatar
(from left to right). The bottom row shows the low detail environment with no
self-avatar, a female self-avatar and a male self-avatar (from left to right).

with the room and projecting onto the ground. It was used to place the physical

versions of the objects in their corresponding positions for real world learning. The

objects used in the study were three identical white Tam Tam plastic stools from

Habitat, detailed in Section 3.2.1. Figure 5.3 contains renders of the high detail

and low detail environments built for the study, with and without the self-avatar

representations.

5.2.2 Participants

A total of 20 participants (9 female, 11 male; average age 26 years, SD = 5.3) were

recruited from the student and staff population at University College London. All

participants signed a consent form and the study was approved by the University

College London Research Ethics Committee (Project ID: 6708/002). Participants

were paid £10 for participation. They were assigned to the different experimental

conditions based on individual results for a standard spatial ability test to avoid any

possible bias between groups [63].

5.2.3 Procedure

The experimental task consisted of two phases, before and during the lab session.

Figure 5.4 shows an overview of the experimental task. Participants performed

all their trials in the same learning system condition. Before the lab session,
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Figure 5.4: Overview of the experimental task.

participants were asked to read an online information sheet that introduced the

experimental task. They were asked to read and sign an online informed consent

form and asked to complete a digital version of a standard spatial ability test as well

as a background questionnaire.

During the lab session, participants were asked to sign a paper copy of the

consent form and asked to read an information sheet with written instructions

describing the experimental task. Participants were asked to switch off their mobile

phones and were introduced in the lab. No practice trials were done and participants

were not given feedback on their performance throughout the experiment.

The experimental task consisted of two trials, each with a learning and a recall

stage. The learning stage involved viewing the three virtual objects in the real room

or one of the low and high detail VEs in one of the three learning system conditions:

real world, desktop or HMD. In the recall stage participants were asked to place the

three physical objects as they remembered them from the learning stage into the

real room. No further information was given and participants were asked to try

their best if they were in doubt as to where the object’s original position was. There

was no time limit for the learning and recall stages, and participants were able to

freely navigate the environment. Participants could navigate through all objects of
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Table 5.2: Post-trial questionnaire related to several aspects of the experience: examination,
confidence, difficulty, movement, application and observation. Responses were
recorded on a 1-5 Likert scale with varying vocabulary anchoring the low and
high ends of the scale, respectively.

Variable Question Likert Scale Range

Examination The learning environment allowed me to closely examine the objects. 1:Poorly - 5:Very Well
Confidence I am confident that I performed the task well. 1:Unconfident - 5:Confident
Difficulty The placement task was... 1:Easy - 5:Difficult
Movement I could move around the learning environment as I wanted. 1:Disagree - 5:Agree

Application
I could directly apply what I learned in the learning environment.

1:Disagree - 5:Agree
when placing the objects in the real room

Observation
The learning environment allowed me to naturally observe and

1:Disagree - 5:Agree
learn the object positions.

the environment, but not through the environment boundaries. An experimenter

was present at all times during the experimental task to manage cables and provide

guidance on the different experimental stages.

Participants learning in the HMD and desktop learning systems (16

participants) performed the two trials, each corresponding to one of the two versions

of the VE in the learning stage: high detail and low detail. Participants experienced

the two VEs in different orders, ensuring that the two possible combinations were

tested equally. Participants learning in the real world (4 participants) performed

the same trial twice, always learning in the real room. In each trial, and for each

participant, all three objects were randomly arranged on a conceptual 5×5 grid,

avoiding straight line configurations. Participants could not see the grid in the

environment and were asked to ignore retroreflective markers on the stools, which

were used to track and identify the stools for data collection.

After each trial, participants were asked to complete a short online

questionnaire measuring examination, confidence, difficulty, movement, application

and observation (see Table 5.2). After the two trials were completed, they were

interviewed regarding individual strategies used throughout the experimental task.



5.3. Results 75

Figure 5.5: Mean placement errors in all learning system conditions for real world (green),
high detail (blue) and low detail (orange) VEs in m. Error bars show standard
errors.

5.3 Results

5.3.1 Object Placement

Tracked object placement data was used to calculate the Euclidean distance, referred

to as placement error, between object positions as placed by participants in the recall

stage and original object positions. Figure 5.5 shows mean placement errors for all

learning system conditions. For statistical analysis the mean placement error was

calculated from the error of each of the three objects for all trials.

A three-way mixed Analysis of Variance (ANOVA) with fidelity (high detail,

low detail) as a within-subjects factor and avatar (body, no body) and level of

immersion (HMD, desktop learning system) as between-subjects factors was run.

There were no outliers in the data, as assessed by inspection of a boxplot. There

was homogeneity of variances for both high detail placement errors (p = .257) and

low detail placement errors (p = .143), as assessed by Levene’s test for equality of
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variances. Results showed a statistically significant two-way interaction between

fidelity and level of immersion, F(1,12) = 6.3, p = .027, and fidelity and avatar,

F(1,12) = 6.3, p = .027. Separate statistical analysis showed no effect of gender,

age or other background information such as videogame experience on placement

error.

Statistical significance of simple main effects was accepted at a Bonferroni-

adjusted alpha level of .025. There was a statistically significant simple main effect

of avatar for the low detail environment, F(1,12) = 6.453, p = .026, but not for the

high detail environment, F(1,12) = .017, p = .899. All pairwise comparisons were

performed for statistically significant simple main effects. Bonferroni corrections

were made with comparisons within each simple main effect considered a family of

comparisons. Adjusted p-values are reported. Mean placement error was lower

when an avatar was present than when an avatar was absent when learning in

the low detail environment, with a mean difference of -0.20 (95%CI,−0.372 to

−0.028), p = .026. There was a statistically significant simple main effect of

learning system for the high detail environment, F(1,12) = 16.423, p = .002, but

not for the low detail environment, F(1,12) = 1.098, p = .315. Mean placement

error was lower when learning with an HMD system than with a desktop system,

when learning in the high detail environment, with a mean difference of -0.083

(95%CI,−0.254 to −0.089), p = .002.

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in placement error between the different learning systems,

χ2(2) = 56.452, p < .001, with a mean rank placement error score of 84.15 for

desktop learning, 57.53 for HMD learning and 19.15 for Real World learning.

When comparing the three system conditions, Real World learning resulted in

statistically significant lower placement error (M = 0.09,SD = 0.04), followed by

HMD learning (M = 0.27,SD= 0.16) and Desktop learning (M = 0.45,SD= 0.21),

respectively. No statistically significant differences were found between the two

trials.
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Figure 5.6: Learning stage 2D (XY plane) tracked navigation trajectories for all
participants in each learning condition for Real World (green), High Detail
(blue) and Low Detail (orange) VEs. Each point represents an XY position at a
sampling rate of 60Hz. All interesections in the 5×5 conceptual grid represent
a possible object position. The conceptual 5× 5 object grid was invisible to
participants.

5.3.2 Questionnaire

A one-way between subjects ANOVA was performed on questionnaire responses

for desktop body, desktop no body, HMD body and HMD no body learning system

conditions, for high and low detail VEs. Results show a large number of mixed

significant interactions with no overarching trend due to the limited number of

repetitions.

5.3.3 Navigation

Tracking results, shown in Figure 5.6, indicate contrasting movement patterns in

Real World, HMD and Desktop learning system conditions. Qualitative inspection

of data suggests that participants learning in the real world and HMD systems

primarily navigated areas within the boundaries of the conceptual 5× 5 object

grid whereas participants learning in the desktop computer mainly navigated areas

outside the boundaries of the conceptual 5× 5 object grid. The mean percentage

of time spent navigating inside and ouside the conceptual 5× 5 object grid was

calculated for each learning system and is shown in Figure 5.7.
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Figure 5.7: Mean percentage of navigation time spent outside (grey) and inside (yellow)
the conceptual 5× 5 object grid for all participants in each learning condition
during the learning stage.

