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Abstract

Evolutionary computation (EC) has been recently recognized as a research field, which
studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process
populations of solutions as opposed to most traditional approaches which improve a single
solution. All these algorithms share common features:  reproduction,  random variation,
competition and selection of individuals. During our research it was evident that some
components of EAs should be re-examined. Hence, specific topics such as multiple crossovers
per couple and its enhancements, multiplicity of parents and crossovers and their application to
single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms,
were proposed and investigated carefully. This paper show the most relevant and recent
enhancements on recombination for a genetic-algorithm-based EA and migration control
strategies for parallel genetic algorithms.  Details of implementation and results are discussed.

Keywords: Evolutionary algorithms, multirecombination, parallel genetic algorithms, strategies
for migration control.
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1. INTRODUCTION

In evolutionary algorithms all conventional approaches apply the crossover operator only
once on the selected parents. But in nature when the mating process is carried out, crossover is
applied many times and the consequence is a multiple and variable number of offspring. The
question arising is: how would the performance of an EA be affected by the use of a multiple
crossovers per couple (MCPC) operation? Exploration and exploitation of solutions in the
searching space are distinctive characteristics of an evolutionary algorithm, and are responsible
for the success or failure of the search process. Extreme exploitation can lead to premature
convergence and intense exploration can make the search ineffective. To find a balance between
these two factors is of paramount importance for the EA performance when speed of the search
and quality of results are involved. Many researchers focus on the balancing problem studying
the effect of selection mechanisms, because selective pressure can adjust exploration and
exploitation. On its own, recombination can also participate on this respect but depending on
how it is applied it can aid or disrupt the search process. For example, a low rate for
recombination can impede schema processing permitting super-individuals to replenish the
population, thus leading to premature convergence. On the other hand a high rate can be, in some
cases, extremely disruptive allowing good genetic material to be lost, slowing down the search.

Parallel implementations of  Genetic Algorithms (GAs) also aim at improvements on
performance. The main purpose of this approach is to  enhance the quality of the results. The
island model [2], [3], [19], [20], a well known distributed approach, where separate
subpopulations evolve in parallel is a realistic model of natural evolution which is appropriate
for a distributed environment running a Single Program Multiple Data (SPMD) scheme.

The following sections discuss new approaches to enhance EAs performance via
multirecombination and parallelism, and show some results.

2. A MULTIPLICITY FEATURE OF EVOLUTIONARY ALGORITHMS

This is the main contribution of this work in the theoretical field of Evolutionary
Computation. The multiplicity feature is related to new proposed multi-recombination methods:
� MCPC: Multiple Crossovers per Couple which reinforces the exploitation of features of

previously found (good) solutions.
� MCMP: Multiple Crossovers on Multiple Parents which provides a balance in exploitation

and exploration because the searching space is efficiently exploited (by the multiple
application of crossovers) and explored (by a greater number of samples provided by
multiple parents).

The multiplicity feature was tested in the optimization of hard testing functions: Griewank’s,
Schaffer´s F6, and F7, Shubert´s (highly multimodal functions), Easom’s and the Volcano [4]
(difficult unimodal functions).

2.1. MCPC AND ITS ENHANCEMENTS

The crossover operator provides a major contribution to the process of exchanging
genetic material during the execution of an EA. Conventional crossover combines the features of
two parent chromosomes to form two similar offspring by swapping corresponding segments of
the parents. The intuition behind the applicability of the crossover operator is information
exchange between different potential solutions. The common approach to crossover is to operate



once on each mating pair after selection. From now on such procedure will be called the single
crossover per couple (SCPC) approach. We devised a different approach to allow multiple
offspring per couple, to explore the recombination possibilities of previously found solutions. In
our earlier works [6], [7], a simplified version of MCPC was used. During those first studies of
the MCPC approach it was observed that:
•  In some cases this simple MCPC method found results that were better than those found by

the SCPC method.
•  Running time improved as long as the number of crossover per couple increased.
•  Best quality results were obtained allowing between 2 and 4 crossovers per couple.
•  In some cases, the method increased the risk of premature convergence due to a loss of genetic

diversity.
These effects were a consequence of saving computational effort and of a greater exploitation of
the recombination of good, previously found solutions. To overcome the premature convergence
problem, further successful approaches were undertaken by combining MCPC with an alternative
selection method: fitness proportional couple selection (FPCS) [8], by using self-adaptation of
MCPC parameters [9], by binding MCPC to alternative selection mechanisms [10] or by allowing
multiple parents and crossovers [11]. All these approaches outperformed the original MCPC
approach, at higher but no sensitive computational cost. They are briefly described now.

