A general methodology is introduced for the construction and effective
application of control variates to estimation problems involving data from
reversible MCMC samplers. We propose the use of a specific class of functions
as control variates, and we introduce a new, consistent estimator for the
values of the coefficients of the optimal linear combination of these
functions. The form and proposed construction of the control variates is
derived from our solution of the Poisson equation associated with a specific
MCMC scenario. The new estimator, which can be applied to the same MCMC sample,
is derived from a novel, finite-dimensional, explicit representation for the
optimal coefficients. The resulting variance-reduction methodology is primarily
applicable when the simulated data are generated by a conjugate random-scan
Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that
the corresponding reduction in the estimation variance is significant, and that
in some cases it can be quite dramatic. Extensions of this methodology in
several directions are given, including certain families of Metropolis-Hastings
samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding
simulation examples are presented illustrating the utility of the proposed
methods. All methodological and asymptotic arguments are rigorously justified
under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table