A one-way between subjects ANOVA was conducted to compare the effect

of learning system on the percentage of time spent navigating inside the conceptual

5×5 object grid in desktop, HMD and real world learning system conditions. There

was a significant effect of learning system on percentage time spent navigating

inside the conceptual 5×5 object grid at the p < .05 level [F(2,39) = 371.991, p <

.001]. Post hoc comparisons using the Tukey HSD test indicated that the mean

percentage spent navigating inside the conceptual 5× 5 object grid for desktop

learning (M = 0.24,SD = 0.06) was significantly lower than the mean percentage

spent navigating inside the conceptual 5× 5 object grid for HMD learning (M =

0.80,SD = 0.08) and real world learning (M = 0.78,SD = 0.04). No significant

difference was found between HMD and real world learning.

To further illustrate differences in navigation strategies, we created cluster heat

maps of the time spent in each region of the room for each of the system conditions:

Desktop (left), HMD (middle) and Real World (right), shown in Figure 5.8. These

results show different spatial navigation strategies between desktop and HMD

learning strategies, where the former tended to access areas towards the far end
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Figure 5.8: Cluster heat maps of the time spent in each region of the room for each of
the system conditions: Desktop (left), HMD (middle) and real world (right).
The columns represent X-axis and the rows represent Y-axis positions (in m).
Each cell is colorized based on the level of counts of the head location (for all
participants) in each region during learning.

of the room and the latter tended to navigate areas clustered within the object grid

along the Y axis. Along the X axis, the range of positions accessed by participants

learning in the desktop system was wider than the range of movement performed by

participants learning in the HMD system. HMD navigation was not only different

from desktop navigation, but also qualitatively very similar to real world navigation

during learning.

5.4 Discussion
This study analyses object location memory transfer from VR to the real world. It

extends previous work on spatial perception in VEs [101, 102, 103, 104, 38, 26, 32,

34, 105, 20] by suggesting an experimental task in which participants are asked to

learn and recall a series of object configurations in concurrently occupied virtual

and real environments.

Our results illustrate that HMD learning resulted in statistically significant

higher performance followed by desktop learning. Our analysis suggests that

availability of environmental features in VEs can enhance object location memory

under certain setups. The overall negative effect of the self-avatar indicates that

single point tracked virtual bodies may not be sufficient to increase performance
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in this experimental task. Specifically, the use of self-avatar in HMD body

learning impaired placement accuracy. Single point tracking caused the virtual

self-avatar to appear in front of the participant’s real body if they leaned forward,

partially occluding some of the available environmental features. The degradation

in performance might have been because the virtual body occluded features in the

environment that the participant could have attended to. This might then have

forced a change to a different strategy for learning one or more object placements.

Moreover, the lack of motion fidelity provided by single point virtual bodies might

interfere with presence in VEs.

The results on navigation strategies seem promising. Similar to participants

learning in the real world, participants learning in the HMD system mainly

navigated areas within the boundaries of the conceptual 5×5 object grid, whereas

participants learning in the desktop system primarily explored areas outside the

boundaries of the conceptual 5×5 object grid. This may suggest that, when learning

object locations in less immersive systems, users navigate towards the environment

boundaries to obtain more global views of the scene. In addition, the range of

areas of the room accessed by participants learning in the desktop system was

wider than the range of areas of the room participants learning in the real world and

HMD system in the X and Y axis. Although differences in navigation in systems

with varying levels of immersion have been reported [106], further exploration

is required to understand the trajectories selected by users when learning object

locations.

One of the limitations of the work presented here is the relatively low number

of participants. A larger population sample is needed to further validate our results

as well as to explore the effect of more complex self-avatars with higher motion

fidelity on spatial memory. It would also allow us to analyse navigation trajectories

in more detail, exploring the regions visited by participants in relation to the object

locations and features of the environment. Other experimental tasks comparing

object location memory in systems with varying levels of immersion are required to

confirm whether our results are generalisable.



Chapter 6

Experiment: A Comparison of

Virtual and Physical Training

Transfer of Bimanual Assembly

Tasks

In this chapter we present a study that explores the effect of level of immersion on

training of a more complex procedural task, compared with the studies presented in

the previous chapter which looked at object location memory. For this, we compare

the effectiveness of virtual training and physical training for teaching a bimanual

assembly task. In a between-subjects experiment, 60 participants were trained

to solve three 3D burr puzzles in one of six conditions comprised of virtual and

physical training elements. In the four physical conditions, training was delivered

via paper- and video-based instructions, with or without the physical puzzles to

practice with. In the two virtual conditions, participants learnt to assemble the

puzzles in an interactive VE, with or without 3D animations showing the assembly

process. After training, we conducted immediate tests in which participants were

asked to solve a physical version of the puzzles. We measured performance through

success rates and assembly completion testing times. We also measured training

times as well as subjective ratings on several aspects of the experience. Our

results show that the performance of virtually trained participants was promising.
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Table 6.1: Experimental condition types, acronyms and definitions. Please note the choice
of acronym VI to represent video and VE to represent virtual environment
to avoid any confusion in making reference to the experimental conditions
throughout the thesis.

Type Acronym Definition

Physical

P Paper instructions
PB Paper instructions and physical blocks
PVI Paper instructions and assembly process video

PVIB Paper instructions, assembly process video and physical blocks

Virtual
VE Virtual paper instructions and virtual blocks

VEA Virtual paper instructions and virtual blocks, with assembly process animations

Figure 6.1: One of the three 3D printed burr puzzles used in the study.

A statistically significant difference was not found between virtual training with

animated instructions and the best performing physical condition (in which physical

blocks were available during training) for the last and most complex puzzle in terms

of success rates and testing times. Performance in retention tests two weeks after

training was generally not as good as expected for all experimental conditions. We

discuss the implications of the results and highlight the validity of virtual reality

systems in training.

6.1 Experimental Design and Hypotheses
Inspired by previous research [2], in our study we used three different colour-

coded versions of a six-piece burr puzzle for the assembly task (see Figure 6.1).

Burr puzzles have been commonly used for assembly task training studies in

the past because they provide a recognisable and adequately complex model in

which participants must follow a specific procedure in order to solve them [59, 2].
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Table 6.2: Classification of the experimental conditions according to instruction type (static
or static and animated) and block availability (no blocks, physical blocks or
virtual blocks) during training. See Table 6.1 for experimental condition types,
acronyms and definitions.

Physical Virtual
No blocks Physical blocks Virtual blocks

Static instructions P PB Virtual Environment (VE)
Static and animated instructions PVI PVIB Virtual Environment with Animations (VEA)

However, our study differs from previous work in that no haptic devices were

used. In addition, we are interested in whether consumer virtual reality systems

are sufficient for effective training.

In our study, participants were trained and tested in assembling three versions

of a six-piece burr puzzle. To provide increasing difficulty, the first three blocks had

been preassembled for the first puzzle, the first two for the second and none for the

third. This meant that participants had to remember a higher number of steps in the

assembly process over the course of the experimental task for each puzzle.

Following a between-subjects experimental design, participants were trained

to solve each puzzle by adding the corresponding unassembled blocks in one of six

experimental conditions (see Table 6.1). Experimental conditions were designed

to account for scenarios in which blocks are not available (P and PVI), physical

blocks are available (PB and PVIB) or virtual blocks are available (VE and VEA)

during training (see Table 6.2 for a classification of the experimental conditions).

The physical experimental conditions (P, PB, PVI and PVIB) were designed to

encompass combinations of paper- and video- based instructions. The virtual

experimental conditions (VE and VEA) involved a virtual version of the paper

instructions, with or without 3D animations showing how to correctly assemble the

puzzle, and always with virtual blocks to practice during training. All instructions

(static and animated) were colour-coded to match the physical puzzle blocks.

Following training and after a short break, participants were asked to assemble

a 3D printed physical version of the corresponding puzzle within a given time.

