2,644 research outputs found

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication

    Waveforms for the Massive MIMO Downlink: Amplifier Efficiency, Distortion and Performance

    Full text link
    In massive MIMO, most precoders result in downlink signals that suffer from high PAR, independently of modulation order and whether single-carrier or OFDM transmission is used. The high PAR lowers the power efficiency of the base station amplifiers. To increase power efficiency, low-PAR precoders have been proposed. In this article, we compare different transmission schemes for massive MIMO in terms of the power consumed by the amplifiers. It is found that (i) OFDM and single-carrier transmission have the same performance over a hardened massive MIMO channel and (ii) when the higher amplifier power efficiency of low-PAR precoding is taken into account, conventional and low-PAR precoders lead to approximately the same power consumption. Since downlink signals with low PAR allow for simpler and cheaper hardware, than signals with high PAR, therefore, the results suggest that low-PAR precoding with either single-carrier or OFDM transmission should be used in a massive MIMO base station

    Spectral Efficiency of Mixed-ADC Massive MIMO

    Full text link
    We study the spectral efficiency (SE) of a mixed-ADC massive MIMO system in which K single-antenna users communicate with a base station (BS) equipped with M antennas connected to N high-resolution ADCs and M-N one-bit ADCs. This architecture has been proposed as an approach for realizing massive MIMO systems with reasonable power consumption. First, we investigate the effectiveness of mixed-ADC architectures in overcoming the channel estimation error caused by coarse quantization. For the channel estimation phase, we study to what extent one can combat the SE loss by exploiting just N << M pairs of high-resolution ADCs. We extend the round-robin training scheme for mixed-ADC systems to include both high-resolution and one-bit quantized observations. Then, we analyze the impact of the resulting channel estimation error in the data detection phase. We consider random high-resolution ADC assignment and also analyze a simple antenna selection scheme to increase the SE. Analytical expressions are derived for the SE for maximum ratio combining (MRC) and numerical results are presented for zero-forcing (ZF) detection. Performance comparisons are made against systems with uniform ADC resolution and against mixed-ADC systems without round-robin training to illustrate under what conditions each approach provides the greatest benefit.Comment: To appear in IEEE Transactions on Signal Processin

    Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities

    Full text link
    The distortion from massive MIMO (multiple-input--multiple-output) base stations with nonlinear amplifiers is studied and its radiation pattern is derived. The distortion is analyzed both in-band and out-of-band. By using an orthogonal Hermite representation of the amplified signal, the spatial cross-correlation matrix of the nonlinear distortion is obtained. It shows that, if the input signal to the amplifiers has a dominant beam, the distortion is beamformed in the same way as that beam. When there are multiple beams without any one being dominant, it is shown that the distortion is practically isotropic. The derived theory is useful to predict how the nonlinear distortion will behave, to analyze the out-of-band radiation, to do reciprocity calibration, and to schedule users in the frequency plane to minimize the effect of in-band distortion
    corecore