51 research outputs found

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Alternative strategies for asynchronous migration-controlled schemes in parallel genetic algorithms

    Get PDF
    Migration of individuals allows a fruitful interaction between subpopulations in the island model, a well known distributed approach for evolutionary computing, where separate subpopulations evolve in parallel. This model is well suited for a distributed environment running a Single Program Multiple Data (SPMD) scheme. Here, the same Genetic Algorithm (GA) is replicated in many processors and attempting better convergence, through an expected improvement on genetic diversity, selected individuals are exchanged periodically. For exchanging, an individual is selected from a source subpopulation and then exported towards a target subpopulation. Usually, the imported string is accepted on arrival and then inserted into the target subpopulation. Our earlier experiments on controlled migration showed an improvement on results when contrasted against those obtained by conventional migration approaches. This paper describes extended implementations of alternative strategies to oversee migration in asynchronous schemes for an island model and enlarges a previous work on three processors with a set of softer testing functions [9]. All of them try to decrease the risk of premature convergence. A first strategy attempts to prevent unbalanced propagation of genotypes by applying an acceptance threshold parameter to each incoming string. A second one permits independent evolution of subpopulations and acts only when a possible stagnation is detected. In such condition an attempt to evade falling towards a local optimum is done by inserting an expected dissimilar individual to improve genetic diversity. A third alternative strategy combines both previous mentioned strategies. The results presented are those obtained on the functions that showed to be more difficult for the island model using a replication of a simple GA. A description of the corresponding system architecture supporting the PGA implementation is described and results for the parallel distributed approach among 3, 6 and 12 processors is discussed.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI

    Alternative strategies for asynchronous migration-controlled schemes in parallel genetic algorithm

    Get PDF
    Migration of individuals allows a fruitful interaction between subpopulations in the island model, a well known distributed approach for evolutionary computing, where separate subpopulations evolve in parallel. This model is well suited for a distributed environment running a Single Program Multiple Data (SPMD) scheme. Here, the same Genetic Algorithm (GA) is replicated in many processors and attempting better convergence, through an expected improvement on genetic diversity, selected individuals are exchanged periodically. For exchanging, an individual is selected from a source subpopulation and then exported towards a target subpopulation. Usually, the imported string is accepted on arrival and then inserted into the target subpopulation. Our earlier experiments on controlled migration showed an improvement on results when contrasted against those obtained by conventional migration approaches. This paper describes extended implementations of alternative strategies to oversee migration in asynchronous schemes for an island model and enlarges a previous work on three processors with a set of softer testing functions [9]. All of them try to decrease the risk of premature convergence. A first strategy attempts to prevent unbalanced p ropagation of genotypes by applying an acceptance threshold parameter to each incoming string. A second one permits independent evolution of subpopulations and acts only when a possible stagnation is detected. In such condition an attempt to evade falling towards a local optimum is done by inserting an expected d issimilar individual to improve genetic diversity. A third alternative strategy combines both previous mentioned strategies. The results presented are those obtained on the functions that showed to be more difficult for the island model using a replication of a simple GA. A description of the corresponding system architecture supporting the PGA implementation is described and results for the parallel distributed approach among 3, 6 and 12 processors is discussed.Facultad de Informátic

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.Facultad de Informátic
    corecore