Participants were asked to attend a retention session, two weeks after the training,

in which they were asked to solve the same puzzles in the same order and within
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the same time constraints. We measured success rates as well as training and testing

times. Sessions were complemented by a series of mental rotations tests as well as

questionnaires and debrief interviews.

As part of their recommendations for future work, Carlson et al. suggested

adding a snap-to-fit function or constraint system [107] to alleviate the time

that virtually trained participants spent attempting to fit and assemble the virtual

blocks [2]. We followed this recommendation and added such functionality in the

virtual training environment. We also followed their recommendation to make the

selection of a block in the VEs cause a change of colour instead of just causing a

change in transparency, as participants in their study reported that it was difficult to

discern transparent pieces against the transparent virtual representation of the glove.

In their discussion they mentioned individual differences for interaction between

the two hands, as some participants showed a preference for the haptic device or the

glove for predominant use. We therefore decided to make interaction ambidextrous,

meaning all operations were designed to be performed equally by both hands. We

made the following hypotheses:

H1: The conditions in which the physical blocks were available during training

(PB and PVIB) would yield a higher number of successful puzzle completions

during immediate and retention testing. This relates to the experience (or

lack of) built around manipulating and assembling the physical blocks during

training.

H2: The conditions in which static and animated instructions (video or 3D

animations) were available during training (PVI, PVIB and VEA) would

result in lower assembly times during immediate and retention testing, as

participants would have received richer visualisation on how to assemble the

blocks during training.

H3: Condition PVIB, with physical blocks and animated instructions (video),

would yield the best performance as measured by immediate and retention

success rates and assembly testing times. This hypothesis is based on H1 and

H2.
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Figure 6.2: Physical lab where the experiment took place (left) and analogous VEs (right).

6.2 Method

6.2.1 Materials

The user study was conducted in a lab at UCL. The room consisted of a 3.1m long

× 2.7m wide × 4.0m high room. A virtual replica of the laboratory was modeled

for the VE used in the virtual experimental conditions. Figure 6.2 contains images

of the physical room and analogous VE. An Oculus Rift Consumer Version 1,

two Oculus Touch controllers and two Oculus sensors were used for the virtual

experimental conditions. The VEs was rendered at scale 1:1 in Unity 5.6.0 without

VSync at 90FPS in each eye on an Intel Core i7-4770K CPU @ 3.50GHz, with

16GB RAM and Nvidia GeForce GTX 1080 GPU running Windows 8.1 Pro. The

Oculus Avatar SDK 1.15.0 [108] was used to include hand presence and interaction

for the Oculus Touch controllers. The Burr Tools 0.6.3 software was used to

digitally create and solve the three versions of the six-piece burr puzzles as well

as to generate the paper instructions and assembly process videos [109]. The puzzle

blocks were 3D printed with a Ultimaker 2+ 3D printer with a 0.4mm nozzle and

standard settings, with PLA 3D printing material. 3D models of the burr puzzles

used in the study are available to download at https://vr.cs.ucl.ac.uk/

research/virtual-training. Preassembled blocks for the first and second

puzzles were glued together. Paper instructions were printed on A3 paper and

https://vr.cs.ucl.ac.uk/research/virtual-training
https://vr.cs.ucl.ac.uk/research/virtual-training
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attached to 5mm A3 foamboards. Assembly videos were presented using VLC

2.2.3 on a 13-inch mid 2014 MacBook Pro laptop running macOS 10.12.2.

6.2.2 Participants

A total of 60 participants (30 female, 30 male; average age 26.51 years, (SD =

6.47)) were recruited from the student and staff population at UCL. All participants

signed a consent form and the study was approved by the UCL Research Ethics

Committee (Project ID: 6708/004). Participants were paid £15 for participation.

A screener questionnaire was used to filter out potential participants who enjoy

solving 3D puzzles or who have any type of colour-blindness. Eligible participants

were assigned to the different experimental conditions based on individual results

for Purdue’s Visualisation of Rotations Test [63] to avoid any possible bias between

groups, with a similar mean score for the test in each of the experimental condition

groups. Likewise, an equal number of females and males were assigned to each

group.

6.2.3 Physical Training Environment

Participants assigned to the physical experimental conditions (P, PB, PVI and PVIB)

were seated on a stool in front of the table in the lab on which the blocks had been

placed in the correct initial configuration for each puzzle. Participants were seated

facing the table and were told that they could adjust the distance to it if they wished

to.

Paper instructions were designed to show the initial configuration of the blocks

at the top and the assembly process steps at the bottom (see Figure 6.3). For the first

two puzzles, blocks that had been preassembled and the corresponding steps in the

assembly process were faded out. The orientation of the images of the blocks in

the instructions was randomly selected for each puzzle. For those experimental

conditions involving paper instructions, these were placed against the wall on the

table in front of the participant. Assembly process videos were generated using Burr

Tools [109] and showed a step-by-step animation of the assembly process from the

perspective matching the one in the paper instructions. The laptop was placed on
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the table in front of the participant. Participants could interact with the video (play,

pause, stop, rewind, and fast forward) using the VLC user interface.

For those experimental conditions in which the physical blocks were available

during training (PB and PVIB) these were initially placed on the table following

the same configuration as the paper instructions. Preassembled puzzles were placed

behind the blocks.

6.2.4 Virtual Training Environment

Participants assigned to the virtual experimental conditions (VE and VEA) were

seated on a stool in the center of the lab. They were then asked to put on the

Oculus Rift and hold the two Oculus Touch controllers with the experimenter’s

help. The VE showed the virtual replica of the room and table used in the physical

environment in front of them, with the blocks for the corresponding puzzle arranged

in the correct configuration. Participants were seated facing the virtual table and

were told that they could adjust the distance to it if they wished to. For the

first two puzzles (in which two or three of the blocks had been preassembled)

participants could see the preassembled puzzle hovering over the table in front of

them. Virtual paper instructions were presented against the wall on the table in

the same location as the physical paper instructions were presented in the physical

training environment.

Using the Oculus Avatar SDK 1.15.0 [108], virtual hands were rendered using

the default shader (see Figure 6.4). Participants could then manipulate the 3D

environment by grabbing the virtual puzzle blocks. They could hold the trigger

button to grab unassembled puzzle blocks and the grip button to move and rotate

assembled blocks as a single unit. Participants could grab any block at any given

time, but only the correct block in the assembly process could be attached to the

puzzle. No physics constraints were added to the blocks meaning they could be

moved through each other and through the virtual hands and table.

Visual feedback was provided to aid participants in learning the assembly

process during training. When participants grabbed the correct block in the

assembly process, a blue transparent preview block was shown in the puzzle,
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Figure 6.3: Assembly instruction sheet for each of the three burr puzzles used in the study.
Each instruction sheet contains a diagram of the six pieces and five ordered
steps needed to solve the puzzle. Preassembled pieces and steps for Puzzles 1
and 2 were faded out.
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indicating where the block had to be assembled. Participants had the option to

deactivate the block preview. A blue highlight was used to indicate what the next

block in the assembly process was. This highlight would then turn to red when the

block collided with the preview block, indicating that the piece was near its correct

location but in the wrong orientation. The highlight would turn green when the

block was within an angle of twenty degrees from the correct orientation. If the

participant released the trigger when the block showed a green highlight, it would

snap into the correct location and the participant could move on to assemble the

next piece or reset the puzzle. No audio or vibration feedback was used in the

experience.

A user interface with virtual buttons was added on the right-hand side of the

virtual table. Buttons were represented by blue spheres which the participant could

interact with by touching them, after which they would turn to grey and back to

blue to indicate that the interaction was successful. For participants in the VE

and VEA conditions, two buttons were available: RESET and HELP ON/OFF.

Interacting with the RESET button would immediately relocate all blocks in their

initial positions so participants could restart the assembly process whenever they

wished. The HELP ON/OFF button acted as a toggle to activate and deactivate the

blue transparent preview of the block in the puzzle so participants could practice

assembling the puzzle with and without the visual aid.