2.1.1.  MCPC WITH FPCS

Depicted in figure 1, the method can be sketched as follows.

2.1.2. SELF ADAPTATION OF MCPC PARAMETERS

This approach attempts to self-adapt the number of crossovers per couple in MCPC.
Because we are using a binary representation of chromosomes, the number of crossovers allowed
for an individual is codified in a field at the rightmost positions of the bit string. Let us call it the
ncross_field. In some experiments we allowed a maximum of three and in others a maximum of
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seven crossovers per couple. So, two or three extra bits were enough for that purpose. More
generally the last ( )1max_crosslog 2 +  bits of each individual are used to find an expected optimum
number of crossovers. In that way we have two searching spaces: one corresponding to the
objective function and other associated to the number of crossovers to apply.

Our attempt is that the individuals preserve the information about the number of
crossovers originally applied to their parents. In this way it is expected that, based on the
survival-of-the-fittest principle, good solutions carry information about the number of crossover
applied to their ancestors and that this number would be an appropriate one. According to Spears
[18] we used a local adaptive technique. Once the couple was selected we check the
corresponding number of crossover carried by each parent and;
•  If they match, then we apply the recombination operator a number of times specified by the

ncross_field. This value is inherited by each children.
•  Otherwise we choose a random number in the permitted range and preservation of

information is done according to strategy  S1 or S2 where,
•  S1, preserves parent’s information, enforcing population diversity in the parameter

searching space, because most of the time one child inherits characteristics (ncross_field)
from one of the parent and the other child inherits features from the other parent. (See Fig.
2).

•  S2, preserves individual information (number of crossovers applied when the child was
created). This strategy generates more similar individuals (same ncross_field) in the
parameter searching space and increases loss of genetic diversity. (See Fig. 3).

Experimental test showed that the behaviour of the self adaptive parameter control
mechanism is clear: when genetic diversity in the parameter searching space is low then lesser
number of crossovers are allowed and vice versa. This behaviour favours the evolutionary
process.

Fig. 2. Strategy S1, three crossover operations applied on parents, children carry parent´s information.

1 1 0 0 -------------- 1 1 0 1

0 1 1 0 -------------- 1 0 1 0

1 1 0 0 -------------- 1 0 1 0

0 1 1 0 -------------- 1 1 0 1

C: Crossover
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1 1 0 0 -------------- 1 1 0 1

0 1 1 0 -------------- 1 0 1 0

C
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C: Crossover
Random Crossover Number: 3

Fig. 3. Strategy S2, three crossover operations applied on parents, children carry their own information.



2.1.3. BINDING MCPC TO ALTERNATIVE SELECTION MECHANISMS

In this work we studied the effect of MCPC when it was jointly applied to deterministic
dynamic ranking selection (DDRS) in order to moderate the combined effect of selection (PS)
and MCPC. Baker introduced the first approach to ranking, called linear ranking, in 1985. By
means of linear ranking the selective pressure can be controlled by the user. The Baker’s original
linear ranking method assigns a selection probability that is proportional to the individual’s rank.
Here, according to Bäck [1] the mapping rank: I→{1,...,µ}  is given by:
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where ≤ ≥ denotes the ≤ relation or the ≥ relation for minimization or maximization problems res-
pectively.  Consequently the index i of an individual ai denotes its rank. Hence, individuals are
sorted according to their fitness resulting a1 the best individual and aµ the worst one. Assuming that
the expected value for the number of offspring to be allocated to the best individual is ηmax =µP(a1)
and that to be allocated to  the worst one is  ηmin =µP(aµ)  then
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 The selective pressure can be adjusted by varying ηmax . As remarked by Baker if ηmax = 2.0 then the
population is driven to convergence during every generation. To restrain selective pressure, Baker
recommended a value of ηmax =1.1. This value for ηmax close to 1 leads to Psel (ai) ≅  1/µ , almost the
case of random selection.
 

