7,698 research outputs found

    The weak password problem: chaos, criticality, and encrypted p-CAPTCHAs

    Get PDF
    Vulnerabilities related to weak passwords are a pressing global economic and security issue. We report a novel, simple, and effective approach to address the weak password problem. Building upon chaotic dynamics, criticality at phase transitions, CAPTCHA recognition, and computational round-off errors we design an algorithm that strengthens security of passwords. The core idea of our method is to split a long and secure password into two components. The first component is memorized by the user. The second component is transformed into a CAPTCHA image and then protected using evolution of a two-dimensional dynamical system close to a phase transition, in such a way that standard brute-force attacks become ineffective. We expect our approach to have wide applications for authentication and encryption technologies.Comment: 5 pages, 6 figer

    3D Textured Model Encryption via 3D Lu Chaotic Mapping

    Full text link
    In the coming Virtual/Augmented Reality (VR/AR) era, 3D contents will be popularized just as images and videos today. The security and privacy of these 3D contents should be taken into consideration. 3D contents contain surface models and solid models. The surface models include point clouds, meshes and textured models. Previous work mainly focus on encryption of solid models, point clouds and meshes. This work focuses on the most complicated 3D textured model. We propose a 3D Lu chaotic mapping based encryption method of 3D textured model. We encrypt the vertexes, the polygons and the textures of 3D models separately using the 3D Lu chaotic mapping. Then the encrypted vertices, edges and texture maps are composited together to form the final encrypted 3D textured model. The experimental results reveal that our method can encrypt and decrypt 3D textured models correctly. In addition, our method can resistant several attacks such as brute-force attack and statistic attack.Comment: 13 pages, 7 figures, under review of SCI

    Applications of tripled chaotic maps in cryptography

    Full text link
    Security of information has become a major issue during the last decades. New algorithms based on chaotic maps were suggested for protection of different types of multimedia data, especially digital images and videos in this period. However, many of them fundamentally were flawed by a lack of robustness and security. For getting higher security and higher complexity, in the current paper, we introduce a new kind of symmetric key block cipher algorithm that is based on \emph{tripled chaotic maps}. In this algorithm, the utilization of two coupling parameters, as well as the increased complexity of the cryptosystem, make a contribution to the development of cryptosystem with higher security. In order to increase the security of the proposed algorithm, the size of key space and the computational complexity of the coupling parameters should be increased as well. Both the theoretical and experimental results state that the proposed algorithm has many capabilities such as acceptable speed and complexity in the algorithm due to the existence of two coupling parameter and high security. Note that the ciphertext has a flat distribution and has the same size as the plaintext. Therefore, it is suitable for practical use in secure communications.Comment: 21 pages, 10 figure
    • …
    corecore