For participants in the VEA condition, two more buttons were added: NEXT

STEP and REPLAY LAST STEP. The NEXT STEP button would trigger the

animation of the assembly of the next block in the process. The REPLAY LAST

STEP would reposition the last block assembled in its original location on the table

and animate its assembly onto the puzzle.

All interactions in the virtual training environment could be equally carried out

using either hand and participants could concurrently complete one interaction with

each hand. For example, a participant could grab and rotate the assembled pieces

with one hand and grab the next block to attach with the other hand.
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Figure 6.4: Screenshot of a participant grabbing a virtual block and assembling it onto
the 3D puzzle. The green highlight indicates on the block is colliding with
its preview block and within twenty degrees from the correct orientation. By
releasing the trigger button of the Oculus Touch controller the virtual block
would snap into its correct location.

6.2.5 Procedure

The experimental task consisted of two lab sessions. The first session comprised

training and immediate testing. The second session, two weeks after the first,

comprised retention testing. Figure 6.5 shows an outline of the experimental task.

Before the first lab session, participants were asked to read and sign an online

informed consent form and answer a digital version of Purdue’s Visualisation of

Rotations Test [63] used to pre-allocate participants to the experimental conditions.

Participants also answered a background questionnaire with a specific focus on prior

experience with videogames, 3D modelling software and VEs.
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During the first lab session, participants were asked to sign a paper copy of the

consent form and asked to read an information sheet with written instructions

describing the experimental task. In this session participants completed a

familiarisation task and three trials, each with a training and a testing stage. The

three trials corresponded with each of the three burr puzzles in increasing order

of difficulty. During the familiarisation task participants were introduced to the

physical or virtual training environment depending on the experimental condition

they had been assigned to. A sample assembly task involving piling up rectangular

blocks was used and participants were able to familiarise themselves with the paper

instruction format, the video player and the interactive VEs, accordingly.

For each of the trials, the training stage involved learning to assemble the

corresponding puzzle in one of the six experimental conditions in a maximum time

of eight minutes. During the testing stage participants were asked to assemble

the physical 3D puzzle in a maximum of three minutes. Time limits for training

and testing were defined through piloting of the experimental task. In each trial

participants completed the training stage and, after a thirty second break, the testing

stage. They then completed a questionnaire at the end of each trial (see Table 6.3).

For both training and testing participants were told what the limit times were and

were advised that they could end the stage before the time expired if they wished to.

Participants were also told that the initial configuration of the blocks on the table

during training would match the initial configuration of the blocks during testing

and the paper instructions.

Participants were asked to try their best if they were in doubt as to how

to assemble the puzzles during testing. An experimenter was present at all

times during the experimental task to manage cables for those particpiants in the

virtual experimental conditions and provide guidance on the different phases of

the experimental task. After completing all trials participants were interviewed

regarding the strategies used throughout the sessions.

After a waiting period of two weeks, participants returned to the lab for the

second session. In this session participants were asked to complete a paper version



6.3. Results 92

Table 6.3: Post-trial questionnaire related to several aspects of the experience: difficulty,
ease of use and seriousness. Responses were recorded on a 1-5 Likert scale with
varying vocabulary anchoring the low and high ends of the scale, respectively.

Variable Question Likert Scale Range

Difficulty Please rate the difficulty of the task you just completed. 1: Very difficult - 5: Very easy
Ease of use Please rate the ease of use in assembling parts in the training environment. 1: Very difficult - 5: Very easy
Seriousness Please rate how seriously you took the task. 1: Very unseriously - 5: Very seriously

of the Vandenberg and Kuse Mental Rotations Test [65]. They then completed the

retention test for each of the three puzzles, in which they were asked to solve the

three burr puzzles from the first session without a training phase, in the same order

and in a maximum of three minutes. They completed the same questionnaire from

the first session at the end of each retention trial (see Table 6.3). After completing

all retention trials they were interviewed regarding strategies used throughout the

session.

6.3 Results

6.3.1 Types of Errors

Unsuccessful puzzle completions during immediate and retention testing were due

to one of two reasons. In most cases, participants did not complete the 3D puzzles

within the given maximum time (180s). On the other hand, a low number of

participants decided to stop the time before the upper limit thinking that they had

successfully solved the puzzle. However, close inspection showed that they had

not correctly assembled the pieces. Completion time values for both immediate

and retention testing were corrected by assigning the upper time limit (180s) to all

unsuccessful attempts.

6.3.2 Immediate Testing

6.3.2.1 Training times

Boxplots with training times for each of the puzzles are shown in Figure 6.6. Non-

parametric statistical analysis was performed for training times because our data

was not normally distributed as shown by a Shapiro-Wilk test.
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Figure 6.5: Overview of the experimental procedure.

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in training times for the first puzzle between the different

experimental conditions, χ2(5) = 25.648, p < 0.001, with a mean rank score of

15.35 for P, 38.85 for PB, 13.85 for PVI, 40.15 for PVIB, 36.25 for VE and 38.55

for VEA.
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Figure 6.6: Boxplot containing training times for each of the puzzles. Medians are shown
as dark horizontal lines. Boxes represent the IQR. Whiskers represent either
the extreme data points or extend to 1.5 x IQR. Outliers (data points outside the
whiskers) are shown by circles. A value, X, is an outlier if X < lower quartile
− 1.5 x interquartile range or if X < upper quartile + 1.5 x IQR. See Table 6.4
for pairwise interactions.

Table 6.4: Test statistics using Dunn’s procedure [1] for training times between the
different experimental conditions. Significance values have been adjusted by
the Bonferroni correction for multiple tests. Interaction is not significant unless
it is explicitly indicated as specified in the legend.

PB PVI PVIB VE VEA

Puzzle 1

P -23.50a 1.50 -24.80a -20.90 -23.20a

PB 25.00a -1.30 2.60 0.30
PVI -26.30a -22.40 -24.70a

PVIB -3.90 -1.60
VE -2.30

Puzzle 2

P -17.50 11.90 -14.20 -14.95 -13.25
PB 29.40a 3.30 2.55 4.25
PVI -26.10a -26.85a -25.15a

PVIB 0.75 -0.95
VE 1.70

a interaction is significant at the 0.05 level (two-tailed)

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in training times for the second puzzle between the different

experimental conditions, χ2(5) = 22.764, p < 0.001, with a mean rank score of

22.50 for P, 40.00 for PB, 10.60 for PVI, 36.70 for PVIB, 37.45 for VE and 35.75

for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically

significant difference in training times for the third puzzle between the different
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experimental conditions, χ2(5) = 10.701, p = 0.058, with a mean rank score of

21.95 for P, 33.50 for PB, 18.90 for PVI, 35.70 for PVIB, 37.15 for VE and 35.80

for VEA.

Pairwise comparisons were performed using Dunn’s procedure [1] with a

Bonferroni correction for multiple comparisons with adjusted p-values. These are

displayed in Table 6.4. Note that pairwise comparisons for puzzles in which the

Kruskal-Wallis H test showed no overall statistically significant difference have not

been included.

The post hoc analysis revealed statistically significant differences in training

times for the first puzzle. There was a statistically significant difference between P

(mean rank = 15.35) and PB (mean rank = 38.85) (p = 0.036), PVIB (mean rank

= 40.15) (p = 0.020) and VEA (mean rank = 38.55) (p = 0.041). There was also a

statistically significant difference between PVI (mean rank = 13.85) and PB (mean

rank = 38.85) (p = 0.018), PVIB (mean rank = 40.15) (p = 0.010) and VEA (mean

rank = 38.55) (p = 0.021).

The post hoc analysis revealed statistically significant differences in training

times for the second puzzle. There was a statistically significant difference between

PVI (mean rank = 10.60) and PB (mean rank = 40.00) (p = 0.002), PVIB (mean

rank = 36.70) (p = 0.010), VE (mean rank = 37.45) (p = 0.007) and VEA (mean

rank = 35.75) (p = 0.015).