 It is not an easy task to tune ηmax, the expected value for the number of offspring for the
best individual. This parameter influences selective pressure. Here we propose Deterministic
Dynamic Ranking selection (DDRS), a deterministic and dynamic method to update this parameter
as a function of the number of generations reached. In this case ηmax is given by the following
expression:

( )
genmax

genmaxgencurrent
max _#

_#_# +=η

By using this variant of ranking we attempt to enforce exploration during the earlier stages and
exploitation during the final stages of the evolution process. At the beginning selective pressure is
weak and increases smoothly through the iterations reaching the maximum selective pressure
allowed by ranking at the end of the process. In this way we can expect to slow the convergence rate
to prevent being trapped in local optima.



2.2. MCMP: THE LATEST MULTIRECOMBINED APPROACH

The first approach using MCMP was for multiobjective optimization (MOO). In a
multiobjective optimization problem, a solution has a number of objective values, one per each
optimizing criteria (attributes). As many of these criteria can be in conflict it is impossible to
optimize any of the objective functions without degrading some of the remaining criteria. When
m objectives are involved, the search space can be seen as an m-dimensional space and therefore
each solution is an m-vector of attribute components. This leads to a decision making problem
for choosing a suitable solution (or set of solutions) according to higher level organization goals.

Vilfredo Pareto [14]established that there exists a partial ordering in the searching space
of a multiobjective problem. The Pareto criterion simply states that a solution is better than
another one if it is as good in all attributes, and better in at least one of these attributes. For
instance, in a maximization problem given two solutions ),...,2,1(

m
xxxx =  and

),...,2,1(
m

yyyy = , the Pareto criterion says that,

x dominates y iff jyjxjiiyix   such that     and       >∃∀≥ .

In the problem space some solutions will not be dominated by any other solution and they
conform the Pareto front, also known as the acceptable set, the efficient points and the Pareto
optimal set. Knowledge of the Pareto front is of utmost importance when search is applied before
decision making.

Attempting to build a better Pareto front in MOO, MCMP was born by combining our
previous ideas on multiple crossovers and those from J. Lis and A. Eiben [5] in their multisexual
genetic algorithm (MSGA). This first version of MCMP:
� Uses proportional selection
� Selects multiple parents per sex
� Uses an extension of MCPC (called MCPMA multiple- crossover per mating action).
� For insertion in the next population, it gives preference to those offspring which are

classified so far as globally non-dominated.
To build the new population, each time the new offspring are created by application of MCPMA,
we apply the following procedure:

While the new population is created
  do
      Select n1 parents from each sex,
      Apply MCPMA with uniform scanning crossover to obtain n2 offspring and mutate,
      By consulting Pcurrent determine the subset Onond of these new offspring that are globally
      nondominated,
      If Onond ≠ Φ then insert Onond  into the new population

  else insert n2/2 offspring randomly chosen into the new population
  od

The number n1 of parents and the number n2 of crossovers are parameters of the GA.
MCMP was tested on a set of selected multiobjective problems. We show here the results when
the new approach is applied to the  Problem 3: Schaffer function F2 [16] defined as follows:
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2.2.1. MCMP FOR SINGLE OBJECTIVE OPTIMIZATION

After the outstanding results obtained in MOO, MCMP was tested on single unimodal
and multimodal optimization. The following relevant performance variables were  examined:
Ebest = ((opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or estimated,
optimum value opt_val. It gives us a measure of how far are we from that opt_val.
Epop = ((opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fitness when compared with opt_val. It tells us how
far the mean fitness is from that opt_val.
Gbest: Indicates the generation where the best valued individual (retained by elitism) was found.
All the values analysed were mean values obtained from twenty series completed for each fixed
number of crossovers, on each function. Several testing functions were used. We show here results
on the Griewank´s and the Easom´s functions when contrasting MCMP and MCPC combined with
FCPS.

With the following parameter set,
Population size  :      100
Crossover rate   :      0.85
Mutation rate     :      0.01

     Chromosome length:  14
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Fig. 4 – The Pareto front for Problem 3, with 3
              parents per sex and 3 crossovers.
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Fig. 5 – The Pareto front for Problem 3, with 4
              parents per sex and 4 crossovers.

