172,694 research outputs found

    Water and its importance for female body

    Get PDF
    Summary Water is an essential part of every living organism. Homeostasis in the aspect of water is necessary to retain normal function of the body. Even small dysfunction in its distribution may cause reversible and later irreversible changes in cell and organ functions. The quality and proper distribution of water is a necessary condition to maintain health at different stages of life. It is especially important in procreative period. The article presents the importance of water for the body and negative effects on health due to lack of water or its improper distribution, particularly with regard to pregnant and breastfeeding women

    Control Variates for Reversible MCMC Samplers

    Full text link
    A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible MCMC samplers. We propose the use of a specific class of functions as control variates, and we introduce a new, consistent estimator for the values of the coefficients of the optimal linear combination of these functions. The form and proposed construction of the control variates is derived from our solution of the Poisson equation associated with a specific MCMC scenario. The new estimator, which can be applied to the same MCMC sample, is derived from a novel, finite-dimensional, explicit representation for the optimal coefficients. The resulting variance-reduction methodology is primarily applicable when the simulated data are generated by a conjugate random-scan Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology in several directions are given, including certain families of Metropolis-Hastings samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding simulation examples are presented illustrating the utility of the proposed methods. All methodological and asymptotic arguments are rigorously justified under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table

    Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt

    Get PDF
    Recent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho-Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases

    Lie groups in nonequilibrium thermodynamics: Geometric structure behind viscoplasticity

    Full text link
    Poisson brackets provide the mathematical structure required to identify the reversible contribution to dynamic phenomena in nonequilibrium thermodynamics. This mathematical structure is deeply linked to Lie groups and their Lie algebras. From the characterization of all the Lie groups associated with a given Lie algebra as quotients of a universal covering group, we obtain a natural classification of rheological models based on the concept of discrete reference states and, in particular, we find a clear-cut and deep distinction between viscoplasticity and viscoelasticity. The abstract ideas are illustrated by a naive toy model of crystal viscoplasticity, but similar kinetic models are also used for modeling the viscoplastic behavior of glasses. We discuss some implications for coarse graining and statistical mechanics.Comment: 11 pages, 1 figure, accepted for publication in J. Non-Newtonian Fluid Mech. Keywords: Elastic-viscoplastic materials, Nonequilibrium thermodynamics, GENERIC, Lie groups, Reference state
    • …
    corecore