Separate statistical analysis showed no significant effect of gender or age on

training times for all puzzles.

6.3.2.2 Immediate testing success rates

A binomial logistic regression was performed to ascertain the effects of

experimental condition on the likelihood that participants succeed at assembling

each puzzle during the immediate testing phase. Figure 6.7 shows the number

of successful and unsuccessful completions of each puzzle for all experimental

conditions. PVIB was chosen as the reference category as this was the condition

that produced the highest number of successful puzzle completions, overall.
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Figure 6.7: Number of successful (green) and failed (red) attempts at solving the three
puzzles in the immediate testing phase for each of the experimental conditions.

The binomial logistic regression model was not statistically significant,

χ2(5) = 8.809, p = 0.117 for the first puzzle. The model explained 18.3%

(Nagelkerke R2) of the variance in success rate and correctly classified 61.7%

of cases. The Wald criterion demonstrated that only condition P made a significant

contribution to prediction (p = 0.016). The model suggested that participants in this

condition were 0.05 times as likely to successfully assemble the first puzzle than

participants in the reference category (PVIB).

The binomial logistic regression model was statistically significant, χ2(5) =

12.016, p = 0.035 for the second puzzle. The model explained 24.7% (Nagelkerke

R2) of the variance in success rate and correctly classified 71.7% of cases. The Wald

criterion demonstrated that P and PVI made a significant contribution to prediction

(p = 0.016 and p = 0.035, respectively). The model suggested that participants in

the P experimental condition were 0.048 times as likely to successfully assemble

the second puzzle than participants in the reference category (PVIB). The model

suggested that participants in the PVI experimental condition were 0.074 times as

likely to successfully assemble the second puzzle than participants in the reference

category (PVIB).
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The binomial logistic regression model was statistically significant, χ2(5) =

24.255, p< 0.001 for the third puzzle. The model explained 45.8% (Nagelkerke R2)

of the variance in success rate and correctly classified 78.3% of cases. The Wald

criterion demonstrated that P and PVI made a significant contribution to prediction

(p = 0.035 and p = 0.007, respectively). The model suggested that participants in

the P experimental condition were 0.074 times as likely to successfully assemble

the third puzzle than participants in the reference category (PVIB). The model

suggested that participants in the PVI experimental condition were 0.028 times as

likely to successfully assemble the third puzzle than participants in the reference

category (PVIB). Condition VEA did not contribute to this model (Wald = .000).

However, it is important to note that all participants in this condition successfully

completed the third puzzle.

A binomial logistic regression was then performed to ascertain the effects

of successful completion of the first puzzle on the likelihood that participants

succeed at assembling the second puzzle during the immediate testing phase. The

logistic regression model was statistically significant, χ2(1) = 12.993, p < 0.001.

The model explained 26.5% (Nagelkerke R2) of the variance in success rate and

correctly classified 73.3% of cases. The model suggested that participants who

succeeded at correctly assembling the first puzzle were 7.65 times as likely to

successfully assemble the second puzzle than participants in the reference category

(PVIB).

A binomial logistic regression was also performed to ascertain the effects

of successful completion of the second puzzle on the likelihood that participants

succeed at assembling the third puzzle during the immediate testing phase. The

logistic regression model was statistically significant, χ2(1) = 15.174, p < 0.001.

The model explained 30.8% (Nagelkerke R2) of the variance in success rate and

correctly classified 76.7% of cases. The model suggested that participants who

succeeded at correctly assembling the second puzzle were 9.687 times as likely to

successfully assemble the third puzzle than participants in the reference category

(PVIB).
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As a result, a binomial logistic regression was performed to ascertain the

effects of successful completion of the first puzzle and experimental condition on

the likelihood that participants succeed at assembling the second puzzle during

the immediate testing phase. The logistic regression model was statistically

significant, χ2(1) = 22.265, p = 0.001. The model explained 42.1% (Nagelkerke

R2) of the variance in success rate and correctly classified 75% of cases. The

Wald criterion demonstrated that none of the experimental conditions made

a significant contribution to prediction. The Wald criterion also showed that

successful completion of the previous puzzle did contribute significantly to

prediction (p = 0.003). The model suggested that participants who succeeded

at correctly assembling the first puzzle were 8.273 times as likely to successfully

assemble the second puzzle than participants in the reference category (PVIB). This

model presented with the highest percentage of completely classified observations

for the second puzzle.

A binomial logistic regression was also performed to ascertain the effects

of successful completion of the second puzzle and experimental condition on

the likelihood that participants succeed at assembling the third puzzle during the

immediate testing phase. The logistic regression model was statistically significant,

χ2(1) = 32.441, p < 0.001. The model explained 57.5% (Nagelkerke R2) of

the variance in success rate and correctly classified 83.3% of cases. The Wald

criterion demonstrated that condition PVI and successful completion of the previous

puzzle made a significant contribution to prediction (p = 0.030 and p = 0.007,

respectively). The model suggested that participants in the PVI condition were

0.048 times as likely to successfully assemble the third puzzle than participants in

the reference category (PVIB). Participants who successfully completed the second

puzzle were 8.475 times as likely to successfully assemble the third puzzle than

participants in the reference category (PVIB). Note that condition VEA did not

contribute to this model (Wald = .000). However, it is important to note that all

participants in this condition successfully completed the third puzzle. This model

presented with the highest percentage of completely classified observations for the
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Figure 6.8: Boxplot containing corrected immediate testing times for each of the puzzles.
Medians are shown as dark horizontal lines. Boxes represent the IQR.
Whiskers represent either the extreme data points or extend to 1.5 x IQR.
Outliers (data points outside the whiskers) are shown by circles. A value, X,
is an outlier if X < lower quartile − 1.5 x interquartile range or if X < upper
quartile + 1.5 x IQR. See Table 6.5 for pairwise interactions.

Figure 6.9: Boxplot containing corrected retention testing times for each of the puzzles.
Medians are shown as dark horizontal lines. Boxes represent the IQR.
Whiskers represent either the extreme data points or extend to 1.5 x IQR.
Outliers (data points outside the whiskers) are shown by circles. A value, X,
is an outlier if X < lower quartile − 1.5 x interquartile range or if X < upper
quartile + 1.5 x IQR.

third puzzle.

To summarise, the binomial logistic regression model for the first puzzle was

not statistically significant, with only condition P significantly contributing to the

model. For the second puzzle, the binomial logistic regression model with the

highest percentage of correctly classified observations was the one that ascertained

the effect of successful completion of the previous puzzle during immediate testing.

For the third puzzle, the binomial logistic regression model with the highest

percentage of correctly classified observations was the one that ascertained the

effect of both experimental condition and successful completion of the previous

puzzle. These results show some support for H1 and H3.
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Table 6.5: Test statistics using Dunn’s procedure [1] for immediate testing times between
the different experimental conditions. Significance values have been adjusted by
the Bonferroni correction for multiple tests. Interaction is not significant unless
it is explicitly indicated as specified in the legend.

PB PVI PVIB VE VEA

Puzzle 1

P 5.00 4.25 27.35a 6.80 8.80
PB -0.75 22.35a 1.80 3.80
PVI 23.10a 2.55 4.55
PVIB 20.55 18.55
VE 2.00

Puzzle 2

P 11.30 4.60 29.05a 16.90 14.65
PB -6.70 17.75 5.60 3.35
PVI 24.45a 12.30 10.05
PVIB 12.15 14.40
VE -2.25

Puzzle 3

P 11.50 -2.15 25.45a 15.70 25.40a

PB -13.65 13.95 4.20 13.90
PVI 27.60a 17.85 27.55a

PVIB 9.75 0.50
VE 9.70

a interaction is significant at the 0.05 level (two-tailed)

6.3.2.3 Immediate testing completion times

We compared puzzle completion times between the different experimental

conditions during the immediate testing phase. Completion time values were

corrected by assigning the upper time limit (180s) to all unsuccessful attempts

(see Section 6.3.1). All the corrected data satisfied the assumption of homogeneity.