        Table 1. Performance variables values for  Griewank’s function

M in im u m  V a lue M a x im u m  V a lueP e r fo r m a nc e
V a r ia b le M C P C - FP C S M C M P M C P C - FP C S M C M P

M e a n E b e s t 0 .0 1 2 4 0 .0 0 0 0 2 .5 1 7 6 0 .0 4 1 5
M e a n E p o p 4 4 .9 9 7 0 0 .0 2 6 0 4 7 .6 4 0 2 1 2 .3 1 4 9
M e a n G b e st 8 3 9 4 5 2 3 4 0 3 6 5

M in im u m  V a lue M a x im u m  V a lueP e r fo r m a nc e
V a r ia b le M C P C - FP C S M C M P M C P C - FP C S M C M P

M e a n E b e s t 0 .0 3 8 1 0 .0 0 7 4 0 .0 8 3 6 0 .1 6 3 4
M e a n E p o p 7 .1 3 8 4 0 .0 0 7 4 9 .8 4 4 7 0 .1 6 3 5
M e a n G b e s t 2 0 2 6 7 3 4 0 1 7 4 9 1

        Table 2. Performance variables values for Easom´s function



The use of multiple crossovers on  multiple parents (MCMP) showed to be efficient in
optimization of hard unimodal and multimodal testing functions and behaves better than MCPC-
FPCS.
There is an indication that the multiparent approach mitigates the possible loss of diversity
generated by multiple crossovers per mating (MCPMA) and no extra adjustments, used before,
seem to be necessary. On the other hand, it was shown that the multiparent approach behaves better
when it is associated to the multiple crossover approach on both functions selected for optimization.
Speed of convergence, measured in number of generations, is augmented without increasing the risk
of premature convergence. Consequently the quality of results are better than previous attained
under more complex approaches. Additionally, when observing the final population it was detected
that all individuals are much more centred surrounding the optimum. This property is strongly
detected in the multimodal optimization. This is an important issue when an application requires
provision of multiple alternative near-optimal solutions.

3. PARALLEL GENETIC ALGORITHMS

Parallel implementations of Genetic Algorithms (GAs) aim at improvements on
performance. In his earlier works Holland [12] recognised the parallel nature of the reproductive
paradigm and the intrinsic efficiency of parallel processing. Parallel genetic algorithms (PGAs),
models and implementations [13], [17] are designed to exploit this inherent parallel nature of
genetic algorithms. When implemented as an island model, on behalf of the evolutionary
process, migration of individuals allows for a fruitful interaction between subpopulations by
exchanging selected individuals and improving genetic diversity. This exchange is done by
choosing an individual from a source subpopulation and exporting it towards a target
subpopulation. On arrival, it is usual, for the imported string to be accepted and inserted into the
target subpopulation without exerting any control policy. Our earlier experiments [15]
controlling migration acceptance showed an improvement of results when contrasted with those
obtained by ordinary migration approaches.

In this work we  describe extended implementations of alternative strategies to control
migration in asynchronous schemes for an island model. All of them are an effort to decrease the
risk of premature convergence. A first strategy, Maximum Gap Allowed (MGA), tries to prevent
unbalanced propagation of genotypes by using an acceptance threshold parameter for incoming
strings. A second one, Dynamic Arbiter Strategy (DAS), permits independent evolution of
subpopulations but acts when a possible stagnation is detected. In such  condition an attempt to
evade falling towards a local optimum is done by inserting an expected dissimilar individual to
improve genetic diversity. This is done by exchanging data associated with the best and worst
global individuals and population mean fitness. A third alternative, Combined MGA-DAS
Strategy (CMGA-DAS), combines both of these strategies. The results presented are those
obtained  in the functions that proved to be more difficult for the island model using a simple
GA. Experiments were conducted implementing both, virtual and real nodes. The following
sections describe the experiments and some results.

3.1. THE STRATEGIES

MGA, was devised to avoid falling towards a local optimum by introduction of high performers.
A parameter θ, was defined as the maximum difference accepted between the fitness of the best
local individual and that of the incoming string. Insertion is allowed only when the following
condition holds:

Fitnessext - (1+θ  ) Fitnessbestlocal  ≤ 0  ( 0 ≤ θ ≤ 1)



