372 research outputs found

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Modeling the relationship between network operators and venue owners in public Wi-Fi deployment using non-cooperative game theory

    Get PDF
    Wireless data demands keep rising at a fast rate. In 2016, Cisco measured a global mobile data traffic volume of 7.2 Exabytes per month and projected a growth to 49 Exabytes per month in 2021. Wi-Fi plays an important role in this as well. Up to 60% of the total mobile traffic was off-loaded via Wi-Fi (and femtocells) in 2016. This is further expected to increase to 63% in 2021. In this publication, we look into the roll-out of public Wi-Fi networks, public meaning in a public or semi-public place (pubs, restaurants, sport stadiums, etc.). More concretely we look into the collaboration between two parties, a technical party and a venue owner, for the roll-out of a new Wi-Fi network. The technical party is interested in reducing load on its mobile network and generating additional direct revenues, while the venue owner wants to improve the attractiveness of the venue and consequentially generate additional indirect revenues. Three Wi-Fi pricing models are considered: entirely free, slow access with ads or fast access via paid access (freemium), and paid access only (premium). The technical party prefers a premium model with high direct revenues, the venue owner a free/freemium model which is attractive to its customers, meaning both parties have conflicting interests. This conflict has been modeled using non-cooperative game theory incorporating detailed cost and revenue models for all three Wi-Fi pricing models. The initial outcome of the game is a premium Wi-Fi network, which is not the optimal solution from an outsider's perspective as a freemium network yields highest total payoffs. By introducing an additional compensation scheme which corresponds with negotiation in real life, the outcome of the game is steered toward a freemium solution

    Socially Trusted Collaborative Edge Computing in Ultra Dense Networks

    Full text link
    Small cell base stations (SBSs) endowed with cloud-like computing capabilities are considered as a key enabler of edge computing (EC), which provides ultra-low latency and location-awareness for a variety of emerging mobile applications and the Internet of Things. However, due to the limited computation resources of an individual SBS, providing computation services of high quality to its users faces significant challenges when it is overloaded with an excessive amount of computation workload. In this paper, we propose collaborative edge computing among SBSs by forming SBS coalitions to share computation resources with each other, thereby accommodating more computation workload in the edge system and reducing reliance on the remote cloud. A novel SBS coalition formation algorithm is developed based on the coalitional game theory to cope with various new challenges in small-cell-based edge systems, including the co-provisioning of radio access and computing services, cooperation incentives, and potential security risks. To address these challenges, the proposed method (1) allows collaboration at both the user-SBS association stage and the SBS peer offloading stage by exploiting the ultra dense deployment of SBSs, (2) develops a payment-based incentive mechanism that implements proportionally fair utility division to form stable SBS coalitions, and (3) builds a social trust network for managing security risks among SBSs due to collaboration. Systematic simulations in practical scenarios are carried out to evaluate the efficacy and performance of the proposed method, which shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author

    Stackelberg Game for Access Permission in Femtocell Network with Multiple Network Operators

    Get PDF
    Femtocells are widely recognized as a promising technology to meet the requirements of indoor coverage in forthcoming fifth generation cellular networks (5G). As femtocell holders (FHs) can be users themselves or mobile network operators, it makes challenges to holistic network resource utilization. In particular, due to the selfishness nature, FHs are usually unwilling to accommodate extra users without compensation. This inspires us to develop an effective refunding mechanism, with aim to allow competitive network operators to employ truthful refunding policy, and to encourage FHs to make appropriate access permission. In this paper, we first define a refunding strategy function and price-coefficient for the refunding policy. We then formulate the access permission as a Stackelberg game and theoretically prove the existence of unique Nash Equilibrium. Numerical results validate the effectiveness of our proposed mechanism and overall network efficiency is improved significantly as well

    Economic and environmental comparative analysis on macro-femtocell deployments in LTE-A

    Get PDF
    This paper describes the economic and environmental comparative analysis performed on macro and femtocell deployments and most prevalent results obtained. Four specific scenarios are studied and, for each one, an evaluation is made in terms of capacity, cost effectiveness and expected carbon emissions. It provides mobile networks operators (MNO) with relevant information, enabling them to adapt business models and deployment approaches to current and future trends in a sustainable way, while minimizing capital (CAPEX) and operation expenses (OPEX).info:eu-repo/semantics/acceptedVersio
    • …
    corecore