Boxplots with immediate testing times for each of the puzzles are shown in

Figure 6.8. Non-parametric statistical analysis was performed for immediate testing

times because our data was not normally distributed as shown by a Shapiro-Wilk

test.

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in time taken to assemble the first puzzle in the testing phase

between the different experimental conditions, χ2(5) = 16.618, p = 0.005, with a
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mean rank score of 39.20 for P, 34.20 for PB, 34.95 for PVI, 11.85 for PVIB, 32.40

for VE and 30.40 for VEA.

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in time taken to assemble the second puzzle in the testing

phase between the different experimental conditions, χ2(5) = 17.986, p = 0.003,

with a mean rank score of 43.25 for P, 31.95 for PB, 38.65 for PVI, 14.20 for PVIB,

26.35 for VE and 28.60 for VEA.

A Kruskal-Wallis H test showed that there was an overall statistically

significant difference in time taken to assemble the third puzzle in the testing

phase between the different experimental conditions, χ2(5) = 24.536, p < 0.001,

with a mean rank score of 43.15 for P, 31.65 for PB, 45.30 for PVI, 17.70 for PVIB,

27.45 for VE and 17.75 for VEA.

Pairwise comparisons were performed using Dunn’s procedure [1] with a

Bonferroni correction for multiple comparisons with adjusted p-values. These are

displayed in Table 6.5. Note that pairwise comparisons for puzzles in which the

Kruskal-Wallis H test showed no overall statistically significant difference have not

been included.

The post hoc analysis revealed statistically significant differences in immediate

testing times for the first puzzle. There was a statistically significant difference

between PVIB (mean rank = 11.85) and P (mean rank = 39.20) (p = 0.004), PB

(mean rank = 34.20) (p = 0.003) and PVI (mean rank = 34.95) (p = 0.002).

The post hoc analysis revealed statistically significant differences in immediate

testing times for the second puzzle. There was a statistically significant difference

between PVIB (mean rank = 14.20) and P (mean rank = 43.25) (p = 0.002) and PVI

(mean rank = 38.65) (p = 0.019).

The post hoc analysis revealed statistically significant differences in immediate

testing times for the third puzzle. There was a statistically significant difference

between PVIB (mean rank = 17.70) and P (mean rank = 43.15) (p = 0.013) and PVI

(mean rank = 45.30) (p = 0.005). There was a statistically significant difference

between VEA (mean rank = 17.75) and P (mean rank = 43.15) (p = 0.013) and PVI
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(mean rank = 45.30) (p = 0.005).

The analysis of immediate testing completion times shows some support for

H2 and H3. Separate statistical analysis showed no significant effect of gender or

age on training times for all puzzles.

6.3.2.4 Subjective questionnaire ratings

There was no statistically significant difference in rated difficulty, ease of use and

seriousness between groups as determined by one-way ANOVA for the first puzzle.

There was a statistically significant difference in ease of use of the training

environment (F(5,54) = 5.006, p = 0.001) between groups as determined by one-

way ANOVA for the second puzzle. A Tukey post hoc test revealed that participants

in the P condition (M = 2.5, SD = 1.08) rated the ease of use of the training

environment as significantly more difficult than participants in the VE (M = 4.4,

SD = 0.70, p = 0.001) and VEA (M = 4.1, SD = 1.1, p = 0.007) conditions. No other

significant interactions were found for the second puzzle.

There was a statistically significant difference in task difficulty (F(5,54)

=4.613, p = 0.001) between groups as determined by one-way ANOVA for the third

puzzle. A Tukey post hoc test revealed that participants in the P condition (M =

1.9, SD = 1.00) rated the difficulty of the task as significantly more difficult than

participants in the VEA (M = 4.1, SD = 0.88, p = 0.002) condition. Participants

in the PB condition (M = 2.7, SD = 1.34) also rated the difficulty of the task as

significantly more difficult than participants in the VEA condition (M = 4.1, SD =

1.34, p = 0.003). No other significant interactions were found for the third puzzle.

There was a statistically significant difference in ease of use of the training

environment (F(5,54) = 3.044, p = 0.017) between groups as determined by one-way

ANOVA for the third puzzle. A Tukey post hoc test revealed that participants in the

P condition (M = 2.4, SD = 1.35) rated the ease of use of the training environment

as significantly more difficult than participants in the VEA (M = 4.4, SD = 0.70, p =

0.007) condition. No other significant interactions were found for the third puzzle.
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Table 6.6: Number of successful attempts, failed attempts and participants solving the three
puzzles in the retention testing phase for each of the experimental conditions.

P PB PVII PVIB VE VEA

Puzzle 1
Success 2 3 3 6 7 5

Fail 6 6 7 4 3 4

Puzzle 2
Success 2 0 2 4 1 0

Fail 6 9 8 6 9 9

Puzzle 3
Success 0 0 3 1 1 0

Fail 8 9 7 9 9 9

N 8 9 10 10 10 9

6.3.3 Retention Testing

6.3.3.1 Participants

A total of 56 participants who completed the first part session returned to complete

the second session two weeks later (average number of days between training

session and retention session: 14.16, SD = 0.918). Overall, retention testing

performance was lower than expected for all conditions both in terms of success

rates and completion times. We believe this is due to the high complexity of the 3D

puzzles.

6.3.3.2 Retention testing success rates

A binomial logistic regression was performed to ascertain the effects of

experimental condition on the likelihood that participants succeed at assembling

each puzzle during the immediate testing phase. PVIB was chosen as the reference

category (the condition with most successful puzzle completions, overall).

The binomial logistic regression model was not statistically significant,

χ2(5) = 6.240, p = 0.284 for the first puzzle. The model explained 14.3%

(Nagelkerke R2) of the variance in success rate and correctly classified 65.5%

of cases. The Wald criterion demonstrated that none of the conditions made a

significant contribution to prediction.

The binomial logistic regression model was not statistically significant,

χ2(5) = 10.054, p = 0.074 for the second puzzle. The model explained 28.3%
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(Nagelkerke R2) of the variance in success rate and correctly classified 83.6%

of cases. The Wald criterion demonstrated that none of the conditions made a

significant contribution to prediction.

The binomial logistic regression model was not statistically significant,

χ2(5) = 8.289, p = 0.141 for the third puzzle. The model explained 30.7%

(Nagelkerke R2) of the variance in success rate and correctly classified 90.9%

of cases. The Wald criterion demonstrated that none of the conditions made a

significant contribution to prediction.

6.3.3.3 Retention testing completion times

We compared puzzle retention testing times between the different experimental

conditions. Completion time values were corrected by assigning the upper time

limit (180s) to all unsuccessful attempts. All the corrected data satisfied the

assumption of homogeneity.

Boxplots with training times for each of the puzzles are shown in Figure 6.9.

Non-parametric statistical analysis was performed for retention testing times

because our data was not normally distributed as shown by a Shapiro-Wilk test.

A Kruskal-Wallis H test showed that there was no overall statistically

significant difference in time taken to assemble the first puzzle in the retention

testing phase between the different experimental conditions, χ2(5) = 8.101, p =

0.151, with a mean rank score of 34.69 for P, 32.88 for PB, 33.45 for PVI, 20.90 for

PVIB, 21.95 for VE and 26.28 for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically

significant difference in time taken to assemble the second puzzle in the retention

testing phase between the different experimental conditions, χ2(5) = 5.832, p =

0.323, with a mean rank score of 25.25 for P, 32.00 for PB, 26.35 for PVI, 23.70 for

PVIB, 29.35 for VE and 32.00 for VEA.

A Kruskal-Wallis H test showed that there was no overall statistically

significant difference in time taken to assemble the third puzzle in the retention

testing phase between the different experimental conditions, χ2(5) = 7.151, p =

0.210, with a mean rank score of 30.50 for P, 30.50 for PB, 22.55 for PVI, 27.55 for
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PVIB, 27.65 for VE and 30.50 for VEA.