This strategy was applied with an  interconnectivity scheme of a static logical ring; if the number
of processors is n then node(i+1) mod n is the neighbour of nodei .
DAS, decides by means of a global arbiter if a migrated chromosome should be inserted or not
into some subpopulation. This decision is based on the knowledge the arbiter has about the
evolutionary progress of subpopulations, hence exerting a sort of dynamic convergence control.
At migration time, rather than sending a single chromosome, the process managing the
chromosome exchange exports a packet to the arbiter containing data about; source node
address, best individual chromosome, worst individual chromosome, best individual fitness,
worst individual fitness, and subpopulation mean fitness. On its end, at each migration arrival,
the arbiter updates information about the best and worst global individuals and subpopulation
fitness. Also, information about the best individual of the first migration is kept on hand. In more
detail, when the arbiter receives a packet, from the source, the following actions take place:
•  If it is the first migration, then updates its internal data structures.
•  Otherwise, updates its internal data structures and to determine  the progress of the evolutive

process, compares the current mean fitness value of the source subpopulation with the last
updated corresponding value and,
◊ If they remain similar (possible search stagnation) a migration of an individual to the

source subpopulation will take place.
◊ Otherwise (search improves results) no action take place.

To determine which individual to migrate the following criterion was adopted:

if the best global individual does not reside in the source subpopulation
     then migrate the best global individual
     else migrate the worst global individual.

Giving the arbiter the faculty to migrate (or not) a global individual (originated in any node) to
the source node, resulted in a dynamic interconnection scheme.
Finally, Combined MGA-DA Strategy (CMGA-DAS), consisting of the combined application of
both previous strategies, was also examined by simply adding to DAS the acceptance criteria
imposed by θ, when determining which individual to migrate. So, the migration criterion applied
for this strategy was:

if the best global individual resides in the source subpopulation
  then migrate the worst global individual
  else if θ test holds for the  best global individual
             then migrate the best global individual
             else if θ test holds for the  best first migrated individual
                          then migrate the best first migrated individual2

                           else migrate the worst global individual

3.2. EXPERIMENTS AND RESULTS

A set of, at least, twenty runs was performed for our experiments. The island model was
run on the set of  several test functions, solving optimization problems. Only the results on the f2
Volcano (hard unimodal) and the f4 Schaffer F7 (hard multimodal) functions are referred here. A
simple GA for each subpopulation was used, applying: proportional selection (for mating),
tournament selection (for replacement), elitism, one-point crossover and bit-swap mutation, on a

                                                          
2 The best first migrated individual is a good intermediate value which contributes to genetic diversity.



population of 70 individuals. Four parameter sets, S1 to S4, with typical values for probabilities
of crossover and mutation were used. The number of generations was limited to 4000. To
achieve subpopulation interaction, with and without migration arbitration, sets of 6, 10 and 16
nodes were used. After the runs were completed, mean values for Ebest and optimal hits (as
below defined) were determined:

Optimal Hits = (# optimal hits / # runs). The hit ratio to find the optimal solution, throughout the
total number of runs.

The following tables and graphs show a report of experimental results. All the values in the tables
are mean values obtained from the multiple run series.

#

nodes

Static MGAS DAS CMGA-

DAS

6 7.61E-03 6.92E-04 1.66E-02 2.08E-03

10 2.08E-03 0.0 6.23E-03 0.0

16 6.92E-04 0.0 1.04E-03 0.0

#

nodes

Static MGAS DAS CMGA-

DAS

6 (S1) 7.29E-13 1.28E-12 7.48E-13 7.67E-13

6 (S2) 6.36E-13 1.62E-12 1.47E-12 1.57E-12

6 (S3) 4.41E-12 4.28E-12 4.67E-12 1.54E-11

6 (S4) 2.14E-12 1.52E-12 1.92E-12 4.50E-12

10 (S1) 2.00E-13 4.32E-13 6.81E-13 3.34E-13

10 (S2) 3.83E-13 3.11E-13 5.60E-13 9.22E-13

10 (S3) 1.04E-12 1.54E-12 8.41E-13 9.82E-13

10 (S4) 5.51E-13 8.75E-13 1.22E-12 8.00E-13

16 (S1) 1.17E-13 1.73E-13 3.62E-13 2.56E-13

16 (S2) 1.41E-13 2.34E-13 5.62E-13 4.54E-13

16 (S3) 5.36E-13 4.82E-13 1.41E-12 1.01E-12

16 (S4) 3.67E-13 3.50E-13 1.31E-12 7.77E-13

Ebest

0

0,01

0,02

6 10 16 # nodes

Static

MGAS

DAS

CMGA-DAS

Fig 6. Ebest values for f2 function
under each strategy with set S2
for variable number of nodes