6.3.3.4 Subjective questionnaire ratings

There was no statistically significant difference in rated difficulty and seriousness

between groups as determined by one-way ANOVA for any of the three puzzles.

Tukey post hoc tests showed no significant interactions.

6.4 Discussion
In terms of training times, post hoc analysis revealed a significant difference

between the physical conditions where no blocks were available during training

(P and PVI) and the rest of the physical conditions where blocks were available

during training (PB and PVIB), amongst other significant interactions. For the

second puzzle, we observe a significant difference in training times between PVI

and all other conditions except P, amongst other effects. For the third puzzle we

found no significant interactions. We believe it is important to note the lack of

significant differences in terms of training times between the virtual conditions and

condition PVIB, the overall best performing condition. We also believe that the

lower training times for conditions P and PB could be due to the lack of blocks to

practice with during training, which meant participants did not have any activities

to perform during training and therefore decided to move on to the next stage of the

experimental task. This could be related to a high number of unsuccessful puzzle

completions in these conditions. An increase in training times for these conditions

in puzzles 2 and 3 could be due to participants understanding the complexity of the

tasks after the immediate testing for the first puzzle and deciding to spend more

time inspecting the paper instructions and video (when available).

Regarding success rates for immediate testing, we observed that condition

PVIB yielded the highest number of successful completions of the three puzzles

(see Figure 6.7). We also observed that condition P yielded the lowest number

of successful completions of the puzzles during immediate testing. Condition

PB showed a ceiling effect in the second and third puzzle. Successful puzzle

completions in condition PVI decreased with each puzzle. Immediate testing
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success rates for the virtual conditions, VE and VEA, increased with each puzzle.

Our analysis showed that the binomial logistic regression model for the first puzzle

was not statistically significant, with only condition P significantly contributing to

the model. For the second puzzle, the binomial logistic regression model with the

highest percentage of correctly classified observations was the one that ascertained

the effect of the successful completion of the previous puzzle during immediate

testing. For the third puzzle, the binomial logistic regression model with the highest

percentage of correctly classified observations was ones that ascertained the effect

of experimental condition as well as the successful completion of the previous

puzzle during immediate testing.

In terms of immediate testing completion times, we observed how (parallel

to an increase in success rate) the immediate testing times for condition VEA

decreased with each puzzle. A statistically significant difference was not found

between this condition and condition PVIB (the condition with overall lowest

testing times). This result could indicate that the availability of static and animated

instructions in the virtual training environment contributed to effective training.

Anecdotal evidence from the training videos as well as participant feedback

during debrief interviews shows that virtually trained participants initially struggled

to assemble the pieces during the immediate testing phase. We believe this is due to

the lack of experience in handling and joining the physical blocks during training.

However, after the first and second tasks, participants refined their strategy during

the training stage to include physically plausible movements of the puzzles pieces.

This is, participants replicated the movement they would then perform with the

physical blocks in the virtual training environment and avoided allowing the pieces

to go through each other, as no physics restrictions were assigned to the virtual

blocks in the virtual training environment.

Subjective questionnaire ratings answered by participants during the first

session showed no statistically significant difference in rated difficulty, ease of use

and seriousness between groups as determined by one-way ANOVA for the first

puzzle. For the second puzzle, results indicated that participants in the P condition
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rated the training environment as significantly more difficult to use than participants

in the VE and VEA conditions. When asked about task difficulty in the third puzzle,

participants in the P and PB conditions rated the difficulty of the task as significantly

more difficult than participants in the VEA condition. In terms of ease of use,

participants in the P condition rated the ease of use of the training environment

as significantly more difficult than participants in the VEA condition.

One of the limitations in our design was the high complexity of the puzzles.

Overall, retention testing resulted in lower performance than we had expected and

we believe this is due to the difficulty associated with remembering the process to

solve the three puzzles two weeks after the training. This was further validated

by verbal feedback from our participants during the second session. Our previous

piloting of the task had not shown this effect. Future studies should further evaluate

the suitability of the task for retention. This evaluation should aim to balance the

amount of training and complexity of the task to avoid floor and ceiling effects in

subsequent retention sessions.



Chapter 7

Conclusions

This chapter summarises the work presented in the thesis. We reiterate the main

results from each of the four studies presented. We discuss the limitations of our

designs as well as the implications for virtual training. We then synthesise and

discuss overall conclusions across all studies. Finally, we introduce directions for

future work in this area.

7.1 Conclusions on Distorting Real and Virtual

Space
In Chapter 3 and Chapter 4 we introduced two studies on human spatial memory.

Participants were asked to collect an object in a room, exit the room, re-enter the

room and then place the object back where they had found it. The room was

geometrically modified between learning and placement of the object. We then

compared participant object placement with different models derived from previous

spatial cognition experiments. Chapter 3 reports the physical, real-world version of

the study. Chapter 4 reports the virtual counterpart version of the study.

Overall, results highlight strong differences in participant behaviour, with

contrasting models describing different response object locations. No single model

can account for all participant behaviour accross systems (in both the real world and

VR versions).

These studies have not replicated findings from Hartley et al., who reported that

human spatial representations are likely determined by proximities to environment
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boundaries, similar to rodent place cell firing. This study was run in a desktop

VR system. Our results show that self-motion contributes significantly to spatial

representations in combination with geometric information. It is not clear if

distance information is favoured over angle information when remembering object

locations. These findings indicate that grid cells, which have a role in the brains

coordinate system for navigation, may also have a substantial role in human spatial

memory, although further work is needed to confirm this. Whilst this study cannot

refute findings from Hartley et al., results here certainly show that the findings are

not sufficient to reconcile a behaviourally based neural account of human spatial

memory.

Our results highlight the need to test more suitable models that merge memory

for geometry and self-motion, or combinations of the ones presented here. It also

emphasises the importance of spatial layout for training VEs as well as the user’s

starting location and facing direction, which have a strong effect on participant

behaviour. In addition, it further motivates the design of experimental setups that

will maximise the differences in locations predicted by the models and make it more

clear if participant behaviour is actually following a specific model. Future work

includes comparing our results with a desktop VR version of the study.

We believe that this study could inform the design of followup studies on

spatial cognition in immersive VR and assist experts in the design of training

simulations where users are required to remember object locations. Followup

experiments should further examine the effectiveness of spatial training in

immersive VR, specifically in situations in which the work environment, where

the acquired skills will be used, is unknown or difficult to replicate as a virtual

model. Under this circumstances, trainees would undergo the training simulation

in a virtual space that is different to the work environment. Design of training VEs

would strongly benefit from more accurate behavioural models.
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7.2 Conclusions on the Effect of Environmental

Features, Self-Avatar and Level of Immersion on

Object Location Memory in Virtual Environments
In Chapter 5 we ran a study on object location memory. The experimental task

involves several judgements, including distance estimation, and it is not clear

exactly what strategies participants use to learn object locations [5]. Previous

work has shown that distance estimation is impaired within immersive VR,

although including a self-avatar and increasing confidence in fidelity can reduce this

impairment [25, 102, 103, 104, 38, 26, 32, 34, 37, 105]. Our results suggest that

level of immersion is extremely important for accurate object location learning and

recall, and that higher environmental fidelity may reinforce learning transfer from

VEs to the real world. However, most importantly, they indicate that providing

users with a virtual body can interfere with successful completion of the task. This

motivates studies of more complex self-representations.

We believe that the main outcomes of this study could be generalised to other

spatial learning scenarios and assist experts in the design of training simulations

related to spatial memory, where trainees are required to remember component or

tool locations as part of the task. Overall, our results denote that HMD training

resembles real world training more than desktop learning, related to higher object

location memory accuracy. However, desktop training applications can be suitable

and offer acceptable results when precise location learning accuracy is not required.