Optimal Hits

0

0,5
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6 10 16
# nodes
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Fig 7. Optimal hits for f2 function
under each strategy with set S2
for variable number of nodes

#

nodes

Static MGAS DAS CMGA-

DAS

6 0.81 0.95 0.75 0.95

10 0.95 1.0 0.916 1.0

16 0.983 1.0 0.95 1.0

Ebest

0,00E+00

2,00E-12

4,00E-12

6,00E-12

8,00E-12

1,00E-11

1,20E-11

1,40E-11
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S2

16 
S3

16 
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Static
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DAS

CMGA-DAS

Fig 8. Ebest values for f4 function under each strategy over all parameter sets for variable number of nodes.



In figures 6 and 7 we observe that those strategies based on the acceptance threshold parameter
θ, are the best performing ones with this very hard deceptive unimodal function.
In figure 8 we observe that although the Ebest values are quite small, none of the contrasted
strategies reached the optimum frequently.  Optimal hits obtained in the best case was of 28%,
with parameter set S1 and 16 nodes. PGA implementations are notably superior than sequential
GA implementation. No simple sequential GA can even approach the worst near optimal
solution found by any strategy in similar tests.

4. CONCLUSIONS

This paper shows two major contributions to the theoretical field of Evolutionary
Computation. Topics involving different multirecombination schemes, their effect when applied
to single and multiple criteria optimization problems and parameters adaptability, were
investigated carefully. Also a set of strategies to control migration in parallel genetic algorithms
were considered.

Multiple crossovers per couple (MCPC) showed its benefits and limitations, described in
detail in previous sections. To overcome these limitations successful approaches were undertaken
by combining MCPC with FPCS, by using self-adaptation of MCPC parameters or by binding
MCPC to alternative selection mechanisms. The use of multiple crossovers on  multiple parents
(MCMP) proved to be efficient in single and multiple objective optimization and behaves better
than previous improvements. Speed of convergence, measured in number of generations, is
augmented without increasing the risk of premature convergence. Consequently the quality of
results is better than those previous attained under more complex approaches. There is indication
that the multiparent approach mitigates the possible loss of diversity and no extra adjustments seem
to be necessary.  Additionally, by observing the final population it was found that all individuals are
much more centred surrounding the optimum on both function optimizations and this is even more
so in the multimodal optimization. This property was not observed neither with other previous
approaches nor with the multiparent original approach. This is an important issue when an
application requires provision of multiple alternative near optimal solutions. On the other hand, it
was shown that the multiparent approach behaves better in accuracy of results and speed when it is
associated to the multiple crossovers approach on both functions selected for optimization.
Although we cannot be conclusive, we conjecture that by means of this association the searching
space is efficiently exploited by the multiple application of crossovers and efficiently explored by a
greater number of samples provided by the multiple parents. In view of these promising results new
work is currently being developed to study the optimal (n1,n2) association, the consequences of
increasing the number of crossovers, and the effect of multiple crossovers on multiple parents
under diverse crossover methods.

Three new strategies to control migration in asynchronous Parallel Genetic Algorithms
distributed in a network of 6, 10 and 16 processors have been discussed. Here, it is worth
remarking that the base for the evolutionary approach, upon which results were completed, is the
weakest one; a simple GA. Two kinds of problems were addressed for optimisation: unimodal
and multimodal. Easom’s and the (hardest) Volcano functions are good representatives of the
first class of problems; to find a needle in a haystack. For them, MGAS and CMGA-DAS were
the strategies showing better performance. In every case Optimal Hits increases accordingly with
increments in the number of processors, arriving at 100% under MGAS and CMGA-DAS for 10
and more nodes. For the second class of problem, difficult highly multimodal functions of varied
landscapes were chosen. Here there cannot be detected a clear preeminence of one strategy over
the others and for any parameters set Static, MGAS and CMGA-DAS work better. Further
studies are needed to ensure the utility of the new proposed strategies for these types of
functions. Fine tuning of genetic operators probabilities and knowledge of the degree of



population convergence are prospective issues to investigate. We want to remark that PGA
implementations are notably superior than sequential GA implementations in view of quality of
results. No simple sequential GA can even approach the worst near optimal solution found by
any strategy in similar tests. Finally in the research field of Evolutionary Computation future
work is addressed to combine the new multirecombinative approaches and their parallel
implementations.
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