Regarding self-avatars, our results suggest that a low fidelity avatar representation

can degrate object location memory. In our experimental task, this observation is

particularly important when the training transfer takes place from a low fidelity VE,

where only basic geometric cues are available, to the real world equivalent.
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7.3 Conclusions on A Comparison of Virtual and

Physical Training Transfer of Bimanual Assembly

Tasks
In Chapter 6 we ran a study that compares the effectiveness of virtual and traditional

paper- and video-based training transfer of a bimanual assembly task motivated by

previous research [59, 2]. In a between-subjects experimental design, participants

were trained to solve three six-piece burr puzzles in a virtual training environment

or a physical training environment. The conditions were designed to account

for situations in which the physical puzzle blocks are available or not during

training. The conditions were also devised to include static instructions (paper)

or combinations of static and animated instructions (video or 3D animations).

Following training, participants were asked to solve physical versions of the

puzzles. Participants then completed a retention session two weeks after the

training. During the course of the study participants answered mental rotations

tests and questionnaires measuring several aspects of the experience.

We hypothesised that the experimental conditions where the physical blocks

were available during training (PB and PVIB) would result in better performance

than the other conditions as measured by success rates and puzzle completion

times. Overall, we expected that those conditions were video or 3D animations

were available (PVIB and VEA) would result in lower assembly times during

immediate and retention testing. Out of those, we predicted that condition PVIB,

with animated instructions (video), would yield the highest performance. Although

there were conditions we expected to deliver worse or better performance, we had

no hypothesis on the full order so all the analysis presented in this manuscript is

two-tailed.

Our results highlight the effectiveness of the virtual training environment.

Success rates and completion times indicate that the performance of virtually trained

participants (in conditions VE and VEA) increased with each puzzle, reaching the

level of the best performing physical condition (PVIB).
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Following a between-subjects experimental design, participants were trained

to assemble three versions of a 3D burr puzzle in one of six experimental conditions

(see Table 6.1 for definitions). All participants completed an immediate testing

phase and a retention test two weeks after the training, both with physical versions

of the puzzles. Participants were trained and tested in solving the puzzles in

increasing order of complexity in that they had to remember a higher number of

steps in the assembly process for each of the puzzles.

We analysed performance in terms of success rates as well as immediate testing

times and retention testing times. Our results show that the performance of virtually

trained participants was promising. Condition VEA yielded success rates and

immediate testing times similar to the best performing physical condition (PVIB, in

which physical blocks and animated instructions were available during training) for

the last and most complex puzzle. We believe these results are of great importance

given that virtually trained participants did not have the chance to interact with the

physical blocks at any point during training. We also observed that participants

were more likely to successfully assemble a puzzle during immediate testing if

they had successfully assembled the previous one. Retention testing performance

was unexpectedly low due to the high complexity of the task. We believe that the

results of this study further validate the effectiveness of virtual training for bimanual

assembly tasks.
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7.4 Overall Conclusions
We discussed the requirement for more sophisticated models of spatial cognition

that merge memory for geometry and self-motion. A more granular analysis of

participant behaviour, supported by in-depth debrief interviews to understand their

strategies, could help refine the current models. This could include head direction

or eye-gaze data collection to analyse the cues that participants were using to place

the object in Chapter 3 and Chapter 4.

We observed the need to explore orientation cues other than lighting to aid

participants in reorienting to a previous facing direction as it is not clear whether

the amber lighting at the UCL PAMELA facility was sufficient for this purpose in

in Chapter 3 and Chapter 4. Results from this study also highlighted the importance

of room layout, starting position and facing direction, as these largely influenced

participant behaviour.

We learnt about the importance of featural, non-geometric cues (by design,

such as plugs and wall decorations, or accidental, such as wear and tear) for accurate

object location memory (in Chapter 3, Chapter 4 and Chapter 5). The degree of

environmental fidelity of a VE will be dependent on the training task and the level

of accuracy needed in performing the task after training.

We observed the superiority of HMD-based VEs over desktop-based VEs for

accurate object location learning as well as performance degradation with single-

point tracked avatars in Chapter 5.

We noted the success of transparent hand representation and ambidextrous

interaction for training transfer of a bimanual assembly task in Chapter 6.

Observations from this study also raised the question around haptics: whether

the adaptation period for virtually trained participants during which they adjust

their strategy to replicate only physically plausible movements can be shortened if

a haptic device is available. This study also raised the question of task complexity

and the difficulty in designing experimental tasks that avoid floor and ceiling effects

in subsequent retention testing.
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7.5 Directions for Future Work
The question on whether VR consumer technology can deliver effective training

for any type of task remains unanswered. Recent advances in the field have

provided evidence that virtual training is possible and promising. However, more

research is needed to ascertain the full effectiveness of this technology for training

by testing across a richer spectrum of tasks. We suggest including real world

training as a baseline condition in future research endeavours in this area, as well

as testing in the real world, to effectively measure the training transfer. We also

recommend the evaluation of other parameters that mediate the transfer from virtual

to real enviroments such as spatial sound, locomotion, avatar self-representation and

haptics in order to refine and optimise the design of VEs for training.

Equally, there is a need to further explore the validity of research studies

that use VEs as proxy environments to replicate real-world scenarios. Despite the

numerous benefits of using this technology, including the high level of experimental

control and the ease of data capture, it is unclear whether this technology induces

other nuances that can affect the way participants understand, behave in or solve

a task. We encourage further exploration of the long-term effects of VR system

usage with longitudinal trials that span longer periods of time to better understand

learning curves and familiarisation.

Moreover, the spatial memory models explored in this thesis failed to capture

the behaviour of our participants, not only within each of the experimental setups,

but across levels of immersion. We recommend augmenting the modalities of data

capture to include head direction or eye gaze in order to better understand which

cues determine spatial memory. We also suggest extending the work presented in

this thesis to explore other spatial layouts and boundary distortions in the process

of defining new models. This raises the need for further exploration in the fields of

behavioural neuroscience and experimental psychology as well as the requirement

for these disciplines to continue to collaborate with researchers in the field of

computer science, and, specifically, VEs.
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List of Acronyms

2D Two Dimensional

3D Three Dimensional

AD Absolute Distance

ANOVA Analysis of Variance

BP Boundary Proximity

CA Corner Angle

DC Distance Criteria

FDA Fixed Distance Allocentric

FDE Fixed Distance Egocentric

FOV Field of View

FOR Field of Regard

FRA Fixed Ratio Allocentric

FRE Fixed Ratio Egocentric

HMD Head-Mounted Display

HSSMI High Speed Sustainable Manufacturing Institute
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IQR Interquartile Ranges

P Paper (Experimental condition in Chapter 6)

PAMELA Pedestrian Accessibility Movement Environment Laboratory

PB Paper and Blocks (Experimental condition in Chapter 6)

PI Path Integration

PVI Paper and Video (Experimental condition in Chapter 6)

PVIB Paper, Video and Blocks (Experimental condition in Chapter 6)

PV Path Vector

PVR Path Vector Ratio

QC Quadrant Criteria

UCL University College London

UK United Kingdom

VE Virtual Environment

VE Virtual Environment (Experimental condition in Chapter 6)

VEA Virtual Environment with Animations (Experimental condition in Chapter 6)

VR Virtual Reality
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Ethics Application for The Effect of

Environmental Features, Self-Avatar

and Level of Immersion on Object

Location Memory in Virtual

Environments

UCL Research Ethics Committee Application (Project ID: 6708/002) for the study

presented in Chapter 5. This application document contains the information sheet

as well as the informed consent form that participants had to sign to take part in the

study.
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Appendix D

Ethics Application for A Comparison

of Virtual and Physical Training

Transfer of Bimanual Assembly

Tasks

UCL Research Ethics Committee Application (Project ID: 6708/004) for the study

presented in Chapter 6. This application document contains the information sheet

as well as the informed consent form that participants had to sign to take part in the

study.
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This document was set using LATEXand BibTEXwith the UCL Thesis document class,
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